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Abstract. The random walk is one of the most basic dynamic properties of complex
networks, which has gradually become a research hotspot in recent years due to its
many applications in actual networks. An important characteristic of the random walk
is the mean time to absorption, which plays an extremely important role in the study
of topology, dynamics and practical application of complex networks. Analyzing the
mean time to absorption on the regular iterative self-similar network models is an im-
portant way to explore the influence of self-similarity on the properties of random
walks on the network. The existing literatures have proved that even local self-similar
structures can greatly affect the properties of random walks on the global network,
but they have failed to prove whether these effects are related to the scale of these
self-similar structures. In this article, we construct and study a class of Horizontal Par-
titioned Sierpinski Gasket network model based on the classic Sierpinski gasket net-
work, which is composed of local self-similar structures, and the scale of these struc-
tures will be controlled by the partition coefficient k. Then, the analytical expressions
and approximate expressions of the mean time to absorption on the network model
are obtained, which prove that the size of the self-similar structure in the network will
directly restrict the influence of the self-similar structure on the properties of random
walks on the network. Finally, we also analyzed the mean time to absorption of differ-
ent absorption nodes on the network to find the location of the node with the highest
absorption efficiency.
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1 Introduction

Due to its applications in the fields of social sciences, engineering, telecommunication
networks and biological networks, complex network science has gradually become a re-
search hotspot in recent years [1–4]. The random walk on the network is a research di-
rection in the field of complex networks that has attracted much attention, because it can
intuitively describe the dynamics of complex networks [5]. In the field of complex net-
works, the research of random walk is generally used to detect the community structure
in the network [6], to segment the network [7] and to study the corresponding proper-
ties of the resistance network [5], and so on. In addition, the random walk on complex
networks has its application value in many practical fields. Current research has shown
that the related properties of random walks can be used in the field of communication
and information to study a series of issues such as information transmission [8], data
collection [9, 10], communication quantification and prediction [11, 12], information la-
tency [8], communication and search costs [13, 14], and computer vision [15]; in the field
of biology, random walk is used to model and study the spread of infectious diseases
and the metabolic flux of organisms [15, 16]. The most basic problem in the properties
of random walk is the first passage time (FPT), which is defined as the number of steps
required by the initial node in the network to reach the target node for the first time after
random walks [5]. Since there may be many paths between these two nodes and ran-
domness of walking, the first passage time is uncertain. Naturally, the mean first passage
time(MFPT) between two nodes has received more attention, which has important ap-
plication value in studying the transmission cost of wireless networks [11, 17]. But the
mean first passage time only describes the local information of the network. In order to
reveal the global random walk properties of the network, the mean time to absorption
(MTA) is further developed on the basis of it, which is defined as the average value of the
mean first passage time of all nodes in the network to the absorptive node [18, 19]. MTA
directly reflects the efficiency of other nodes in the network to reach absorptive node
through random walks and therefore plays an important role in the selection of data
collection nodes and best absorptive sites for exciton transport in polymer and electron
transfer on a fractal photosynthetic antenna [20–27].

The analytical expression of MTA on a general random network is difficult to be ob-
tained, but on a regular iterative network with a specific structure, it is possible to find
the iterative expression of MTA according to the iterative law of the network structure,
which is of great significance for further understanding and studying the influence of
network structure on random walk [28–30]. Sierpinski gasket network is a classic self-
similar network model, so many scholars analyzed the influence of self-similarity on
the topology and dynamics of the network by studying this network and its extended
network model [19, 31–40]. For example, the MTA and the spectrum problem with ab-
sorptive nodes on the second-order Sierpinski gasket have been studied by Kozak et
al. [41, 42]; then, Zhang et al. made certain improvements to the classic Sierpinski gasket
network, and obtained network models with more specific properties, including: de-
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terministic Sierpinski network (DSN) [43], random Sierpinski network (RSN) [44], evo-
lutionary Sierpinski networks (ESNs) [45] and dual Sierpinski gaskets (DSGs) [46], and
studied the topology and dynamic properties of these network models. On the basis of
previous studies, the average trapping time problem on the third-order Sierpinski gasket
network model is solved by us, in which the core method is to combine the probability
generating function with the iterative method [47]. Since these networks are constructed
in an iterative manner, they have strict self-similar properties. However, actual networks
often have a certain degree of self-similarity but will not meet such strict conditions.
Therefore, the Sierpinski gasket network was segmented or spliced which are named the
half-Sierpinski gasket (HSG) [47] network model and the joint Sierpinski gasket (JSG) [48]
network model respectively. These network mode are different from the original network
model in that they lose the global self-similarity and only retain the self-similarity in the
local area. Then, we studied the MTA problems on these two types of networks, and
found that even though they lost the global self-similar properties, and the analytical ex-
pressions of MTA are no longer the same, they still retain the iterative law very similar to
the original network.

