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A DIRECTION SPLITTING APPROACH FOR

INCOMPRESSIBLE BRINKMAN FLOW

T. GORNAK, J.L. GUERMOND, O. ILIEV, AND P.D. MINEV

Abstract. The direction splitting approach proposed earlier in [7], aiming at the efficient solution

of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman

equations describing incompressible flows in pure fluid and in porous media. The resulting pres-
sure equation is a perturbation of the incompressibility constraint using a direction-wise factorized

operator as proposed in [7]. We prove that this approach is unconditionally stable for the un-

steady Navier-Stokes-Brinkman problem. We also provide numerical illustrations of the method’s
accuracy and efficiency.
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1. Introduction

Flows in highly porous media occur often in industrial and scientific application-
s. Examples are the flows through various filters (air, oil, water filters, etc.), flow
of helium in pebble-bed nuclear reactors, various physiological flows like the flow
in the eye of glaucoma patients, flows in mangrove swamps etc. If the porosity of
the media is high, such flows are usually modelled by the Navier-Stokes-Brinkman
equations. These equations include as limiting cases the Darcy model for the flow
in porous media with a very low porosity, and the Navier-Stokes equations for flows
with infinitely large porosity. As in the case of the classical Navier-Stokes equation-
s, one of the major computational problems for any discretization algorithm is the
imposition of the incompressibility constraint. In the case of unsteady flows proba-
bly the most popular and efficient algorithms for the imposition of incompressibility
are the so-called projection methods. These methods were pioneered by Chorin [4]
and Temam [14]1. For a recent and comprehensive review on projection method-
s the reader is referred to [6]. All projection methods are semi-discretizations of
singular perturbation of the time-dependent Stokes equations where the continuity
equation is perturbed. This perturbation yields a Poisson equation for the pres-
sure or some correction thereof with Neumann boundary condition (L2 projection
onto a divergence-free subspace of the velocity space). The solution of this Poisson
equation can often be a very computationally intensive task. To circumvent this
difficulty [7] proposed to use a perturbation of the continuity equation based on a
direction-wise factorized operator instead of the classical Laplace operator which
allows for the use of a fast tri-diagonal direct solver. In the present article we
extend this approach to the case of incompressible Navier-Stokes-Brinkman flow
and demonstrate numerically that it produces results of the same accuracy as the
classical projection methods. We also prove that if the momentum equation is not
split direction-wise, the resulting algorithm is unconditionally stable.
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2000 Mathematics Subject Classification. 65N30, 65N35.
1The authors have recently discovered that a similar velocity-pressure decoupling approach

was proposed earlier in the famous article of Harlow and Welch [9] which also proposed the MAC

staggered grid setting for the Stokes problem with free boundaries. Thus, we think some credit
for pioneering the projection methods should be given to this article as well.
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2. The fictitious domain Brinkman equations

Consider the Brinkman equations in a domain Ω̃ ⊂ Rd (d = 2, 3) with a Lipschitz

boundary Γ = ∂Ω̃:

(1)


∂tũ− ν̃∆ũ +∇p̃+

ν̃

k̃
ũ = f̃ in Ω̃× [0, T ],

∇· ũ = 0 in Ω̃× [0, T ],

ũ|∂Ω̃ = 0 in[0, T ], and ũ|t=0 = ũ0 in Ω̃,

where ν̃ is the kinematic viscosity of the fluid and k̃ is the permeability, and T is
the final time moment. In order to use the direction-splitting algorithm proposed
in [7] it is necessary to extend the domain of the problem to a simple rectan-

gle/parallelepiped (in 2D/3D). Let Ω be be such an extension i.e. Ω̃ ⊆ Ω and
consider the following extension of the data

(2) ν = ν̃, in Ω,

(3) f =

{
f̃ , in Ω̃,

0, in Ω \ Ω̃,

(4) u0 =

{
ũ0, in Ω̃,

0, in Ω \ Ω̃,

(5) k(x) =

{
k̃, in Ω̃,

νε, in Ω \ Ω̃,

where 0 < ε << 1 is a penalty parameter used to enforce the boundary conditions
on ∂Ω̃. Then the L2-penalty fictitious domain formulation of the problem in Ω
reads

(6)

∂tuε − ν∆uε +∇pε +
ν

k
uε = f , x ∈ Ω× [0, T ]

∇·uε = 0 in Ω× [0, T ],

uε|∂Ω = 0 in [0, T ], and uε|t=0 = u0 in Ω.

