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Abstract. An investigation is carried out on mixed convection boundary layer flow of
an incompressible and electrically conducting viscoelastic fluid over a linearly stretch-
ing surface in which the heat transfer includes the effects of viscous dissipation, elastic
deformation, thermal radiation, and non-uniform heat source/sink for two general
types of non-isothermal boundary conditions. The governing partial differential equa-
tions for the fluid flow and temperature are reduced to a nonlinear system of ordi-
nary differential equations which are solved analytically using the homotopy analysis
method (HAM). Graphical and numerical demonstrations of the convergence of the
HAM solutions are provided, and the effects of various parameters on the skin friction
coefficient and wall heat transfer are tabulated. In addition it is demonstrated that pre-
viously reported solutions of the thermal energy equation given in [1] do not converge
at the boundary, and therefore, the boundary derivatives reported are not correct.
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1 Introduction

More than 100 years after Blasius equation was formulated to describe the boundary
layer present in uniform viscous flow over a semi-infinite plate [2], researchers in engi-
neering and applied mathematics continue to investigate the nonlinear differential equa-
tions that describe boundary layer flow. Since the landmark work of Blasius, variations
of the classical problem have been formulated that consider different flow scenarios and
incorporate relevant physical phenomena. In practically all cases considered, the differ-
ential equations governing the flow are nonlinear, and the existence of exact solutions is
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rare. As such numerous analytical methods–one of the earliest being the classical per-
turbation methods–have been developed over the years in order to find approximate
solutions. Singular perturbation theory, which is appropriate in the analysis of boundary
layer flow, has had a profound impact in the applied sciences and, in particular, quantum
physics as evidenced by its vast use over the past 100 years.

As successful as the perturbation methods have been, they have the drawback of
relying on the existence of a small or large parameter to be valid. Because of this draw-
back, various alternative analytical techniques have been developed over the past sev-
eral decades that do not rely on the existence of a small or large parameter. This paper
highlights one of these techniques, namely the homotopy analysis method (HAM) [3–10],
which has proven to be a valuable tool in solving not only the nonlinear differential equa-
tions of fluid mechanics but also in solving numerous other problems arising in engineer-
ing, finance, and the applied sciences. In comparison to other analytical methods, HAM
offers the ability to adjust and control the convergence of a solution via the so-called
convergence-control parameter.

In a study of two-dimensional boundary layer flow over a moving surface in a fluid
at rest, Sakiadis [11] demonstrated that the flow was governed by Blasius equation with
different boundary conditions than the Blasius flow. The results of this study were later
extended by Crane [12] to include an exact analytical solution for the case of a linearly
stretching sheet. It is worth noting that both of these studies consider a Newtonian fluid
in the analysis. In recent years, research on the fluid dynamics and heat transfer of
boundary layer flow involving non-Newtonian fluids has received increased attention
due their growing importance in numerous industrial and biomedical applications. The
mechanical properties of the products involved in these applications can be substantially
altered by the rate of stretching, rate of cooling, application of a magnetic field, etc., and
so, understanding the viscous and thermal characteristics of non-Newtonian fluids is
paramount.

Of particular interest is a subclass of non-Newtonian fluids called viscoelastic flu-
ids. Vajravelu and Rollins [13] investigated the fluid flow and heat transfer of a second-
order fluid over a stretching sheet with viscous dissipation and internal heat source/sink.
Sarma and Rao [14] extended these results by including the effects of work due to elastic
deformation, noting that the exclusion of this effect is not in accordance with the inclu-
sion of viscous dissipation. Pillai et al. [15] provided a similar analysis for the flow of
a Walters’ liquid B fluid in a porous medium. Abel et al. [16] considered the effects of
viscous dissipation and a non-uniform heat source/sink on the flow and heat transfer
characteristics of a Walters’ liquid B fluid. Arnold et al. [17] and Nandeppanavar et al. [1]
followed with similar studies by incorporating work due to deformation.

