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Dedicated to Professor Walter Allegretto on the occasion of his 70th birthday

Abstract. A mixed finite element method combined with a fixed point algorithm is proposed for
solving the thermally coupled quasi-Newtonian flow problem. The existence and uniqueness of
the mixed variational solution are established. A more general uniqueness result for the original
system problem is presented. The convergence of the approximate solution is analyzed and the
corresponding error estimates are given.
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1. Introduction

In modeling quasi-Newtonian flows with thermal effects, see for instance [4, 6,
7, 14, 17, 18, 19], we encounter a coupled system involving a quasi-Newtonian flow
with a temperature dependent viscosity and a thermal balance with viscous heating.
A mathematical model for this problem in two dimensions can be written as:

(a) =V (k(O)|D(w)|""*D(u)) + Vp = f in 02
(b) Vu =0 in Q
(1.1) (c) —A0 = k(9)|D(w)|" inQ
(d) u =20 onT
(e) =0 onT

where u : Q — R? is the velocity, p : Q — IR is the pressure, 6 : Q — IR is the
temperature, € is a bounded open subset of IR?, T' its boundary. The viscosity k
is a function of 6, k = k(f). D(u) = 3(Vu + VuT) is the strain rate tensor, and
1<r <oo.

Professor Walter Allegretto and his former student Dr. Hong Xie did the pioneer
works [1, 2, 3, 28] on the thermistor problem, which is a special scalar model with
r = 2 of the problem considered in this paper. Other works for the thermistor
problem can be found in [9, 10, 11, 12, 13, 16, 21, 22], etc. In [23, 31], the complete
mathematical and numerical studies such as existence, uniqueness, regularity, finite
element approximations based on an iterative algorithm, convergence analysis and

Received by the editors June 11, 2012 .

2000 Mathematics Subject Classification. 65N30, 65N15, 76 A05, 76M30, 80A20.

* Corresponding author.
J. Zhang’s work was partially supported by National Natural Science Foundation of China
(11126084, 11126279, 11101431), the Fundamental Research Funds for the Central Universities
(12CX04082A) and Shandong Province Natural Science Foundation of China (ZR2010AL020), J.
Zhu, A. F. D. Loula and L. Bevilacqua’s works were supported partially by Brazilian National
Council for Scientific and Technological Development (CNPq), and X. Yu’s work was partially
supported by National Natural Science Foundation of China (10771019, 11171038).

35



36 J. ZHANG, J. ZHU, X. YU, A. LOULA, AND L. BEVILACQUA

numerical implementations were presented, and then extended to the Stokes flows
with viscous heating in [32]. A nonlinear finite element approximation and a mixed
discontinuous Galerkin approximation were studied respectively in [8] and [34].

For the case of r # 2, the existence study for the thermally coupled nonlinear
Darcy flows or Hele-Shaw flows can be found in, e.g. [7, 17, 18, 19], and [4, 29] for
non-Newtonian flows with viscous heating. The existence, uniqueness, regularity,
finite element approximations and convergence analysis based on the standard vari-
ational formulation for the thermally coupled nonlinear Darcy flows were studied
by the second author of this paper in [30] and extended to the thermally coupled
quasi-Newtonian flows in [33]. A nonlinear mixed variational formulation and fi-
nite element approximations to the thermally coupled nonlinear Darcy flows were
studied recently by the authors in [35].

In this paper, we will continue the works in [33, 35] and study the nonlinear
mixed variational formulation introduced in [24, 15], possessing local conservations
of the momentum and the mass, for problem (1.1). We first establish the existence
and uniqueness in Section 2. Because of the restriction of mathematical technique
applied for nonlinear analysis as pointed out in [35], the uniqueness obtained here
is for the case of > 2 which is different from in [33], thus we get a more general
result on uniqueness (see Theorem 2.3), which is another objective to study the
mixed method for the nonlinear coupled problem, besides the usual one which is to
get more precise numerical solution for the deviatoric stress tensor o. We propose
a fixed point algorithm to decouple the problem in Sections 3 and its nonlinear
mixed finite element approximation in Section 4. Also in Section 4, we present
convergence analysis with an error estimate between continuous solution and its
iterative finite element approximation.