It is well known (see for example [2]) that the following result holds under sufficient
regularity assumptions on the data and the domain:

uε −−−→
ε→0

ũ, in L2(Ω̃×(0, T )).

The order of convergence depends on the regularity of the data and the domain,
but it is at least O(ε1/2).

3. Numerical algorithm

3.1. Time discretization. As we mentioned in the introduction, if the domain of
the problem has a simple shape, it is convenient to perturb the continuity equation

as follows:
d∏

i=1

(I − ∂xixi
)φ = −∇·u/∆t where φ is either the pressure itself (for

first order schemes) or its time increment (for higher order schemes). Therefore,
it would be also convenient to apply the same direction-splitting procedure to the
momentum equation. However, since the permeability is space-dependent, the di-
rection splitting of the momentum equation, in case of an implicit treatment of the
Brinkman term νuε/k, is not straightforward. To understand the problem, let us
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consider the Douglas splitting for the first equation in (6) (see [10]) in the following
factorized form

(7)

d∏
i=1

(
b(x)I − ν∆t

2b(x)
∂xixi

)
un+1 − un

∆t
− ν∆un +

ν

k
un +∇p∗,n+1/2 = fn+1/2,

where b(x) = (1+ν∆t/(2k(x)))1/d and I is the identity operator. Since b(x)−1∂x1x1

and b(x)−1∂x2x2 do not commute in general, the operator product
b(x)−1∂x1x1b(x)−1∂x2x2 is not necessarily positive and self-adjoint. Loss of positivi-
ty and self-adjointness affects the stability of the scheme. As proven in [13], section
2.2.3, in case of non-commutative splitting the Douglas scheme is unconditionally
stable in 2D, but the stability in 3D cannot be guaranteed. Therefore, in this paper
we do not consider the possibility to split direction-wise the momentum equation.
As a result, the full 2D/3D momentum problem is solved by means of an iterative
procedure. The reader is referred to [3] for some possibilities for a direction split-
ting of the momentum equation in the non-commutative case, however, no theory
for the case of Navier-Stokes-Brinkman flows has been developed yet.

In the sequel of the paper we will omit the subscript ε for the solution of the
penalized problem (6), and abusing somewhat the notation we will denote the
solution of the semi-discrete (in time only) splitting scheme by u and p. Let us
denote by p0 the exact pressure field at t = 0, and by φ−1/2 an approximation
to ∆t∂tp(0). The initial pressure p0 is not part of the initial data but it can be
computed from ∆p0 = ∇ · (f0 + ∆u0) , ∂np

0
|∂Ω = (f0 + ∆u0) ·n under certain

compatibility conditions on the data (see section 2.3 of [5]). The approximation
φ−1/2 can then be computed using a non-incremental scheme at the first time step.
Then setting p−1/2 = p0 the scheme proceeds as follows for all n ≥ 0:

Pressure predictor:

(8) p∗,n+1/2 = pn−1/2 + φn−1/2.

Velocity update:

(9)

un+1 − un

∆t
− 1

2
ν∆(un+1 + un) +∇p∗,n+1/2+

ν

2k
(un+1 + un) = fn+1/2, un+1|∂Ω =0.

Pressure-corrector:

(10) Aφn+1/2 = − 1
∆t∇·u

n+1,

where A =
d∏

i=1

(I − ∂xixi
) together with homogeneous Neumann boundary condi-

tions on ∂Ω. Note that this operator is factorized alongside the spatial directions
and is therefore much easier to invert than the usual Laplace operator. The bilinear
form a(p, q) :=

∫
Ω
qApdx satisfies the following properties (see [7]):

(11) a is symmetric, and ‖∇q‖2L2 ≤ a(q, q), ∀q ∈ D(A).

where D(A) is the domain of A.
Pressure update:

(12) pn+1/2 = pn−1/2 + φn+1/2 − 1

2
χν∇·(un+1 + un),

where χ ∈ [0, 1].
The stability of the scheme is guaranteed by the following theorem.
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Theorem 3.1. Assume that the solution to (6) is smooth enough. For all T , there
exist c, independent of ∆t, such that for all χ ∈ [0, 1] the solution to (8)-(10) and
(12), satisfies the following stability estimate:

(13)

‖u‖2`∞(0,T ;L2) +
∆t

2
‖ν1/2∇u‖2`∞(∆t,T ;L2) + ∆t2‖p‖`∞( ∆t

2 ,T−∆t
2 ,D(A))+

∆t

2
‖
(ν
k

)1/2

u‖2`∞(∆t,T ;L2) ≤ c(‖u
0‖2L2 + ∆t2‖p−1/2‖2A+

∆t

2
‖ν1/2∇u0‖2L2 +

∆t

2
‖
(ν
k

)1/2

u0‖2L2 + ν−1‖f‖`2( ∆t
2 ,T−∆t

2 ;H−1)).

Proof. The proof proceeds along the same lines as in [7]. Nevertheless, there are
some minor differences and we provide a brief sketch here for the case χ = 0 and
f = 0 only. This stability estimate can then be used to estimate the accuracy of
the scheme by proceeding as in [8]. We first multiply (9) by 2∆tun+1, integrate
over Ω, and use the identity 2(a− b, a) = ‖a‖2 + ‖a− b‖2 − ‖b‖2 and the Young’s
inequality to obtain

(14)

‖un+1‖2L2 + ‖un+1 − un‖2L2 +
∆t

2
‖ν1/2∇un+1‖2L2

+ 2∆t(∇p∗,n+1/2,un+1) +
∆t

2
‖
(ν
k

)1/2

un+1‖2L2 ≤

‖un‖2L2 +
∆t

2
‖ν1/2∇un‖2L2 +

∆t

2
‖
(ν
k

)1/2

un‖2L2 .

Now we use the properties (11) to deduce that the pressure correction (pn+1/2−
pn−1/2) ∈ D(A) solves the following problem for n ≥ 0:

(15) a(pn+1/2 − pn−1/2, q) = −∆t−1(∇·un+1, q), ∀q ∈ D(A).

Testing this equation with 2∆t2p∗,n+1/2 := 2∆t2(2pn−1/2 − pn− 3
2 ) (in case χ = 0)

and using the symmetry and coercivity of a(·, ·), exactly as in the proof of Theorem
4.2 in [7], we obtain that

(16)
−2∆t(∇·un+1, p∗,n+1/2) = ∆t2

(
‖pn+1/2‖2A−

‖pn−1/2‖2A + ‖δpn−1/2‖2A − ‖δ2pn+1/2‖2A
)
.

where δpn−1/2 = pn−1/2 − pn−3/2 is the usual difference operator. Again as in the
proof of Theorem 4.2 in [7], the control on ‖δ2pn+1/2‖2A is obtained subtracting (15)

at time tn from (15) at time tn+1 and by testing the result with ∆tδ2pn+1/2,

∆t‖δ2pn+1/2‖2A = −(∇·(un+1 − un), δ2pn+1/2) = (un+1 − un,∇δ2pn+1/2)

≤ ‖un+1 − un‖L2‖∇δ2pn+1/2‖L2 .

Then the coercivity property of the bilinear form a implies that

∆t‖∇δ2pn+1/2‖L2‖δ2pn+1/2‖A ≤ ‖un+1 − un‖L2‖∇δ2pn+1/2‖L2 ,

which yields the inequality ∆t2‖δ2pn+1/2‖2A ≤ ‖un+1−un‖2
L2 . This bound together

with (16) gives the following bound on the pressure gradient term in (14)

(17)
∆t2

(
‖pn+1/2‖2A + ‖δpn−1/2‖2A − ‖pn−1/2‖2A

)
≤

−2∆t(∇·un+1, p∗,n+1/2) + ‖un+1 − un‖2L2



A DIRECTION SPLITTING APPROACH FOR INCOMPRESSIBLE BRINKMAN FLOW 5

which after summing with (14) gives

(18) ‖un+1‖2L2 + ∆t2‖pn+1/2‖2A +
∆t

2
(‖ν1/2∇un+1‖2L2 +

∆t

2
‖
(ν
k

)1/2

un+1‖2L2

≤ ‖un‖2L2 + ∆t2‖pn−1/2‖2A +
∆t

2
‖ν1/2∇un‖2L2 +

∆t

2
‖
(ν
k

)1/2

un‖2L2 .