In various engineering processes, it is well understood that thermal radiation plays a
significant role when operating temperatures are high. For example in the design of ad-
vanced energy conversion systems [18], effects of thermal radiation on the flow and heat
transfer characteristics can be quite significant. Raptis and Perdikis [19] were the first to
study the effects of thermal radiation on viscoelastic boundary layer flow. A recent study
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by Chen [20] considered thermal radiation along with viscous dissipation, internal heat
source/sink, and work done by elastic deformation performed a permeable sheet subject
to a uniform magnetic field. Nandeppanavar et al. [21] preformed a similar analysis in
which they considered non-uniform internal heat source/sink.

All of the aforementioned studies considered forced convection as the sole mode of
heat transfer. In this work, the effects of free convection for viscoelastic boundary layer
flow and heat transfer over a stretching permeable sheet in which the heat transfer analy-
sis includes viscous dissipation, elastic deformation, thermal radiation, and non-uniform
heat source/sink are investigated. Free convection becomes important when the temper-
ature difference between the sheet and the ambient fluid is large enough to cause density
gradients in the fluid creating a buoyancy force [22] that is of the same magnitude as
the inertial force. The governing nonlinear partial differential equations for the velocity
field and temperature field are transformed to a coupled system of nonlinear ordinary
differential equations which is solved using the homotopy analysis method (HAM). The
results of this study are then compared to those obtained by Nandeppanavar et al. [1] in
which only forced convection is considered. It is clearly demonstrated that the analytical
solutions of the temperature field given in terms of Kummer’s function in [1] do not con-
verge at the boundary, and thus, do not provide accurate values of the wall temperature
and wall temperature gradient for the boundary conditions in consideration.

These results clearly demonstrate that HAM is worthy of consideration by researchers
who seek analytical solutions to problems involving viscoelastic boundary layer flow
and heat transfer. It is worth mentioning that HAM has recently been applied to solve
various problems that consider mixed convection as part of the analysis [23–29]. Under
this scenario, there is a two-way coupling between the governing momentum equation
and thermal equation and the conventional analytical method of solution that involves
an exact solution for the velocity field and a solution in terms of Kummer’s function for
the temperature field no longer applies.

2 Fluid flow analysis

Consider a two-dimensional flow field that is induced by the motion of a linearly stretch-
ing sheet in which an incompressible and electrically conducting viscoelastic fluid is sub-
ject to a transverse uniform magnetic field. Two equal and opposite forces are applied
along the sheet so that it is stretched with a velocity that is proportional to the distance
from the origin. The plane y= 0 is taken to be parallel to the motion of the sheet, and,
because of symmetry, the fluid is considered to occupy the half space y>0.

The continuity equation and momentum equations for viscoelastic boundary layer
flow, first derived by Beard and Walters [30], are given by

∂u

∂x
+

∂v

∂y
=0, (2.1a)
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+v

∂u

∂y
=ν

∂2u

∂y2
−k0

{

u
∂3u

∂x∂y2
+v

∂3u

∂y3
+

∂u

∂x

∂2u

∂y2
− ∂u

∂y

∂2u

∂x∂y

}

+gβ(T−T∞), (2.1b)

where u and v are the velocities in the x and y directions, respectively, ν is the kinematic
viscosity, k0 is the viscoelastic parameter, g is the acceleration due to gravity, β is the
thermal expansion coefficient, T is the temperature of the fluid, and T∞ is the ambient
temperature. To derive these equations, it is assumed that the contribution of the normal
stress is of the same order as the shear stress. The appropriate boundary conditions for
the velocity field are given by

uw =bx, v=0 at y=0, (2.2a)

u→0, uy→0 as y→∞, (2.2b)

where b is the rate of stretching.
The governing thermal boundary layer equation in the presence of viscous dissipa-

tion, elastic deformation, non-uniform internal heat source/sink, and thermal radiation
for two-dimensional flow is

u
∂T

∂x
+v

∂T

∂y
=α∗ ∂2T

∂y2
+

ν

Cp

(∂u

∂y

)2
− 1

ρCp

∂qr

∂y
+

k0

Cp

{∂u

∂y

∂

∂y

(

u
∂u

∂x
+v

∂u

∂y

)}

+
q′′′

ρCp
, (2.3)

where Cp is the specific heat at constant pressure, and α∗ is the thermal diffusivity. The
non-uniform internal heat source/sink with spatial and temperature dependence is given
by [1]

q′′′=
kb

ν

[

A∗(Tw−T∞)
u

uw
+B∗(T−T∞)

]

, (2.4)

where k is the thermal conductivity, Tw is the wall temperature, and A∗ and B∗ are pa-
rameters related to the spatial and temporal dependent heat source/sink, respectively.