2. Nonlinear mixed variational formulation

Let W™3(Q)) denote the Sobolev space with its norm || - ||yym.s, for m > 0 and
1 < s < oo. We write H™(Q) = W™2(Q) when s = 2, with the norm || - || gm, and
L5(Q2) = W95(Q) when m = 0, with the norm || - |[zs . W;"*(2) is the closure of
the space C§°(Q2) for the norm || - [|yym.s. Vector variables are, in general, denoted
with bold face. We denote also W™5(Q) = [W™5(Q)]?, W*(Q) = [W*(Q)]?,
H™(Q) = [H™ (@), HY'(2) = [H (), and L() = (L ()]

Throughout this work, we assume that, the coupling function p is bounded, i.e.,
there exist constants k* > k. > 0 such that, for all s € IR,

(2.1) ko < k(s) < k*,

and f € L?(Q), which implies that f € W~1""(Q), where 1/ 4+ 1/r = 1, then the
standard variational formulation of problem (1.1) can be defined as:
(2.2)
Find (u,p,0) € Wy (Q) x Li (Q) x HE(Q) such that
() (K(O)|D(w)]"*D(w), D(v)) — (p,V-v) = (f,v), YveW,"(Q)
(b) (¢, V-u) =0, VqeLy(Q)
(c) (V8, Vi) = (K(O)|[D(w)[",n), V€ Hg(2)

where (-, ) denotes the dualities. LG/ Q) ={qc< L Q) ‘ fQ q=0}.
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Introduce the space Vg, = {v eV = VV()”(Q) ‘ V-v= 0}, and then problem
(2.2) can be written equivalently by:
Find (u,0) € Vg, x HY(Q) such that
(2.3) (a) (k(©)|D(u)|"2D(u), D(v)) = (f,v), Vv € Vaw
(b)  (VO,Vn) = (k(0)|D(u)]",n), V0 € Hy(Q).
Lemma 2.1. (cf. [29]). For any given 0, if u € Vy;, satisfies (2.2a), then there

exist 6 > 0 and a constant C > 0 depending only on Q, k. and k* such that
u € WOI’T(H_&)(Q) and the following estimate holds

D)l Lrass < ClIFllz2"

To present the mixed variational formulation, let us introduce the nonlinear
deviatoric stress tensor

o = k(0)|D(u)|""*D(u)
then
Dw) = [k(O)' " o] 2o = u(O)|o]" 0.
where 1(6) = [k(0)]'~"". Hence, the system (1.1) can be written in the form

(a) w@)|o|” 20— D(u) =0 in Q
(b) Vele—pI)+f=0 in Q
(c) V-u=0 in Q
(24) (d) AG + pu()|a|” =0 in Q
(e) u=20 onT
(f) 0=0 onT

where I is the identity tensor.

As in [24, 15], we define the spaces
S = {(r e [L"@P x L (©) | V- (r—a) e () V-7 € L")}
M = {(v,%) € '(@) x [L7()] | x+x" =0}
0 = H(9).
equipped with the norms

T’ T’ T’ %

I, D)lls = (716,70 + om0 + 1V - (T = aDlo, 0) "
T T 1
(v, 2l = (lollo,r.0 + IxlI6,r,0) "

For all (T,q) € ¥ such that V - (7 — ¢I) € L (Q), as V-u = 0, one has

(o] o, 7) = (D(u),7) = (D(u), T — ¢I) = (Vu — w, T — ¢
=(Vu, 7 —ql) — (0,7 —qI) = =(V - (7 —qI),u) — (0, 7),

where w = w(u) = 1(Vu — Vu”) is the vorticity tensor. Then, the mixed varia-
tional formulation of problem (2.4) can be defined as:
2.5
( )and ((o,p); (u,w);0) € ¥ x M x O such that
(a) (uOlo” 20, 7) + (V- (r —al),u)+ (1,0) =0, ¥(r,q) €S
(b) (V (o =pl),v) +(o,x) +(f,v) =0, V(v,x)eM
() (VO,Vn) = (u(0)|e]",n) =0, Vneco.
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As in [15], a Lagrange multiplier is introduced in (2.5b) to relax the symmetry of
o.