Therefore, the above works have shown that even the self-similarity of the local area
is enough to affect the global random walk properties of the network, but the local self-
similar structure in HSG and JSG still occupies the main part of the network. The new
question is: when such a self-similarity structure is sufficiently small relative to the whole
network, will the influence of self-similarity on random walk be weakened? In order to
answer this question, in this article we will perform a more detailed horizontal segmen-
tation of the Sierpinski gasket network and study the MTA problem on the second half
of the network. The network model is named Horizontal Partitioned Sierpinski Gasket.
Although the method used in the JSG network model can solve the MTA problem on the
partially incomplete Sierpinski gasket network, it cannot deal with the network model
whose number of self-similar modules increases exponentially, and it cannot establish
the relationship between the segmentation level and the MTA analytical expression. In
this paper, an iterative network mode that can handle the above problem will be pro-
posed. On these network model, we can not only solve the analytical expression of the
MTA, but also establish the quantitative relationship between the MTA and the residual
degree of the network model (the size of the local self-similar structure). Then the ques-
tion of whether the influence of self-similarity on random walks is restricted by the size of
its self-similarity structure is answered. In addition, based on the Horizontal Partitioned
Sierpinski Gasket network model, we can also parameterize the location of some nodes,
and then analyze the relationship between the MTA and the location of absorptive nodes.

The subsequent content of the article will be divided into the following three sections:
in the second section, the construction method of the Horizontal Partitioned Sierpinski
Gasket network model will be introduced systematically; in the third section, the calcu-
lation method of MTA will be divided into five parts and displayed in turn; finally in the
fourth section, we will summarize the article.
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2 The horizontal partitioned Sierpinski Gasket

In this section, we’ll cover the Sierpinski Gasket SG(g) and how to split the network
horizontally. As a classical fractal network model, many properties of Sierpinski Gasket,
such as spectrum, resistance distance, average absorption time, etc., have been studied by
many scholars. The Sierpinski Gasket can be generated by iteration. In Fig. 1, we show
the network structure in the initial state when g = 0, and the network structure after two
iterations, namely SG(1) and SG(2). The specific iteration of the Sierpinski Gasket can
be referred to the previous research and do not repeat. However, it is worth noting the
self-similarity of the network, which is especially important in the later calculation. As
shown in Fig. 1, the network SG(g) can also be composed of three identical regions, each
of which can be denoted as Γ(g − 1). From the self-similarity of the network, we can
know that region Γ(g − 1) is the g − 1 generation network SG(g − 1). Similarly, using
region Γ(g), namely the network SG(g), we can also construct the network SG(g + 1).
Where, the three initial nodes in the initial network are denoted as A, B and C and the
three nodes generated after first generation are denoted as D, E and F. In addition, we
also label the nodes in the network from top to bottom and from left to right, as shown in
Fig. 1. The total number of nodes and the total number of edges in SG(g) of generation g
network are denoted as N(g) and E(g) respectively, which can be obtained from previous
work:

N(g) =
3
2
(3g + 1) and E(g) = 3g+1.

After a brief introduction to the Sierpinski Gasket, we will define the multi-level hor-
izontal partitioning method on the network SG(g). First, we define the 1-level horizon-
tal segmentation method of network SG(g): the line passing through the nodes at the
midpoints of line segment AB and line segment AC is taken as the 1-level parting line,
denoted as l1, and the part below the parting line is retained while the rest is removed, in
which the nodes on the spline are retained and the edges that coincide with the parting
line are removed. Here, the rest of the network SG(g) after being segmented by 1-level
parting line is denoted as SSG(g, 1). Next, the 2-level parting line, denoted as l2, is de-
fined as a line that passes through two nodes, which are respectively located on the line
segments AB and AC, and the distance between them and node A is 2g − 2g−2. Similarly,
just keep the lower half of the divided network SG(g) and denote it as SSG(g, 2). Finally,
for any positive integer k, we can define the k-level horizontal parting line and its resid-
ual network after segmentation in a similar way: k-level horizontal parting line, denoted
as lk, is the straight line passing through two nodes, which are respectively located on
the line segments AB and AC, and the distance between them and node A is 2g − 2g−k;
the residual network after segmentation denoted as SSG(g, k) is the lower part of k-level
splitter line, where the nodes on the splitter line are retained, but the edges that coincide
with the splitter line are not. Obviously, the segmentation parameter here must satisfy:
1 ≤ k ≤ g.

It can be found that network SSG(g, k) is essentially connected by 2k Sierpinski Gas-
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Figure 1: Sierpinski Gasket: As shown in the figure, the initial network is equilateral triangle. The network
SG(1) and SG(2) after two iterations are shown in the figure on the left, where the black nodes are the initial
nodes, the blue nodes are the nodes generated after the first iteration, and the red nodes are the new nodes
generated after the second iteration. The graph on the far right is the network after the g-th iteration, which can
be assembled by three regions Γ(g− 1), namely g− 1 generation network SG(g− 1), reflecting the self-similarity
of the network.