Assuming the Rosseland approximation [32], the radiative heat flux is given by

qr =−4σ∗

3k∗
∂(T4)

∂y
, (2.5)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. The
temperature differences within the flow are assumed to be small enough so that T4 can be
approximated by a linear function, which is obtained by expanding T4 in a Taylor series
about T∞ and neglecting higher order terms, yielding

T4≈−3T4
∞+4T3

∞T. (2.6)

Substituting (2.4)-(2.6) into Eq. (2.3) yields

u
∂T

∂x
+v

∂T

∂y
=
(

α∗+
16σ∗T3

∞

3ρCpk∗

)∂2T

∂y2
+

ν

Cp

(∂u

∂y

)2
+

k0

Cp

{∂u

∂y

∂

∂y

(

u
∂u

∂x
+v

∂u

∂y

)}

+
q′′′

ρCp
. (2.7)
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2.1 Prescribed surface temperature

The boundary conditions for the temperature field in the case of a prescribed surface
temperature (PST) that is quadratic in x are given by

T=Tw =T∞+A
( x

l

)2
at y=0, (2.8a)

T→T∞ as y→∞, (2.8b)

where A is a constant that depends on the thermal properties of the fluid and l is a char-
acteristic length.

Eqs. (2.1a), (2.1b) and (2.7) can be transformed into a system of ordinary differential
equations by defining

u=bx f ′(η), v=−
√

bν f (η), η=

√

b

ν
y, (2.9a)

θ(η)=
T−T∞

Tw−T∞

. (2.9b)

Substituting (2.9a)-(2.9b) into Eqs. (2.1a), (2.1b), and (2.7) yields the nonlinear system

f ′′′− f ′2+ f f ′′−k1(2 f ′ f ′′′− f ′′2− f f ′′′′)−λθ=0, (2.10a)

(1+Nr)θ′′+Pr f θ′+(B∗−2Pr f ′)θ+EcPr( f ′′2−k1 f ′′( f ′ f ′′− f f ′′′))+A∗ f ′=0, (2.10b)

where the non-dimensional parameters are defined as follows:

k1 =
bk0

ν
viscoelastic parameter,

λ=
gβ(Tw−T∞)x3/ν2

u2
wx2/ν2

free convection parameter,

Nr=
16σ∗T3

∞

3ρCpk∗
thermal radiation parameter,

Pr=
ν

α∗ Prandtl number,

Ec=
b2l2

ACp
Eckert number.

Due to its dependence on x, the free convection parameter is considered to be a local pa-
rameter and the transformation of the governing differential equations a local similarity.
The boundary conditions in (2.2b) and (2.8b) become

f (0)=0, f ′(0)=1, f ′(∞)=0, f ′′(∞)=0, (2.11a)

θ(0)=1, θ(∞)=0. (2.11b)
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Regarding the physical quantities of interest, the wall shearing stress τw on the surface
of the stretching sheet is given by

τw =
[

ν
∂u

∂y
−k0

(

u
∂2u

∂x∂y
−2

∂u

∂x

∂u

∂y

)]

y=0
. (2.12)

Substituting (2.12) into the the expression for the local skin friction coefficient yields

C f =
τw

1
2 ρu2

w

=
2√
Rex

(1−3k1) f ′′(0), (2.13)

where Rex=uwx/ν is the local Reynolds number. The local heat flux is given by

qw =−k
( ∂T

∂y

)

y=0
=−k

√

b

ν
(Tw−T∞)θ

′(0), (2.14)

where θ′(0) is the nondimensional wall temperature gradient.