Now, for simplification, we assume that u(6) = [k(0)]~"" satisfies the following
conditions:

(a) wu(s) € C(R), p« < p(s)<p*, Vse R,
(b) w'llpe~ <L

where i, = [k*]'="" and p* = [k.]".

(2.6)

For any given 0, it is easily seen that
(w@)|e|” 2o,0) > pdlol;,.. YoelL" ()

Moreover, due to Proposition 2.2 and Proposition 2.3 in [15], we have

Lemma 2.2. There exists a positive constant 3 such that

(2.7) inf sup (V- (r —aD),v) + (7, %)
@XM (rges (v, x) Ml (T:9)s

Lemma 2.3. There exists a positive constant C' such that
lallL < Cliligr, V(T,9) € X,
where

X={(r,9eX | (V-(r—ql),v)+(7,x) =0, V(v,x) € M}

Hence, due to Theorem 2.4 in [15], we have

Lemma 2.4. For any given 0, (2.5a,b) has a unique solution ((o,p);(u,w)) €
3 x M. Moreover o = k(0)|D(u)|""2D(u), and u satisfies (1.1a).

By Lemmas 2.1-2.4, we have

Lemma 2.5. For any given 0, there exist 6 > 0 and a constant C > 0 depend-
ing only on Q, . and p* such that the solution ((o,p);(u,w)) € LT'(”‘;)(Q) X
L7 A+9)(Q) x WHr+0)(Q) x L"+9(Q) of (2.5a,b) and the following estimates
hold
1/(r—1

| D)o + wllprare < O AL

lollLrars +1PlLrars < CllfllLe-
Lemma 2.6. If ((o,p); (u,w);0) solves problem (2.5), then (u,0) satisfies (2.3).

Conversely, if (u,0) is a solution to (2.3), then ((o,p); (u,w);0) solves problem
(2.5).

Using a similar technique as in [33], we can show that the following result holds.

Theorem 2.1. (Existence) Problem (2.5) has a solution ((o,p); (u,w);0), and for
0 > 0, defined in Lemma 2.1, there exists a constant C > 0 depending only on §,
Js, 15, 0, 7 and v’ such that

(2.8) ID(@)|| pra+s + W]l prars < CFIA
(2.9) ol grass + 1Pl prass < Cllfllze
(2.10) V6] 17 < C|If |7
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where
) 20+9) if o<1
7= any number in (2, 00), if 6=1
0, if  §>1.

To study the uniqueness of problem (2.5), we will use the following technical
lemma (see [5, 20]):

Lemma 2.7. For all v > 1, there exist two positive constants C1 and Cy such
that for all X, Y € R¢,

(211) (X772 = Y7727, X = Y) > X =Y P(X ]+ Y]
(212) X7 72X = Y72 | < GolX = (X [+ Y]

To analyze the uniqueness of problem (2.5), we restrict ourselves (from now
on) in the case 1 < 7/ < 2 or r > 2. If the problem (2.5) has two solutions
((o1,p1); (w1, w1);01) and ((o2, p2); (w2, w)2;02), and let & = o1 — 02, p = p1 — p2,
U=1u; — Uz, W =wj —ws and 6 = 0; — 0. Then, by (2.5), we have

(a) ((61)o1]" 201 — p(02)| 02| 202, T)
(2.13) +(V'(T*QI)/’7’)+(T7‘:’) = Oav(TaQ) €eX
(b) (V-(e—-pI),v)+(6,x) =0, V(v,x)e M

oo ) =0, Vneo.
2.13a,b), and using (2.6) and (2.9),

(c) (V8, V) — (u(Br)|o1|" — (62

Thus, taking (7,q) = (7,p), (v, x) = (4, @) in
we have

)
(

pel(jor " 2o — o] 2a2,0))

< (O] 20 ~ ool 0], )]
= |([(81) — p02))oa]" 202, 5) + (V - (& — pT), @) + (5, &)|
(2.14) [([1(61) — 0| |” 2075, &)

L”&HL/T' o] 2;(11+6)J‘9_||LT(1+5)/5
CllFlzz " 1ol 1901 2.
Utilizing (2.11), we know that

IN A

(215) pl(lo1|" P01 — o] T202,6)| = wCilla |l (loil e + loallp.)" 2.