The final estimate is obtained by summing (18) over the time levels from 0 to
N − 1 = T/∆t− 1. �

This stability estimate can be used to derive a first order error estimate on the
velocity and the pressure in the L2 norm as in theorem 3.1 of [5]. However, the
main problem that prevents the derivation of an optimal second order estimate
on the velocity in the fully split case of the Stokes equations considered in [5],
remains in the present case too. In essence, it is due to the fact that the norm
generated by the factorized operator A is not equivalent to the H1 norm which in
turn does not allow to apply the usual duality argument for obtaining an optimal
estimate. So, in the present case, as in the case of the Stokes problem with split
momentum equation considered in [5], using the same arguments, we can at present
derive only that the velocity error in the L2 norm is of order ∆t3/2 if χ > 0. (see
theorem 4.2 of [5]). The only improvement in the present case is that this result
is valid irrespectively of the spatial dimension because the momentum equation
is not discretized with a direction splitting scheme. Overall, the extension of all
results for the Stokes problem in simple domains obtained in [5] to the Brinkman
case is quite straightforward. The purpose of the present paper is mainly to show
that the factorized perturbation of the incompressibility constraint (10) works in
the Brinkman case independently of the domain shape, i.e., the pressure can be
extended outside of the fluid domain with a penalty approach, and the resulting
splitting scheme is stable.

3.2. Spatial discretization. The equations (9)–(10) and (12) are discretized in
space using the classical MAC stencil (see [9], figure 1). When discretizing the
momentum equation in complex-shaped domains in the case of a MAC grid, it is
necessary to take special care for computing the Brinkman term, νu/k, to preserve
the accuracy. Essentially, such procedures compute some approximate or exact
average of the coefficient ν/k over the MAC cells intersected by a boundary marking
a jump in this quantity (see for example [12], section 3.2).

The conservative finite volume approximation of the second derivative in the
x-direction on a grid of a nonuniform grid size hi is given by

(19) Dxu
n
i,j,k =

2

hi+1 + hi

(
ν̄i−1/2

uni,j,k − uni−1,j,k

hi
− ν̄i+1/2

uni+1,j,k − uni,j,k
hi+1

)
,

where

(20) ν̄i−1/2 =

 0∫
−1

ds

ν(xi + shi, y, z)

−1

is the average of ν on [xi,j,k, xi−1,j,k], and hi = xi,j,k−xi−1,j,k, i = 2, . . . , L. Note
that if the integral in (20) is approximated by means of a trapezoid quadrature, ν̄
would be equal to the harmonic average of ν over a given discretization cell. This
discretization can be used to compute the central difference in any of the spatial
directions in case of variable viscosity.
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Similarly, the average Brinkman porosity at the point with x-coordinate xi can
be computed as:

(21) k̄i =

 1∫
0

ds

k(xi−1/2 + 0.5s(hi + hi+1), y, z)

−1

An alternative spatial approximation is provided by the stabilized central differ-
ence discretization on a collocated grid for the velocity and pressure proposed by
Rhie and Chow [11]. All the test cases presented in the next section were also com-
puted using such a collocated approximation and the results (not reported here)
showed a very similar behavior as the one computed on the MAC grid (presented
below).

pijpi−1j

pij−1

vij vi+1j

uij

uij+1

Figure 1. Control volumes associated with each node in case of
MAC grid

3.3. Computational cost of the direction splitting operator vs. Laplace
operator in the pressure correction equation. For simplicity, let us consider a
cubic domain covered with a grid containing n×n×n nodes. Under the assumption
that the cost for assembling the matrices is small compared to the cost of solving
the systems of linear equations, let us evaluate the number of operations needed
for computing the solution for the pressure per time step.
Direction splitting operator. In 3D, the Thomas algorithm for tri-diagonal
matrices has to be employed 3n2 times (i.e., n2 times in each direction). Each
Thomas algorithm solve requires 5n multiplications/divisions and 3n summation-
s/subtractions. So, the total of 15n3 + 9n3 operations are required.
Laplace operator. Suppose now that we use an iterative method to solve the
pressure Poisson equation2. Each iteration requires at least one matrix-vector mul-
tiplication, which for a seven-diagonal matrix will require 7n3 multiplications and
6n3 summations, thereby 7n3 + 6n3 is the total number of operation for one single
matrix-vector multiplication.

The above operation count shows that even if the iterative method converges
within several iterations, the solution of pressure equation with a direction splitting
operator and a direct tri-diagonal solver requires less operations than the iterative
solution of the pressure Poisson equation.