2.2 Prescribed heat flux

The boundary conditions for the temperature field for the case of a prescribed power law
surface heat flux (PHF) that is quadratic in x are given by

−k
∂T

∂y
=qw =D

( x

l

)2
at y=0, (2.15a)

T→T∞ as y→∞, (2.15b)

where D is a constant that depends on the thermal properties of the fluid.
Substituting

g(η)=
T−T∞

Tw−T∞

, (2.16)

where

Tw−T∞=
D

k

( x

l

)2
√

ν

c

into Eq. (2.7) yields

(1+Nr)g′′+Pr f g′+(B∗−2Pr f ′)g+EcPr( f ′′2−k1 f ′′( f ′ f ′′− f f ′′′))+A∗ f ′=0, (2.17)

where Ec= kb2l2
√

b/ν/DCp is the Eckert number in the PHF case.
The boundary conditions in (2.15b) become

g′(0)=−1, g(∞)=0. (2.18)

The wall temperature is given by

Tw =T∞+
qw

k

√

ν

b
g(0). (2.19)
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3 Homotopy analysis method

The homotopy analysis method (HAM) was formulated by Liao in his doctoral thesis [3]
and then modified [4] to incorporate into the solution expression the use of the so-called
convergence-control parameter, a distinguishing feature of the method. To apply a basic
version of HAM, one constructs the zeroth-order deformation equation which includes
the choice of an auxiliary linear operator, a nonlinear operator, and an initial guess that
satisfies the initial and/or boundary conditions. The auxiliary linear operator is cho-
sen so as to obtain a solution expression in terms of elementary functions that will best
capture the expected behavior of the solution. The nonlinear operator is usually, but not
always, equivalent to the nonlinear equation that one is attempting to solve. See [9,10] for
examples in which the nonlinear operator differs from the nonlinear differential equation
in consideration.

Included in the zeroth-order deformation equation is the convergence-control param-
eter, which allows one to adjust the convergence of an approximate solution, and thus,
offers greater ability to achieve convergence in comparison with other analytical meth-
ods. The value of the convergence-control parameter is determined after the solution
expression is obtained by solving a sequence of linear differential equations, which are
constructed by a procedure outlined below.

HAM is now applied to the nonlinear boundary value problem in (2.10a), (2.11a),
(2.10b), and (2.11b) for f (η) and θ(η) for the PST case. The procedure is essentially the
same for PHF in which case (2.10b), (2.11b) and θ(η) are replaced by (2.17), (2.18) and
g(η), respectively. Any other differences will be explicitly noted. The linear operators are
chosen to be

L f ( f )=
d3 f

dη3
− d f

dη
, Lθ(θ)=

d2θ

dη2
−θ, (3.1)

and the nonlinear operators, N f and Nθ, are chosen to match Eqs. (2.10a) and (2.10b),
respectively. To satisfy the boundary conditions in (2.11a) and (2.11b), the initial guesses
are chosen to be

f0(η)=1−e−η , (3.2a)

θ0(η)= e−η . (3.2b)

The zeroth-order deformation equations are then

(1−q)L f

[

F(η,q)− f0(η)
]

=qh̄ fN f

[

F(η,q)
]

, (3.3a)

(1−q)Lθ

[

Θ(η,q)−θ0(η)
]

=qh̄θNθ

[

F(η,q),Θ(η,q)
]

, (3.3b)

where the boundary conditions are given in (2.11a) and (2.11b). h̄ f and h̄θ are the
convergence-control parameters and q∈ [0,1] is an embedding parameter such that

F(η,0)= f0(η), F(η,1)= f (η), (3.4a)

Θ(η,0)= θ0(η), Θ(η,1)= θ(η). (3.4b)
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Note that as q increases from 0 to 1, F(η,q) and Θ(η,q) vary from the initial guesses given
in (3.2a)-(3.2b) to the desired solutions f (η) and θ(η). A Taylor series expansion of F(η,q)
and Θ(η,q) with respect to q yields

F(η,q)= f0(η)+
∞

∑
m=1

fm(η)q
m, (3.5a)

Θ(η,q)= θ0(η)+
∞

∑
m=1

θm(η)q
m, (3.5b)

where

fm(η)=
1

m!

∂mF(η,q)

∂qm

∣

∣

∣

q=0
, θm(η)=

1

m!