Hence, combining (2.14) with (2.15), we get
(2.16) lollL < CllfllL2Vol|ze.

On the other hand, by (2.13¢), we have

IV3: = (1(O1)loa]” — p(B2)lo2|",0) / o
(217) = ([u(61) — u(6:2)]lo1]",0) + (u(Ba)l|o1 | —|o2|"],0)
Dy + Ds.

It is easily seen that

Dy < L|oy|”

Cllfllz

v/ (1+8) Hénimlw)/s
VO3 .

(2.18)

VANNVAN

Since

- - 1 - -
il ~ ool = 5ot @) (ol o~ foal Fo2) 4 50 (ol o+ ol o)

N | =
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then, using (2.12) and (2.16), we have

2] . - _
Dy = (M(;)("l +02) - (|o1]|" o1 — |oa|” "202),0)
9 _ r_ r_ —
(2.19) (%) o (o 20, 4 ool ). 0)
< Cllonllgten + loalymho I 18] rosos
< CIFI3 VO

Combining (2.17), (2.18) and (2.19), we have

(2.20) IVO]Z2 < ClIFIg=l VO,

where C is a constant dependent of Q, Cy, Ca, py, p*, L, 7" and §.
Therefore, if

(2.21) Cllflz: <1,

then it holds that § = 0, which implies that & = 0 (by (2.16)) and w = 0, & = 0
and p = 0 (by Lemmas 2.2 and 2.3).

Theorem 2.2. (Uniqueness) Under the assumption (2.6), if condition (2.21) holds,
then, problem (2.5) has a unique solution.

By Theorem 2.2 and Lemma 2.6, we get the uniqueness of problem (2.3) if r > 2.
On the other hand, this uniqueness has been shown in [33] for the case of 1 < r < 2.
So, we have, for 1 < r < 0o

Theorem 2.3. (General uniqueness) Assume that f is sufficiently small such that
both (3.34) in [33] (same form as (2.21) but with different constant C') and (2.21)
hold, then problem (2.3) has a unique solution.

3. An iterative method

In this section, we introduce an iterative method to solve problem (2.5). For an
arbitrary ° € ©, and n = 1,2,---, we can calculate ((o™,p"); (u™, w™);0") by:
3.1
( P)‘ind ((e™,p™); (U™, w™);0™) € ¥ x M x O such that
(2) (0" e 2", ) + (V- (T —qI),u") + (1,w") =0, V(7.q) €
(b) (Vo =p"I),v) + (0", x) + (f,v) =0, V(v,x)eM
() (V6",Vn) = (u(6" Yo" ,n) =0, Vneo.

(3.1a) implies that
(3.2) o™ = k" )| D@™)|["2D(u").
Similarly to Theorems 2.1 | we have

Theorem 3.1. The solution ((a™,p™); (u",w™);0™) to (3.1) satisfies:

(3.3) D™ prass) + W™ pracs < CIFIATY, Vo> 1,
(3.4) o™ | grass + 0" rase < CllflLz  ¥n>1,
(3.5) IV6" |1+ < Ol fllyes ¥n>1

where § and 7 are same as in Theorem 2.1.
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Subtracting (3.1) from (2.5), we have, for all (7,q) € 3, (v,x) € M
uO)o|" 2o — p(e" e 2", 7)

() (

= (V- (r—qD)u—u") ~ (1,0 — ")
(b) (V-lo—o"—(p—p")],0) + (0 — 0" x) =0
(©) (VO 0),V0) = uO)ol” —u@ =)o n).

Similarly to (2.16) and (2.20), we can deduce that

lo—o < Cllflr2lIV (0 = 6"l L2,
V(O =02 < ClIflLlIV (O — 0" )] L2

(3.6)

(3.7)

where C is same as in (2.20). Using Lemma 2.3, we have
(3-8) lp = p" | < Cllo = o™ < CllFL2V (O — 0" z=.
Now, we estimate the bound of ||u — u"||L-.