Figure 2: Multi-level Horizontal Partitioning Method: in the figure above, the graph on the left is g generation
Sierpinski Gasket SG(g), and the parting lines l1, l2, · · · , lk; the graphs on the right are the residual networks
after segmentation according to the parting lines.

ket SG(g− k). Therefore, the mean time to absorption (MTA) over the residual network
SSG(g, k) is based on the MTA over a sequence of connected Sierpinski Gaskets. We
hereby define the auxiliary series network, denoted as ASG(g, m), to concatenate m iden-
tical Sierpinski Gasket SG(g) in sequence as shown in Fig. 3.

Since the auxiliary network ASG(g, m) is composed of m regions Γ(g), we denote
these m regions as Γ1(g), Γ2(g), · · · , Γm(g) in order from right to left for clarity. And for
any region, Γj(g)(1 ≤ j ≤ m), we represent the vertices at the three corners on the outside
as (A, j), (B, j), and (C, j) as shown in Fig. 3. Similarly, to accurately represent the location
of each node, we denote the node i in region Γj(g) as (i, j). It is worth noting that using
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Figure 3: Auxiliary Network ASG(g, m): This network can be obtained by connecting m Sierpinski Gaskets
SG(g) in sequence.

this notation results in certain nodes being tagged twice at the same time, in other words,
different symbols representing the same node. For example, (B, n) = (C, n + 1) where
1 ≤ n < m. However, this is not a defect, but a deliberate treatment for later calculations.

Then, we record the number of all nodes and the number of all edges in the auxiliary
network ASG(g, m) as NA(g, m) and EA(g, m), respectively. Based on the structure of the
network, we can prove that:

NA(g, m) =
m
2
(3g+1 + 1) + 1 and EA(g, m) = m · 3g+1.

Moreover, the total number of nodes and the total number of edges on the residual net-
work SSG(g, k) are denoted as NS(g, k) and ES(g, k). The following equation can be ob-
tained from the relationship between the residual network SSG(g, k) and the auxiliary
network ASG(g, m):

NS(g, k) = 2k−1(3g−k+1 + 1) + 1 and ES(g, k) = 2k · 3g−k+1.

Here, we have explained the structure and some related properties of Sierpinski Gas-
ket SG(g), residual network after k-level horizontal partitioning SSG(g, k), and auxiliary
network ASG(g, m). Next we will discuss the mean time to absorption on the network.

3 Analytical expression of mean time to absorption on network
SSG(g, m)

In this section, we calculate the mean time to absorption over the residual network after
k-level horizontal partitioning SSG(g, k). In order to facilitate the presentation of the
calculation process, this section will be divided into the following 4 subsections.

3.1 Mean time to absorption on network

In this subsection, the random walk process on the network and the definition of the
mean time to absorption (MTA) will be introduced respectively as preliminary knowl-
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edge of subsequent calculation process.
First, the unbiased Markovian random walk on the network G will be presented as

the basis for the definition of the mean time to absorption, where G generally refers to a
general undirected and unweighted connected network. The total number of nodes and
the total number of edges in the network G are denoted as N and E respectively, and each
node is numbered from 1 to N. Without loss of generality, we set node α as the absorptive
node. Starting from any site i other than the absorptive node α, the walker can jump to
any of its nearest-neighbor nodes with equal probabilities at each time step (taken by
unity). But once the walker enters the absorptive node α, it will stop random walk and
no longer move. Therefore, the probability of transition at each step is the reciprocal
of the degree of the node without absorptive node α. Here, the degree of site i can be
denoted as di, then, the probability can be expressed as follow:

pij =


1
di

, if i ∼ j and i 6= α,

0, others,

where pij is the probability that the walker jump from the site i to the site j, and i ∼ j
means that the site i is directly connected to the site j. Furthermore, when no absorptive
node is set in network G, every node in the network can be traversed by the random walk
Markov chain, that is, for any initial node, walker will reach any node in the network with
probability 1. Therefore, after setting the absorptive node again, walker will be captured
by the absorptive node at some point. As the size of the network approaches infinity,
namely N → +∞, the above conclusion is still true, even if the mean time to absorption
(MTA) approaches infinity.

Then, the mean first-passage time (MFPT), denoted as Ti,j, is defined as the mean time
of the walker starting from node i and reaching the target node for the first time through
a random walk. Here, when the starting point and the ending point are the same, it is
stipulated that: Ti,i = 0. The average time to absorption of node i on the network G with
absorptive node α, denoted as Ti, is defined as the average time for walker to start from
node i and finally enter the absorptive node and stop random walker. In fact, it is easy to
prove by the above definition: Ti,α = Ti if α is the only absorptive node in the network.
Then the total time to absorption on the network, denoted as Ttotal , is defined as:

Ttotal = ∑
i∈Ω

Ti = ∑
i∈Ω

Ti,α,

where, Ω be used to represented the set of all nodes in network. Therefore, the mean time
to absorption (MTA) of network G, denoted as T̄, is defined as:

T̄ =
Ttotal

N − 1
,

where N refers to the total number of node. Moreover, the MTA on a network with
multiple absorptive nodes can naturally be generalized by the above definition, and it
does not need to be explained in detail here.