∂mΘ(η,q)

∂qm

∣

∣

∣

q=0
. (3.6)

If the auxiliary linear operators, the initial guesses, and the convergence-control param-
eters are properly chosen so that the series in (3.5a)-(3.5b) all converge at q = 1, the
homotopy-series solutions given by

f (η)= f0(η)+
∞

∑
m=1

fm(η), (3.7a)

θ(η)= θ0(η)+
∞

∑
m=1

θm(η), (3.7b)

are obtained.
Differentiating Eqs. (3.3a)-(3.3b) m times with respect to the embedding parameter q,

dividing by m!, and then setting q=0 yields the mth-order deformation equations given
by

L f

[

fm(η)−χm fm−1(η)
]

= h̄ f R
f
m(η), (3.8a)

Lθ

[

θm(η)−χmθm−1(η)
]

= h̄θ Rθ
m(η), (3.8b)

subject to the boundary conditions

fm(0)=0, f ′m(0)=0, f ′m(∞)=0, f ′′m(∞)=0, (3.9a)

θm(0)=0, θm(∞)=0 for PST, (3.9b)

g′m(0)=0, gm(∞)=0 for PHF, (3.9c)

where

R
f
m(η)= f ′′′m−1−

m−1

∑
n=0

f ′n f ′m−1−n+
m−1

∑
n=0

fn f ′′m−1−n

−k1

[

2
m−1

∑
n=0

f ′n f ′′′m−1−n−
m−1

∑
n=0

f ′′n f ′′m−1−n−
m−1

∑
n=0

fn f ′′′′m−1−n

]

, (3.10a)
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Rθ
m(η)=(1+Nr)θ′′m−1+Pr

[m−1

∑
n=0

fnθ′m−1−n−2
m−1

∑
n=0

f ′nθm−1−n

]

+B∗gm−1+A∗ f ′m−1

−EcPr
[m−1

∑
n=0

f ′′n f ′′m−1−n−k1

m−1

∑
n=0

f ′′m−1−n

( n

∑
i=0

f ′i f ′′n−i−
n

∑
i=0

fi f ′′′n−i

)]

, (3.10b)

and

χm =

{

0, if m≤1,
1, if m>1.

(3.11)

Eqs. (3.8a)-(3.8b) are linear nonhomogeneous differential equations that can be solved
with symbolic computational software. Starting with the initial guesses in (3.2a)-(3.2b),
fm(η) and θm(η) for m≥1 are obtained iteratively by solving (3.8a)-(3.9b). This procedure
is terminated after a fixed number of iterations N to yield the approximate analytical
solutions

f (η)≈ fN(η)=
N

∑
m=0

fm(η), (3.12a)

θ(η)≈ θN(η)=
N

∑
m=0

θm(η). (3.12b)

4 Results and discussions

The convergence of the HAM solutions given in (3.12a)-(3.12b) depends on the
convergence-control parameters h̄ f and h̄θ, which are obtained using the Mathematica
package BVPh 2.0 available at http://numericaltank.sjtu.edu.cn/BVPh.htm. Specif-
ically, the discrete squared residuals defined by [7]

E
f
N(h̄ f )=

1

M+1

M

∑
j=0

{

N f

[ N

∑
m=0

fm(ηj)
]}2

, (4.1a)

Eθ
N(h̄ f ,h̄θ)=

1

M+1

M

∑
j=0

{

Nθ

[ N

∑
m=0

fm(ηj),
N

∑
m=0

θm(ηj)
]}2

, (4.1b)

are minimized with respect to h̄ f and h̄θ, where ηj =0.1j and M=100 for the 20th-order
approximations. The optimal values of the convergence-control parameters for all cases
considered are obtained by first minimizing (4.1a) since it only depends on h̄ f and then
substituting the optimal value of h̄ f into (4.1b) to find the optimal value of h̄θ.

To demonstrate convergence of the HAM solutions, values of the physically relevant
boundary derivatives and the discrete squared residuals are presented in Table 1 for dif-
ferent orders of approximation. Table 1 also includes values of the convergence-control
parameters for default values of the system parameters.
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Table 1: Convergence of the HAM solution for k1=0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0, Nr=0.