By Lemma 2.2 and (3.6a), we have
(3.9)

Bl —uw—war < sup L (Todhu—u)F(mw - W)

(r.)€x (T, 9)ll=
. 0 r’72 pn—1 nir’'—2 -n
B e i s
(T,9)€S (T, 9)l=
9) — en—l 7—2
N (1 s %)
e i)l
n—1 r72 o r’'—2 __n
R e |
(T,9)ex ||(T7Q)H2
=T+ T

Note that(2.9),

T < [[6(6) — (@)oo
Ll 16— 0]

L,/(Hé) Lr(1+8)/5

ClfIs IV ="z

L
(3.10)

IN A

Taking (7,q9) = (6 —o",p—p"), (v,x) = (u—u",w—w") in (3.6a) and (3.6b),
respectively, we know that
(@™ D™ 2" — p(0)|o|” 0,0 — ™) = 0.
So, we have
([1(6) = w(@™ ol 0,0 — ")
[(u(0"H)llo|" 20 — |o"|" 20", 0 — o")]

AV

(3.11) u*|(|a|’“’—2cr—|20n|7“—2a",a_an)|
||G_ n” r’—2 n|r’'—2 __n n
Z H0_|2—7/+|| +C(||U| 0-7|0- | o |7|0-70- |)
L.,./

where we have used a similar technlque as in [27]. Thus, we have

(o] 2o —|o""2a"|,|o — ")

12 < Cl(p(®) ~ p(@" Mol o0~ a")|
| e R PR
<

Clifg VO = 0" Dr2llo — ol
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Using the fact that (cf. [27]), for all 7 € [L" (]2
(3.13)
(lo|" %o —|o"|"20™),7) < C(llo|" 2o —|o"[" 2o |,|o — a")/" |7l

we can get

T < C(llof” 20 — |o"|"~20"|, o — o) 1/"
(3.14) < CIFIS TN O — oL o — o
< CIfI M I8 — mY)|2

Substituting the estimates (3.10) and (3.14) into (3.9), we can obtain
(3.15) Jlu—u"| 1 < ClFl IV 0=0" ") a4V (0-6" I -

Theorem 3.2. Under the assumptions of Theorem 2.2, the iterative algorithm
(3.1) presents a linear convergence rate if
(3.16) M(f) = ClIf7"" <
is satisfied. And the following estimates hold:
(a) V(0 —=6™)L2 < M(£)"V(0—06°)] L2
(b) o =0 +llp—p"llp < ClFlpzMF)" VO = 6°)] 2
(© -z +|lw— wliz-
< CIIF I M) IV (0 = 02 + V(0 - 035}

L7~+||w7w |

(3.17)

4. Mixed finite element approximation

To present the mixed finite element approximation, for simplicity, we assume that
(is polygonal and is divided into a regular family of triangulations 7}, (triangulation
of Q into closed triangles K'). Let P, (K) denote the space of polynomials of degree
less than or equal to k on K. Set

R(K) = [P (K)]* + acurl by,
where « is a constant, and b, the ”bubble function” defined on K by
br(x) = M (x)Aa(x)A3(x), with A1, Ao and A3 the barycentric coordinate in K.

We define the finite element spaces (see [15])
En={(th,qn) € \ |k € [R(K))?,qn|lx € Pi(K),YK € Ty}

My = {(vn,xn) € M ‘ vnlk € [Po(K)?, xn|x = €n¢ with &|x € PI(K),VK € T}

where
0 -1
(1)
We also introduce another finite element space
on = {mee|mlxep(K) vKeT}.

For any given 69 € O, and n = 1,2,---, we can calculate ((o, p}); (ull,w?); 67)
by:
(4.1)
Find ((o},p}); (uh,wﬁ) 0r) € Xy, x Mj, x Oy, such that
@) (w0 Do 2on, ™) + (V- (1 — auI), up) + (T, wf)
(b) (V . (U;ll - p;lLI)7 vh) + (0;117Xh) + (f;v vh)
(c) (VO Vn) = (0 Do u]" nn) =

0, Y (Th,qn) € X
O A4 (’Uh,xh) e M,
0, Vnh € Op.