8 Z. Zhang, B. Wu and Z. Yu / Anal. Theory Appl., 40 (2024), pp. 1-21

In this paper, we set the corner node C of the Sierpinski Gasket SG(g) as the absorp-
tive node. According to the results of previous published articles, it can be seen that the
analytical expressions of the total time to absorption and the mean time to absorption on
the Sierpinski Gasket SG(g) are determined by the iterative variable g, and respectively
meet the following relationships [19]:

Ttotal(g) =
5
2
· 3g · 5g + 2 · 5g − 1

2
· 3g

and

T̄(g) =
1

N(g)− 1
Ttotal(g) =

3g · 5g+1 + 4 · 5g − 3g

3g+1 + 1
.

Then, our goal is to calculate the analytical expression of the mean time to absorption on
the residual network after k-level horizontal partitioning SSG(g, k) with absorptive node
C.

It is worth mentioning that for any network G, if its corresponding transition proba-
bility matrix is known, then the MTA on the network can be calculated by matrix algo-
rithm [48]. Naturally, the above method can be used to calculate the MTA in the Sierpin-
ski Gasket SG(g), residual network after k-level horizontal partitioning SSG(g, k), and
auxiliary network ASG(g, m). However, since the rank of the matrix corresponding to
the above three networks is N(g)− 1, NS(g)− 1 and NA(g)− 1 respectively, when the
number of iterations g approaches infinity, the rank of the matrix will also approach in-
finity. Therefore, although the above matrix algorithm can be used to solve the problem
of MTA of any node in a simple connected network of any finite scale, it cannot deal with
the situation when the network scale is very large. It is necessary to present another way
to calculate the mean time to absorption and make it easier to analyze in the residual
network after k-level horizontal partitioning SSG(g, k)

3.2 MTA of ASG(g, m)

As mentioned earlier, although the MTA on the Sierpinski Gasket network SG(g) has
been discussed, the conclusions are not enough to support the following calculations. [19]
Therefore, in this section, we will firstly present the analytical expressions of MTA on
Sierpinski Gasket network with two and three outermost absorptive nodes based on
these results. These expressions will be the basic prerequisites for subsequent calcula-
tions.

First, Ω(g) is defined as the set of all nodes in the network SG(g), and the three nodes
in the outermost corner are marked as A, B and C, as shown in Fig. 1. If B and C nodes are
set as absorptive nodes on network SG(g), then the mean first passage time from node i
to the absorptive nodes, the total time to absorptions and the mean time to absorptions
are denoted as T2

i (g), T2
total(g) and T̄2(g), respectively. Similarly, if the three nodes A,

B and C are set as absorptive nodes, then the mean first passage time from node i to
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the absorptive nodes, the total time to absorptions and the mean time to absorptions are
denoted as T3

i (g), T3
total(g) and T̄3(g), respectively.

According to the symmetry of the Sierpinski Gasket network, the following relation-
ship can be obtained:

T2
A(g) = 5T′(g), (3.1a)

T2
total(g) = 3g · 5g +

1
2
(5g − 3g). (3.1b)

Then, the mean time to absorptions on SG(g) with double absorptive nodes satisfies:

T̄2(g) =
1

N(g)− 2
T2

total(g) =
2 · 3g · 5g + 5g − 3g

3g+1 − 1
.

Due to the limited space, the specific derivation process of the above conclusions is pre-
sented in the Appendix.

After solving the problem of mean time to absorptions with multiple absorptive nodes
on Sierpinski Gasket SG(g), we then calculate the MTA on auxiliary network ASG(g, m)
with absorption nodes (C, 1). Given that network ASG(g, m) is connected by m regions
Γ(g), the set of all nodes on network ASG(g, m) is denoted as ΩA, the set of all nodes
on region Γj(g) (1 ≤ j ≤ m) is denoted as Ωj

A, and the set only containing nodes (B, j)
and (C, j) is denoted as Ω̂j

A. Furthermore, let Ω̂A = Ω̂1
A ∪ Ω̂2

A ∪ · · · ∪ Ω̂m
A, Ω̄j

A = Ωj
A/Ω̂j

A
and Ω̄A = ΩA/Ω̂A. The MFTP from node (a, b) to node (c, d) in the auxiliary network
ASG(g, m) is denoted as TA

(a,b),(c,d)(g, m). Then, the total time to absorption on the auxil-
iary network ASG(g, m) is denoted as TA

total(g, m), and the MTA is denoted as T̄A(g, m).
Based on the above node classification, we can make the following analysis: For any

node (i, j) ∈ Ω̄A, the path to the absorptive node (C, 1) can be divided into two segments.
First of all, starting from node (i, j), walker reach nodes (B, j) or (C, j) through mean time
T2

i (g). Then walker starts at (B, j) or (C, j), and finally arrives at the absorptive node
(C, 1). Therefore, TA

total(g, m) satisfies the following relation:

TA
total(g, m) = ∑

(i,j)∈ΩA

TA
(i,j),(C,1)(g, m)

=
m

∑
j=1

∑
(i,j)∈Ω̄j

A

TA
(i,j),(C,1)(g, m) + ∑

(i,j)∈Ω̂A

TA
(i,j),(C,1)(g, m). (3.2)

If the start node (i, j) is randomly selected from set Ω̄j
A according to the uniform dis-

tribution, based on the symmetry of nodes (B, j) and (C, j) in region Γj(g), the walker
starts from the start node and arrives at any node in (B, j) or (C, j) with equal probability.
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Therefore, for any j ∈ [1, m], it can be deduced that:

∑
(i,j)∈Ω̄j

A

TA
(i,j),(C,1)(g, m)

= ∑
(i,j)∈Ω̄j

A

T2
(i,j)(g) + ∑

(i,j)∈Ω̄j
A

[
1
2

TA
(B,j),(C,1)(g, m) +

1
2

TA
(C,j),(C,1)(g, m)

]

=T2
total(g) +

1
2
(N(g)− 2)

[
TA
(B,j),(C,1)(g, m) + TA

(C,j),(C,1)(g, m)
]
.

Then, substitute the above equation into Eq. (3.2), and it can be obtained that:

TA
total(g, m) =m · T2

total(g) +
N(g)− 2

2

m

∑
j=1

[
TA
(B,j),(C,1)(g, m)

+ TA
(C,j),(C,1)(g, m)

]
+ ∑

(i,j)∈Ω̂A

TA
(i,j),(C,1)(g, m).

As mentioned above, node (B, j) and node (C, j− 1) both represent the same node where
1 < j ≤ m, so the above formula can be simplified as:

TA
total(g, m) =m · T2

total(g) + (N(g)− 2)
[

∑
(i,j)∈Ω̂A

TA
(i,j),(C,1)(g, m)

− 1
2

TA
(B,m),(C,1)(g, m)

]
+ ∑

(i,j)∈Ω̂A

TA
(i,j),(C,1)(g, m)

=m · T2
total(g) + (N(g)− 1) ∑

(i,j)∈Ω̂A

TA
(i,j),(C,1)(g, m)

− N(g)− 2
2

TA
(B,m),(C,1)(g, m). (3.3)

Naturally, we have to figure out TA
(i,j),(C,1)(g, m) for any node (i, j) ∈ Ω̂A. Since

TA
(C,1),(C,1)(g, m) = 0,

we only need to consider nodes (B, j) where j ∈ [1, m]. According to the property of
random walk, starting from node (B, x), where 1 < x < m, the walker will appear at node
(B, x− 1) or node (B, x + 1) for the first time with equal probability, and the average time
of this process will be TA,C(g). Therefore, when only nodes (i, j) ∈ Ω̂A is considered, we
can reduce this model to a random walk model on a one-dimensional finite lattice with a
absorptive node, where the time of each random walk is TA,C(g).

Since the time of each random walk is only equably varied, we only need to establish
a one-dimensional lattice denoted as L(m) with a length of m, in which the length of each
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edge is the unit. Thus, for m + 1 nodes on the lattice, we numbered them sequentially
from 0 to m, and set node 0 as the absorptive node. Then, we use Ta↔b(m) to represent the
expected commute time on lattice L(m). According to the effective resistance principle,
it can be obtained that [49]:

Ta↔b(m) = TL
a,b(m) + TL

b,a(m) = 2mRa,b,

where TL
a,b(m) represent the MFPT from node a to node b on lattice L(m) and Ra,b the

effective resistance between node a and node b on the equivalent resistance network
L(m). According to the properties of one-dimensional lattice network, it is easy to know:
Ra,b = b− a. Setting a = 0, we can obtain that:

T0↔b(m) = TL
0,b(m) + TL

b,0(m) = 2mR0,b = 2mb.

In addition, it can be obtained from the network structure:

TL
0,b(m) = TL

0,b(b) = TL
b,0(b).

Therefore, the following relationship holds:

TL
0,b(m) = TL

0,b(b) =
1
2

T0↔b(m) = b2.

On this basis, it can be solved that:

TL
b,0(m) = 2mb− TL

0,b(m) = 2mb− b2.