N − f ′′(0) E
f
N (h̄ f =−0.832) −θ′(0) Eθ

N (h̄θ =−0.415) g(0) E
g
N (h̄g =−0.406)

5 1.1177256202229 1.410×10−8 2.28051 1.262×10−3 0.464719 1.062×10−3

10 1.1180329886903 1.665×10−13 2.31236 8.743×10−6 0.471058 5.358×10−7

15 1.1180339852165 2.360×10−18 2.31451 4.138×10−7 0.471011 5.750×10−8

20 1.1180339887369 3.620×10−23 2.31453 6.016×10−8 0.470996 9.363×10−9

25 1.1180339887498 5.794×10−28 2.31456 1.154×10−8 0.471002 1.843×10−9

30 1.1180339887499 9.510×10−33 2.31455 2.538×10−9 0.471000 4.081×10−10

35 1.1180339887499 1.587×10−37 2.31455 6.116×10−10 0.471000 9.801×10−11

40 1.1180339887499 2.678×10−42 2.31455 1.573×10−10 0.471000 2.499×10−11

Table 2: Comparison of values of wall temperature gradient (PST case) and wall temperature (PHF case).
Default values of the parameters: k1 =0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0, Nr=0.

Parameter Value −θ′(0) [1] −θ′(0) (HAM) g(0) [1] g(0) (HAM)
−0.03 2.34355 2.31455 0.459332 0.471001

A∗ 0 2.30373 2.30373 0.475354 0.475354
0.03 2.26392 2.29291 0.491373 0.479709
−0.03 2.34355 2.31455 0.459332 0.471001

B∗ 0 2.33742 2.30747 0.460336 0.472419
0.03 2.33132 2.30037 0.461327 0.473851
0.3 2.40941 2.29944 0.428081 0.472707

k1 0.5 2.22889 2.25407 0.489054 0.478586
0.7 2.14991 2.16101 0.498182 0.493337
1 1.21628 1.25305 0.820812 0.807589

Pr 2 1.78304 1.85548 0.586958 0.567221
3 2.34355 2.31455 0.459332 0.471001
0 2.52479 2.49579 0.386396 0.398065

Ec 0.25 2.34355 2.31455 0.459332 0.471001
0.5 2.07168 2.13331 0.530068 0.543937

Table 3: Default values of the parameters: k1=0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.

Parameters Values − f ′′(0) (PST) − f ′′(0) (PHF) −θ′(0) g(0)
1 0.87704 0.96236 1.64482 0.63594

Nr 2 0.84827 0.90661 1.31790 0.77734
3 0.82689 0.85546 1.12465 0.89852

-0.5 1.37399 1.29425 1.45070 0.694953
λ 0.5 0.87704 0.96236 1.64482 0.63594

1 0.63733 0.81690 1.70696 0.61766

In Table 2 the values of θ′(0) and g(0) computed with the HAM solutions are com-
pared to the values in [1] that were obtained using Kummer’s function in the absence of
free convection. The results clearly do not agree requiring further analysis. To this end, it
is useful to define the residual function

Resθ̂(η)=(1+Nr)θ̂′′+Pr f̂ θ̂′−2Pr f̂ ′ θ̂+EcPr( f̂ ′′2+k1 f̂ ′′( f̂ ′ f̂ ′′− f̂ f̂ ′′′))+B∗θ̂+A∗ f̂ ′, (4.2)
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Figure 1: Residuals of the HAM solution and Kummer’s function. Default values of the parameters: k1 = 0.2,
Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0, Nr=0.
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Figure 2: Residuals of the HAM solution and Kummer’s function. Default values of the parameters: k1 = 0.2,
Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0, Nr=0.

where f̂ (η) and θ̂(η) are approximate solutions to (2.10a) and (2.10b), respectively.