THERMALLY COUPLED QUASI-NEWTONIAN FLOWS 43

Similarly to Proposition 3.1 and Proposition 3.2 in [15], we can easily get the
result:

Lemma 4.1. There exists a positive constant * such that

(mn—and
(4.2) inf sup (V (1 — qnl),vn) + (Th, Xn)
(Dh Xh)th (Th Qh)ezh ||(’Uh, Xh)||M||(Th7 (Ih)HZ

> B

Lemma 4.2. There exists a positive constant C' indenpent of h, such that
lanllz» < Climallps Y (Th,qn) € Xn,
where
Xpn ={(th,qn) € ;s (V - (tn + qnd),v1) + (Th, x0) =0, ¥ (vn, xn) € M}
Remark 4.1. Similarly to Theorem 2.1 and Theorem 2.2, we can easily show that

the existence and uniqueness of problem (4.1).

To analyze problem (4.1), for given 92_1, we define ((67,pp); (up, @) € 3y, X
M;, such that

(4.3)
(a)  (w(Or Hlenl” ’QGh,Th) + (V- (tn — qn),ap) + (th,@1) =0, YV (Th,qn) € T,
(b) (V- (o —ppI),vn) + (G, xn) + (f,vn) =0, V (vn, xn) € M.

Using a similar technique as in [15], we can get the following result:

Lemma 4.3. For given 077", if (o,p) € [W™" (Q)]? x W™ (Q) and (u,w) €
WL (Q) x (W™ (Q)]?, m = 1,2, then there exists a constant C, independent on
h, such that

@ 0" = ol + |57 =7 < CH2
mo__ Tyn . < m(r —1
(44) (b) ||(4) wh' L™ > Ch ' '
n ~n Ch"—+, if m=1
(c) la” =@iller < gpmntizo-01 i o,

To analyze the convergence of the finite element approximation (4.1), we intro-
duce another projection operator R;, : © — Oy, satisfying:

(4.5) (a) (V(0" — Rp0"), V) =0, Vi € Oy
(b) ]|0™ — Rpb™|| 12 + ||V (0™ — Rp0™)|| 12 < Ch2||0™]| g=.
Subtracting (3.1) from (4.1) and using (4.3) and (4.5a), we can get the residual
equations as follows:
(4.6)
(a) (w0 Dllohl” 2on = |ah]" ?a7], ™
([0 = u(9"71)1|0"|r o", Th

)
)
r) =
)
)

(V- (1 —qnI),up — @) + (Th,wh — 0, YV (Tn,qn) € 3p
(b) (V ° [02 - 6-;7,1 - (p ﬁh)I] ’Uh) (o'h &h7xh) (.f7vh - 07 v ('Uh:Xh) S Mh
(¢)  (V(6 — Ru6™), Vi) — (0 Dlop|™ — w0 H)e™" ) = 0, ¥ € O

Taking (7, qn) = (o) — 6}, p} — py) in (4.6a) and using (4.6b), we have

(0 Dllop|” 2o — |op|" ~*67], of — 67)

(47) _ ([ (9n 1) (92 1)”0‘ |T7 (e ;Uhf&;zl)'



44 J. ZHANG, J. ZHU, X. YU, A. LOULA, AND L. BEVILACQUA

By (2.11) and (3.4), we can obtain

~ ~ /7
peCilloy = apl17 . (ol L + llogll )2

< (u(@; Dllopl” ’Qt{ﬁ —lohl"2eq) o — o7)
(4.8) = ((pO"=Y) = Oy Dl " 2a", o) — 7))
< LHU}T: - &}T” L Un| 2;(11%) Hon_l - 9Z71| Lr(1+8)/8
< Clfllgs log =l IV O = 657 e
Hence, using Lemma 4.2, we obtain
(4.9) los = &nll + ok = BhllLe < Clfllz=lIV (O™ =057 e

where we have used the fact that |6}
to the one for o in Theorem 2.1.