Based on the above conclusions and the previous analysis, it can be proofed that:

TA
(B,m),(C,1)(g, m) = TL

m,0(m) · TA,C(g) = 2 ·m2 · 5g

and

∑
(i,j)∈Ω̂A

TA
(i,j),(C,1)(g, m) =

m

∑
b=1

TL
b,0(m) · TA,C(g)

=2 · 5g
m

∑
b=1

(2mb− b2) =
1
3

m(m + 1)(4m− 1)5g. (3.4)

Substitute Eq. (3.1b) and the above expression into Eq. (3.3) to obtain:

TA
total(g, m) =

(
2m3 +

1
2

m
)
· 3g · 5g +

(
2
3

m3 + m2 +
1
3

m
)
· 5g − m

2
· 3g. (3.5)

Since the total time to absorption in the auxiliary network has been calculated, the MTA
can be derived as follows:

T̄A(g, m) =
TA

total(g, m)

NA(g, m)− 1

=
1

3m(3g+1 + 1)

(
(12m3 + 3m) · 3g · 5g + (4m3 + 6m2 + 2m) · 5g − 3m · 3g

)
. (3.6)
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3.3 MTA of SSG(g, k)

Based on the total time to absorption on the auxiliary network ASG(g, m), we can ob-
tain the expression of the total time to absorption on the residual network after k-level
horizontal partitioning SSG(g, k), denoted as TS

total(g, m), as follows:

TS
total(g, k) = TA

total(g− k, 2k)

=(23k+1 + 2k−1) · 15g−k +

(
1
3

23k+1 + 22k +
1
3

2k
)
· 5g−k − 2k−1 · 3g−k.

Then, it can be obtained that the MTA of SSG(g, k), denoted as T̄S(g, k), satisfies the
following equation:

T̄S(g, k) =
TS

total(g, k)
NS(g, k)− 1

=(4k+1 + 1)
15g−k

3g−k+1 + 1
+

(
1
3

4k+1 + 2k+1 +
2
3

)
5g−k

3g−k+1 + 1
− 3g−k

3g−k+1 + 1
. (3.7)

Therefore, we finally figured out the analytical expression of the mean time to absorption
on the residual network after k-level horizontal partitioning SSG(g, k) when node C is
the absorptive node. Letting k = 0, we can verify that T̄S(g, 0) = T̄(g). It is worth noting
that, by observing the above expression, we can find that the leading term of T̄S(g, k)
obeys:

T̄S(g, k) ∼ (4k+1 + 1)
15g−k

3g−k+1 + 1
∼ 4

3
·
(

4
5

)k

· 5g. (3.8)

Therefore, the mean time T̄S(g, k) is a monotonically increasing function of the number
of iterations g, and a monotonically decreasing function of the partition coefficient k.

In order to more intuitively show the changing trend of T̄S(g, k) as the number of
iterations g and the partition coefficient k increase, we performed a numerical simulation
on T̄S(g, k) by Matlab, and the results are shown in Fig. 4. Obviously, as the number
of iterations increases, the MTA on the network SSG(g, k) increases exponentially, and
as the partition coefficient k increases, although the MTA will decrease exponentially.
Therefore, the partition coefficient k has an obvious negative correlation with the MTA
on the network SSG(g, k). In order to better demonstrate this process, we draw the Fig. 5,
where we fixed the number of iterations g = 20. It can be seen that with the increase of
segmentation parameter k, the mean time T̄S(g, k) decreases exponentially, which is also
consistent with previous analysis. When k = g, T̄S(g, k) is the minimum. Therefore, it is
easy to prove that T̄S(g, g) satisfies the following relation:

T̄S(g, g) =
1
3
· 4g+1 + 2g−1 +

1
6
∼
(

Ns(g, g)
)2 ∼

(
T̄(g)

) ln 4
ln 5 . (3.9)
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Figure 4: Numerical simulation diagram of T̄S(g, m).
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Figure 5: When the number of iterations g = 20, the scatter diagram of mean time to absorption T̄S(20, k)
with respect to the change of segmentation parameter k.

Moreover, when k = 0, T̄S(g, k) has a maximum value and satisfies:

T̄S(0, g) =
3g · 5g+1 + 4 · 5g − 3g

3g+1 + 1
= T̄(g) ∼

(
Ns(g, 0)

) ln 5
ln 3 . (3.10)
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Figure 6: When the segmentation parameter k = 7, the scatter diagram of mean time to absorption T̄S(g, 7, h)
with respect to the change of position coefficient h and number of iterations g.

3.4 MTA of SSG(g, m) with other absorptive node

In this section, we will analyze the analytical expression of the MTA with respect to the
position of the absorptive node. In order to parameterize the position of the absorp-
tive node, we make the following provisions: the node (B, m) in the auxiliary network
ASG(g, m) is also marked as (C, m + 1), and when the node (C, h) is set as the absorptive
node, the position coefficient is recorded as h(1 ≤ h ≤ m+ 1). In the same way, node B in
the horizontal partitioned Sierpinski Gasket network SSG(g, k) is denoted as (C, 2k + 1),
other nodes use the same label as in the auxiliary network, and the position coefficient of
absorptive node (C, h) is denoted as h(1 ≤ h ≤ 2k + 1).