2Note that the Poisson equation can be solved using fast Fourier transform (FFT). The parallel

performance of the FFT algorithm, however, is not as good as that of a Thomas-based Schur
complement approach (see [7])
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4. Simulations

4.1. Preliminaries. The performance of the two approximations to the incom-
pressibility constraint discussed here: the pressure Poisson equation, and the direc-
tionally factorized perturbation (10), is compared on two two-dimensional problems
involving fluid and porous regions. The domain of the first problem is a channel
with sudden contraction, containing a subdomain (called here porous subdomain)
with a given permeability. If the permeability is very large, the Darcy term in the
Brinkman equations tends to zero, and therefore the flow in the porous subdomain
is unrestricted similarly to the rest of the fluid domain. For very small values of the
permeability, the Darcy term dominates in the porous subdomain, and completely
prevents the flow through it. In fact, in this case the Stokes-Brinkman equations
become a Fictitious Domain (penalty) formulation for the Stokes equations with
no-slip boundary conditions on the boundary of the subdomain in which an ex-
tremely low porosity is defined. The domain of the second problem is a channel
with two porous subdomains. In this case time dependent boundary conditions are
applied.

The main goal of these simulations is to compare the results for the velocity and
pressure computed with the classical Poisson equation for the pressure increment
(classical incremental projection scheme in a rotational form; see [6]), and the fac-
torized operator A defined above. Therefore, we define u∆, p∆ to be the velocity
and pressure calculated using the classical projection scheme, and uA, pA – the ve-
locity and pressure calculated using the scheme with the operator A in the pressure
correction step.

In all test cases presented below the viscosity is set to be ν = 10−6m2·s−1

and the parameter χ is set to one. The momentum equation of both schemes
and the pressure-Poisson equation in the classical projection scheme are solved
by a generalized minimal residual method with ILU preconditioner (see [1] for
implementation details). All simulations were performed on a machine with a dual
core Intel Xeon 5148LV with 8 GB RAM .

4.2. Flow in a channel with a sudden contraction and a porous obstacle.
As a first test case, consider the flow in a channel with a sudden contraction and a
porous obstacle (see figure 2). No-slip boundary conditions are prescribed on the
entire boundary except for the the inlet AB and the outlet CD where a parabolic
profile for the velocity is prescribed:

uAB = α1x1(x1 − 1.5), 0 ≤ x1 ≤ 1.5, x2 = 3

uCD = α2x1(x1 − 0.6), 0 ≤ x1 ≤ 0.6, x2 = 0

The coefficients α1 and α2 are specified so that the flow rates at both ends of
the channel are equal:∫ 1.5

0

α1x(x− 1.5)dx =

∫ 0.6

0

α2x(x− 0.6)dx = 0.015.

The usual zero Neumann boundary condition on the entire boundary is imposed
on the pressure correction.

We show in figure 3 the L2 norm of the difference of the velocities and pressures,
‖u∆ − uA‖L2

and ‖p∆ − pA‖L2
, as a function of ∆t. The convergence rate of both

errors is similar to the theoretical estimates for the convergence error of the classical
incremental projection scheme in a rotational form (see [8]): second order for the
velocity and order 3/2 for the pressure error in the L2 norm. At the same time, the



8 T. GORNAK, J. GUERMOND, O. ILIEV, AND P. MINEV

simulations with the directional splitting approach (using the factorized operator
A) are significantly faster (see table 1).

To compare the CPU time usage we must take into account that the computa-
tional time for iterative solvers depends on the number of iterations, which in turn
depends on the preset tolerance of the solver and the time step. All this information
is summarized in table 1.

Porous

A B

C D

E

F

x1

x2

0 0.6 1.2 1.5

0

0.8

1.6

2

3

Figure 2. Sketch of a channel with a sudden contraction and a
porous obstacle.

(a) Pressure L2 error:
‖p∆ − pA‖L2

(b) Velocity L2 error:
‖u∆ − uA‖L2

Figure 3. Pressure and velocity error; test case of section 4.2
(h = 0.005).