Lr M < C| fllp2, which is similar

By Lemma 4.1 and (4.6a), we know that
(4.10)

BN (uh — ag, wh — @)l

(V- (mn = qnI),up, — ay) + (Th,wp, — @)

A\

sup

T (Th.an)ESy [1(70, qn)ls
1 e e e [ e e A A

(Th,an)E€Xp . (7 qn)lls
< sup |([1(6" ") — p@r " Dlle™|” 20", )|

(Th,qn)E€Xp [(7hy gn)lls ,

4+ sup (@ Dllar]" 267 — lop]” —2op]), ™)
(Th,an)EXh [ (7hs qn)lls

= FE1+ Fs.

Using (2.9), we have

’
F1 Lo " (148) |9"71 — 9271| Lr(148)/6

ClfIz IV O = 0Dl e

(4.11)

IAIA

Now, we estimate E». Using a similar technique as in [15, 27], we can get

9”—1 o r'720.n —|lgn r'720~.n 70.n —agn
K0}, h h h b Oh h
pa(lop ]2
IIUZ
leply + H

n_ |zn|r’'—2zn n __ =n
Oh |0'h| Gh:T) =)

= +Clle W —leh ek o — R

>
(412)

Y

By Holder inequality, Sobolev inequality and (4.9), we can get
(1n(0") = (| 2" o — &7)
Ljo (146) Honfl - 9271| pra+sysl|op — oyl g

Cllflz Ve - 92;1)||L2||0;’Z =l
CllFllg=1V (6" —6r~Hl7-

(4.13)

IN AN IA

By (4.12), and notice that (4.7) and (4.13), we get

(4.14)  (lopl” 2of —|opl" 2ahl ok — ahl) < CIF IV O™ = 677
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Using the fact that (cf. [27]), for all 7, € [L™ (Q)]2 N{mn|x € [R(K)]2,VK € T}

(4.15) (lep"2ap —lop|”?op], ™)

< C(lop|" 26y — |op" 2oy, |} — ot )Y/" |7

L,./ 5

thus, by (4.14)

Ey < (|&h|r 720‘h |0'h|T’720'h| 6 —aph'/"
(4'16) r'—1 1 n— 1 2/r
< Clfllgs Ve =605 )= -
Hence, we have
(4.17)
g~ | o+ llwh —@p | e < ClFI IV O =0 e+ (O =172

Now we are going to estimate |V (0} — Rp0™)| 2. Choosing n, = 67 — R,0™ in
(4.6¢), we have
IV (05 = Ru6™)[72 = (V(0) — Rub"), V(6] — Ri6™))
(w87~ — w6 V)l 0 — Rao)
(

(4.18) = (O ol — o). 05 — Rab™)
+([p (9" Y = (0" H]lem ", 0y — Ryo™)
= R1 + R».
Notice that
’ ’ 1 ’ ’
ohl” ~ o™ = S(e" + o)kl ef o ")

+5(on —a")(log]" “Paf 4o e,

then, by Holder inequality, (2.12), Sobolev inequality and (4.9), we have
(4.19)

1 n— g g
Ry = 505 ) (" + o) (oh|” 2oy — o o), 6 — Rab")
]‘ — n n ’l" — n ’l"’* n n n
+5 O ) ok — o) (loh]" ek + o 20 ™), 0 — Rud")
< Cllog = ol g (1o bs + 1™ b 65 = R6" | i
< ClFIL IV = Bub™)llzllof: = Ghll e + 155 = 07 ).

By Holder inequality, Sobolev inequality and (4.9),

Ry < L|0" = 07 pacsarss |0 oo 1607 = RiO™ | 20455

(4.20) ool L - .
< ClIFNIL NV = 057 D21V (6] — Ba6™)]| 2.