First of all, the case of (C, h) as an absorptive node in the auxiliary network ASG(g, m)
is considered. We split the auxiliary network at the absorptive node (C, h). Obviously at
this time, the left side of node (C, h) is an auxiliary network ASG(g, m− h+ 1) composed
of m− h + 1 self-similar regions, and the right side is an auxiliary network ASG(g, h− 1)
composed of h− 1 regions, and the left and right regions have no common nodes except
for the absorptive node (C, h). The total absorptive time on the network ASG(g, m) with
the absorptive node (C, h) is denoted as TA

total(g, m, h), then from Eq. (3.4) we can obtain:

TA
total(g, m, h) = TA

total(g, m− h + 1) + TA
total(g, h− 1)

=

[
2m3 − 6m2h + 6mh2 + 6m2 − 12mh +

13
2

m
]
· 3g · 5g

+

[
2
3

m3 − 2m2h + 2mh2 + 3m2 − 6mh +
16
3

m + 2h2 + 2− 4h
]
· 5g − 1

2
m · 3g. (3.11)

Based on the total absorptive time on the auxiliary network, the total absorptive time on
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the network SSG(g, k) with the absorptive node (C, h), denoted as TS
total(g, k, h) (1 ≤ h ≤

2k + 1), can naturally be deduced:

TS
total(g, k, h) = TA

total(g− k, 2k, h)

=

[
23k+1 − 6 · 22kh + 6 · 2k · h2 + 6 · 22k − 12 · 2k · h +

13
2
· 2k
]

· 3g−k · 5g−k +

[
2
3
· 23k − 22k+1 · h + 2k+1h2 + 3 · 22k

− 6 · 2k · h + 2h2 + 2− 4h
]
· 5g−k − 1

2
· 2k · 3g−k. (3.12)

Then, the analytical expression of the MTA with the absorptive node position coefficient
h in the network SSG(g, k), denoted as T̄S(g, k, h), satisfies:

T̄S(g, k, h) =
TS

total(g, k, h)
NS(g, k)− 1

=

[
12h2 − (24 + 6 · 2k+1)h + 22k+2 + 6 · 2k+1 + 13

]
5g−k · 3g−k

3g−k+1 + 1

+

[
(4 + 22−k)h2 − (2k+2 + 12 + 23−k)h +

22k+2

3
+ 3 · 2k+1

+ 22−k
]

5g−k

3g−k+1 + 1
+

3g−k

3g−k+1 + 1
. (3.13)

In order to estimate the position of the absorptive node that makes the MTA take the
minimum, we let

f (h) = 12h2 − (24 + 6 · 2k+1)h + 22k+2 + 6 · 2k+1 + 13.

By deriving f (h), we know that when h = 2k−1 + 1, the main term of T̄S(g, k, h) will take
the minimum value. Therefore, it can be estimated that when the number of iterations g
is large enough and the position of the absorptive node is set to (C, 2k−1 + 1), the MTA
is the smallest, that is, the absorption efficiency of the node (C, 2k−1 + 1) is the highest
in nodes {(C, 1), (C, 2), · · · , (C, 2k + 1)}. Eq. (3.13) has been numerically simulated, and
the results are shown in Fig. 6. Obviously, when the position coefficient of the absorptive
node is 2k−1 + 1, the MTA is the smallest, which is consistent with our estimation.

4 Conclusions

In summary, the analytical expressions and approximate expressions of MTA on the Hor-
izontal Partitioned Sierpinski Gasket network model are obtained in this article. It can be
seen from the segmentation structure of the network that the partition coefficient k not
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only indicates the degree of incompleteness of the network SSG(g, k), but also an indica-
tor of the size of the self-similar structure in the remaining network. And the larger the k
is, the smaller the self-similar structure of the remaining network SSG(g, k) is. Then the
approximate expression of MTA in Eq. (3.8) fully shows that when the partition coeffi-
cient k increases, T̄S(g, k) will decrease exponentially. However, when the partition coef-
ficient k satisfies k � g, the MTAs of the original network and the segmented network
will have the same exponential growth rate with the number of iterations g. Therefore,
we can conclude that in a network with a local self-similar structure, the size of these
self-similar structures directly restricts the influence of self-similarity on the properties
of random walks. Finally, we found the position of the absorptive node with the highest
absorption efficiency by parameterizing the position of the node.

Appendix A: MTA with multiple absorptive nodes

Firstly, we consider the iterative relationship of random walks of nodes corresponding
to the first-generation network in the network SG(g). Following the mark in Fig. 1, the
mean first passage time of node A to nodes D or E is denoted as T′(g), that is, the mean
first passage time of node A to absorptions when D and E are set as the absorptive nodes
in the network SG(g). Then, when B and C in network SG(g) are set as absorptive nodes,
the average time to absorptions of nodes in Ω(1) are: T2

A(g), T2
D(g), T2

E(g) and T2
F(g).