In the left panel of figure 4 we present the horizontal profiles of the velocity along
the vertical segment EF (see figure 2) at various permeabilities. The corresponding
velocity vectors are displayed in the right panel of figure 4.
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Table 1. CPU time comparison; test case of section 4.2

h/N ∆t Tolerance
for iterative
solver

Time for
Laplace

Time for DS
operator

Speed up

0.01/37800 1e-5 1e-8 18.18 2.35 7.7
0.01/37800 1e-5 1e-12 34.12 2.35 14.52
0.01/37800 1e-7 1e-8 22.14 2.35 9.42
0.01/37800 1e-7 1e-12 28.89 2.35 12.3

0.005/151200 1e-5 1e-8 86.12 6.57 13.1
0.005/151200 1e-5 1e-12 97.43 6.57 14.8
0.005/151200 1e-7 1e-8 78.16 6.57 11.8
0.005/151200 1e-7 1e-12 84.25 6.57 12.8

4.3. Flow in a channel with two porous obstacles and time dependen-
t boundary conditions. To further illustrate the properties of the factorized
scheme, consider the flow in a vertical channel with two porous blocks (see figure
5). No-slip boundary conditions are prescribed on the solid walls AC and BD,
while at the inlet AB and the outlet CD a time dependent profile for the velocity
is prescribed: −(π + sin(5t)). The domain is given by: 0 ≤ x1 ≤ 1.5, 0 ≤ x2 ≤ 1.

In figure 6 we show the norm of the difference of the velocities and the pressures,
‖u∆ − uA‖L2 and ‖p∆ − pA‖L2 , as a function of ∆t, and in figure 7, the vertical
profiles of the velocity along the vertical segment EF, as well as the velocity vectors
in the entire domain. As in the previous test case, the velocity and pressure differ-
ence has a very similar convergence rate to the corresponding convergence errors of
the classical incremental projection scheme in a rotational form.

Table 2 shows the CPU time comparison for the two schemes, confirming again
that the simulations with the direction splitting approach are significantly faster .

Table 2. CPU time comparison; test case of section 4.3.

h/N ∆t Tolerance
for iterative
solver

Time for
Laplace

Time for DS
operator

Speed up

0.01/45000 1e-5 1e-8 20.24 2.4 8.61
0.01/45000 1e-5 1e-12 38.12 2.4 16.2
0.01/45000 1e-7 1e-8 27.14 2.4 11.54
0.01/45000 1e-7 1e-12 33.89 2.4 14.42

0.005/180000 1e-5 1e-8 88.15 6.8 12.9
0.005/180000 1e-5 1e-12 99.4 6.8 14.6
0.005/180000 1e-7 1e-8 79.25 6.8 11.6
0.005/180000 1e-7 1e-12 85.13 6.8 12.5

5. Conclusions

The results presented in this article demonstrate that the direction-factorized
perturbation of the incompressibility constraint of the Stokes equations proposed
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High permeability (k = 10−4).
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Moderate permeability (k = 10−6).
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Extremely low permeability (k = 10−8).

Figure 4. Velocity profile in the segment EF and the correspond-
ing velocity field for different values of permeability; test case of
section 4.2 (h = 0.025,∆t = 0.01 ).
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Porous

Porous

A B
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Figure 5. Sketch of the channel with two porous obstacles.

(a) Pressure L2 error:

‖p∆ − pA‖L2

(b) Velocity L2 error:

‖u∆ − uA‖L2

Figure 6. Pressure and velocity error; test case of section 4.3
(h = 0.005).

in [7] can be applied to the Stokes-Brinkman equations. The scheme proposed in
this paper is unconditionally stable. We have not considered the possibility for
direction splitting of the momentum equations since it would generally yield non-
commutative one-dimensional operators which significantly complicates the stabil-
ity estimate. Although some possibilities for such splitting of the momentum equa-
tion in the non-commutative case are discussed in [3] the stability of the overall
algorithm in the Stokes or Stokes-Brinkman case is still an open problem.

The numerical results presented in the paper on two test cases involving fluid
and porous areas demonstrate that the L2-norms of the differences between the
velocities and pressures computed with the current direction-slitting approach and
the classical incremental projection scheme in a rotational form behaves like O(∆t2)
and O(∆t3/2), respectively. In other words, the convergence rates in time of the
two algorithms are close to the theoretical estimates for the incremental projection
scheme in a rotational form.
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Figure 7. Velocity in the slice and corresponding velocity vectors
for different values of permeability; test case of section 4.3 (h =
0.025,∆t = 0.01)
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