Combining (4.18)-(4.20) and using (4.9), we obtain
@21) [V — Rub)ie < CIFI VO = 61+ CHmr 2,
thus

V(O™ =)l < (V0" = Rab™)|| 2 + [V (0} — Rn0"™)]| >

4.22 Ve I )l
) ClIFI5alIV (6" — 8 Y)l|= + C{A™ /2 1 by,

<
<

Hence, we have the following theorem:
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Theorem 4.1. Let ((o™,p™); (u”,w™);0™) and (o}, pp); (uf,wp); 05) be the so-
lutions to problems (3.1) and (4.1) respectively, and that (o™, p") € [W™" (Q)]? x
Wmr'(Q), (u,w™) € WET(Q) x [W™r ()2, m = 1,2, and 0" € H2(Q). if

(4.23) CIFIT" = M(f) <1
holds, then the following error estimates hold
(4.24)
n n Y n C mr’
(=) IV =60l < M) IVE Ol + s (0 4 1)
() o™ = ohllpe +lp" = pillr < CMF)" V(O —60) 2

C ’
t———{n""? +
N }

(c) o™ —whller < CM(F)" IV = 0) 2 + IV(6° — GRS

IN

L2
+ d hm(r/—l) +h2/r
1A7M(j;){ 0 0 } 0 0412/
(d) ™ —upller < CM(F)" IV = Op)llz2 + V(0" = )%

c R i m=1
+ ~ N 2/1" . _
1—M(f) R if o m =2,

where C' is a constant independent of n and h.

Proof. By (4.22), we know that

V(6" — 03] .

< M(F)|VE" =65 Mllze + C{hm™' /2 + h)
(4.25) < M(f)nHV(@O — 0|2 + CZM(f)n—i{hmr//Q 4 h)
i=1
/ " oo, 2 L mr’ /2
< MUPIVO = Bl b 2 40

Notice that (4.4a), (4.9) and (4.24a)

lo” = ol + Ip" =Pl )
lo” = aitll o 4 lP" = Pill o+ 1o = il o + 1P = Phll o
CUNV O™t = 057 )llze + R /2)

rpyn—1 DR ONTIN ¢ mr' /2
ORIV )l + s 7772 5 1)

ININ

(4.26)

IN

Finally, by (4.4), (4.17) and (4.25)

o = &l + o — &Fle 2 |
CLIV(O™ = 634 2+ V(0" — 0 Y47} + e’
O™ IV (6° — 89) |1 + V(6 — 89)]1 207}

C m(r'—1) 2/r
s IE) {h + h2/T}

(4.27)

VAN VANVAN
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and
lu™ — IfZHLr i
<l =@l + g - uifer 2/
(o) = CUVETI =6 Dl +1VE 6 Dl 4l — 2o
< CM(F)" V(0 = 60)112 +11V(6° — ORI

¢ . R i om=1
1-M(F) | BT, if m=2.

O

Now, let C* = max{C,C} where C' and C are defined by (3.16) and (4.23)
respectively. Thus,
(4.20) CrIFIT" =M () <1
implies (3.16) and (4.23). Hence, we get the following main result
Theorem 4.2. Under the assumptions of Theorems 3.2 and 4.1, if condition (4.29)
holds. Then, problem (2.5) has a unique solution ((o,p); (u,w);0), the finite ele-

ment solution sequence {((o}, py); (uf,wp); 07)} of (4.1) converges to ((o, p); (u, w); 0)
and the following estimates hold

(4.30)
@) 19Ol

< MV E =0+ 1906 = 02} + Ty (072 1)
(b) loe—ahlip +llp =il

< CM(F) IO = 0+ 96 = )2} + g (0 + 1)
© ool

IN

CM* ()" V(0 — ) 1= + V(0 — 0°) |27 + [V (00 — 62)]] 2
V(00— 00124} + {00 4 g2y

(d) lw—up L o

CM* ()" V(0 — 6°) 1= + V(6 — 0°) | 24" + [V (° — 62)]] .2

0 _ p0y(2/7 L hr,ila if m=1

where C' is a constant independent of n and h, m = 1,2, and M*(f) < 1 is defined
by (4.29).

1= M*(f)

IN

Remark 4.2. Since (4.1a) is still nonlinear equation, then it needs to be solved in
practice by an iterative method such as, for example, augmented Lagrangian method
[20] or conjugate gradient method [5].
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