Based on the unbiased Markovian random walk definition and the symmetry on the
gasket network, the following equations between the mean value of the first passage
time can be established:

T2
A(g) =

1
2
(T′(g) + T2

D(g)) +
1
2
(T′(g) + T2

E(g)),

T2
D(g) =

1
4
(T′(g) + T2

A(g)) +
1
4
(T′(g) + T2

E(g)) +
1
4
(T′(g) + T2

F(g)) +
1
4

T′(g),

T2
F(g) =

1
4
(T′(g) + T2

D(g)) +
1
4
(T′(g) + FE(g)) +

1
2

T′(g),

T2
E(g) = T2

D(g).

By solving the above equations, it is easy to prove that the following relations are true:

T2
A(g) = 5T′(g). (A.1)

According to the self-similarity of the network SG(g), the area between the three points
A, D and E in the network SG(t) is Γ(g− 1), which corresponds to the network SG(g− 1)
one by one. Therefore, it can be obtained that T′(g) is also the first passage time of
particles from node A to node B or C in the g − 1 generation, namely T′(g) = T2

A(g −
1). In the initial network SG(0), it is easy to prove that the average time from node
A to nodes B or C for the first time is 1, that is T2

A(0) = 1. Then, from the iterative
relationship Eq. (3.1a) and initial conditions, it can be obtained that when nodes B and C
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in the network SG(g) are set as absorptive nodes, the analytical expression of the mean
time to absorption of node A satisfies:

T2
A(g) = 5g.

Moreover, according to the symmetry of the Sierpinski Gasket network and the definition
of random walk on the network, it is known that the walker starting from node A will
reach node B or C for the first time after an average time T2

A(g) where the probability of
receiving the walker at node B and C is the same. Therefore, the mean first passage time
for the walker to node C from node A must satisfy the following relation:

TA,C(g) =
1
2

T2
A(g) +

1
2
(T2

A(g) + TB,C(g)).

From the symmetry of the network SG(g), we can also prove that: TA,C(g) = TB,C(g).
Therefore, it can be solved as:

TA,C(g) = TB,C(g) = 2 · T2
A(g) = 2 · 5g.

Then, the relationship between T3
total(g) and Ttotal(g) will be explained from the per-

spective of the random walk process. The path of walker starting from any node i ∈
Ω(g)/{A, B, C} in the network SG(g) to absorptive node C can be divided into the fol-
lowing two types:

(1) The outermost nodes A and B do not exist in this path;

(2) The outermost node A or B exists in this path. Since node A or C may appear in the
path multiple times, we only consider the outermost node that appears for the first
time and divide the path into two segments at this node, where the walkers will go
through the first path to reach the outermost A or C for the first time, and then start
from the outermost node to reach the absorptive node C through the second path.

Moreover, when the three outermost nodes A, B, C in the network are all set as absorptive
nodes and a node is randomly selected from Ω(g)/{A, B, C} according to the uniform
probability distribution as the initial node, the walker starting from this node will arrive
at any one of the three outermost nodes with equal probability after a random walk, due
to the symmetry of the network. Therefore, any path from node i to outermost node C
can be divided into two parts where the first part can be regarded as the path of the node
i to the absorptive node in the network where the three outermost nodes are all set as
absorptive nodes, and the second part is regarded as the path from the outermost node
to node C. (If the end node of the first part of the path is C, the length of the second path
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is 0.) Based on the above analysis, we can conclude that the following relationship holds:

Ttotal(g) = ∑
i∈Ω(g)

Ti,C(g)

= ∑
i∈Ω(g)

[
T3

i (g) + (1− δn,C)TA,C(g)
]

= ∑
i∈Ω(g)

T3
i (g) + 2

[
1
3
(N(g)− 3) + 1

]
TA,C(g)

=T3
total(g) +

4
3

N(t)T2
A(g),

where, n ∈ {A, B, C} is the node of the absorbing walker starting from node i when
{A, B, C} are set as the absorptive nodes and δn,C = 1 if n = C, otherwise δn,C = 0. Since
Ttotal(g) is known, it can be obtained that T3

total(g) and T̄3(g) satisfy:

T3
total(g) = Ttotal(g)− 4

3
N(g)T2

A(g) =
1
2
· 3g · (5g − 1),

T̄3(g) =
1

N(g)− 3
T3

total(g) =
3g−1(5g − 1)

3g − 1
.

Similarly, according to the symmetry of the Sierpinski Gasket network, the following
relationship can be obtained:

T2
total(g) = ∑

i∈Ω(g)
T2

i (g) = ∑
i∈Ω(g)

T3
i (g) +

[
1
3
(N(g)− 3) + 1

]
T2

A(g)

=T3
total(g) +

1
3

N(g)T2
A(g) = 3g · 5g +

1
2
(5g − 3g). (A.2)

Then, the mean time to absorptions on SG(g) with double absorptive nodes satisfies:

T̄2(g) =
1

N(g)− 2
T2

total(g) =
2 · 3g · 5g + 5g − 3g

3g+1 − 1
.
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