For both the PST and PHF cases, the HAM solution (3.12b) and the solution in terms
of Kummer’s function given in [1] are substituted into (4.2) and the results are plotted
in Figs. 1-2. These figures provide convincing evidence that the solutions in terms of
Kummer’s function do not converge at the boundary, and therefore, the correct values of
θ′(0) and g(0) are given by the HAM solutions. In addition, Eqs. (2.10b) and (2.11b) are
solved numerically as an initial value problem in which the unknown initial condition–
θ′(0) for the PST case or g(0) for the PHF case–is obtained from Table 2, and the solutions
are plotted for both the PST and PHF cases in Figs. 3-4, respectively. It is clear that the
numerical solutions obtained from initial conditions using Kummer’s function do not
have the proper limiting behavior as η approaches infinity, supporting the claim above.
Finally, it is worth noting that solutions in terms of Kummer’s function are only valid
when there is no spatially dependent internal heat source/sink as evidenced in Table 2.
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Figure 3: Comparison of HAM solution and Kummer’s function for the PST case. Default values of the
parameters: k1 =0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0, Nr=0.
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Figure 4: Comparison of HAM solution and Kummer’s function for the PHF case. Default values of the
parameters: k1 =0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0, Nr=0.

In Figs. 5-8 the nondimensional velocity profiles are plotted for varying values of the
free convection parameter and the thermal radiation parameter. It is evident that the
boundary layer thickness increases as both of these parameters increase for either of the
two types of thermal boundary conditions. In regard to free convection, these results
mean that for assisting flow (λ>0) buoyancy forces act as a favorable pressure gradient
whereas for opposing flow (λ<0) they act as an adverse pressure gradient.

Figs. 9-12 contain plots of the temperature profiles for varying values of the free
convection parameter and the thermal radiation parameter. For either type of thermal
boundary condition, the thermal boundary layer increases as the thermal radiation pa-
rameter increases, whereas an increase in the free convection parameter has the opposite
effect. In Table 3 values of the physically relevant boundary derivatives are presented
that support the aforementioned conclusions regarding the effects of the free convection
parameter and the thermal radiation parameter on the momentum and thermal bound-
ary layers. It is interesting to note that free convection has a greater effect on reducing
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Figure 5: Velocity profiles for various values of λ for the PST case. Default values of the parameters: k1=0.2,
Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 6: Velocity profiles for various values of λ for the PHF case. Default values of the parameters: k1=0.2,
Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 7: Velocity profiles for various values of Nr for the PST case. Default values of the parameters: k1=0.2,
Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 8: Velocity profiles for various values of Nr for the PHF case. Default values of the parameters: k1=0.2,
Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 9: Temperature profiles for various values of λ for the PST case. Default values of the parameters:
k1=0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 10: Temperature profiles for various values of λ for the PHF case. Default values of the parameters:
k1=0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 11: Temperature profiles for various values of Nr for the PST case. Default values of the parameters:
k1 =0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.
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Figure 12: Temperature profiles for various values of Nr for the PHF case. Default values of the parameters:
k1 =0.2, Pr=3, Ec=0.25, A∗=−0.03, B∗=−0.03, λ=0.5, Nr=1.

the magnitude of the skin friction coefficient for the PST case.

5 Conclusions

In this study, an analysis of mixed convection boundary layer flow of an incompressible
and electrically conducting viscoelastic fluid over a linearly stretching surface in which
the heat transfer includes the effects of viscous dissipation, elastic deformation, thermal
radiation, and non-uniform heat source/sink for two general types of non-isothermal
boundary conditions has been carried out. The nonlinear system of ordinary differential
equations governing the fluid flow and heat transfer has been solved using the homotopy
analysis method (HAM). Graphical and numerical demonstrations of the convergence of
the HAM solutions have been provided, and the effects of various parameters on the
skin friction coefficient and wall heat transfer have been tabulated. It has been clearly
demonstrated that previously reported solutions of the thermal energy equation in the
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presence of a non-uniform heat source/sink given in [1] do not converge at the boundary,
and therefore, the boundary derivatives reported are not correct. Finally, velocity and
temperature profiles have been plotted for various values of the parameters for both non-
isothermal boundary conditions.

These results have significant implications on previously reported research in which
Kummer’s function has been used to represent solutions to the temperature field in the
presence of a non-uniform heat source/sink. Because of its generality and versatility,
HAM is a very effective analytical method for solving nonlinear problems in science and
engineering that offers clear advantages over other analytical methods. As such it should
be given serious consideration by researchers who seek analytical solutions to problems
involving viscoelastic boundary flow and heat transfer.
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