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Abstract. Interaction of vortex rings with solid is an important research topic of hy-
drodynamic. In this study, a multiple-relaxation time (MRT) lattice Boltzmann method
(LBM) is used to investigate the flow of a vortex ring impacting spheroidal particles.
The MRT-LBM is validated through the cases of vortex ring impacting a flat wall. The
vortex evolution due to particle size, the aspect ratio of a prolate particle, as well as
Reynolds (Re) number are discussed in detail. When the vortex ring impacting a sta-
tionary sphere, the primary and secondary vortex rings wrap around each other, which
is different from the situation of the vortex ring impacting a plate. For the vortex ring
impacting with a prolate spheroid, the secondary vortex ring stretches mainly along
the long axis of the ellipsoid particle. However, it is found that after the vortex wrap-
ping stage, the primary vortex recovers along the short axis of the particle faster than
that in the long axis, i.e., the primary vortex ring stretches mainly along the short axis
of the particle. That has never been address in the literature.
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1 Introduction

The study of vortex ring interactions with solid bodys has attracted much attention. The
possible reasons are that the experiments are easy to carry out and the results would give
physical insights to more complicated flow fields dominated by vorticities.

The simplest interaction between a vortex and a solid body may be a vortex ring
impacting on a flat wall. This case is helpful to understand the topological changes in
evolving vortex structures [1]. This topic has been studied extensively through experi-
ment and numerical simulations [1-5]. For example, Chu [5] studied the vortex structure
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and the associated surface force with 500 < Re <2000 numerically and experimentally.
In the literature, the following procedure is identified [1,5]. When the vortex ring ap-
proaches the wall, a boundary layer with vortices of opposite signs will form, which is
a viscous response in the vicinity of the wall [6, 7] due to the non-slip wall boundary
condition. In the procedure, the toroidal radius of the vortex ring would expand. Due
to vortex stretching, the vortex core shrinks but its vorticity is intensified [1]. Finally, a
secondary vortex and even a tertiary vortex ring may be generated from the boundary
layer and leave the boundary.

There are also some numerical studies on the interaction of the ring with an inclined
wall. Liu [8] used the vortex particle-in-cell method and a hybrid Eulerian-Lagrangian
method to simulate the unsteady shear flow induced by a vortex ring impacting a flat
wall with angle 38.5°. Liu [8] proved that the helical winding of vortex lines behaved
more prominent and the secondary vortex core is thicker at a high Re. Cheng et al. [1]
studied a vortex ring impacting a flat wall with an angle of 0<6 <40 and 100 < Re <1000.
He observed the development of the primary vortex ring and the pattern of the secondary
vorticity generation, and made a investigation on the effect of 6 and Re.

On the other hand, vortex interaction with a stationary and rotating spheroidal parti-
cle, which probably represents the simplest interaction of a vortex with a body, receives
less attention [9,10]. To the best of our knowledge, the following two works were car-
ried out in the literature. One is the experimental study of a vortex ring impacting a
sphere [9]. In the experiment, a neutrally buoyant sphere was free to move in response to
the impulse delivered by a vortex ring in water. The other work is a numerical study of
the vortex interaction with a stationary sphere [10] using the implicit fourth-order com-
pact finite difference schemes for solving the flow with Re=2000. Paulo analyzed the
vortex dynamics of the ring as it approached the sphere surface [10]. He identified that
the boundary layer formed on the surface of the sphere undergoes separation to form a
second vortex ring, which grow rapidly as it interact with the primary ring. However,
most of the previous studies are restricted to a flat or a sphere. The vortex ring interaction
with an ellipsoidal particle and particle’s size effect on the evolution of the vortices have
never been addressed in the literature.

In this work, we will investigate three-dimensional flow structure of a vortex ring im-
pacting an ellipsoidal particle with different ellipticity (ratio between the major axis and
the minor axis) and Reynolds numbers by using the lattice Boltzmann method (LBM) [11].
Lattice Boltzmann equation is able to recover the macroscopic Navier-Stokes equation, it
looks like an artificial compressibility method (ACM) for solving the N-S equation [12].
However, in terms of spatial and temporal discretization, LBM is different from the ACM.
For transient flows, the LBM may be more accurate for capturing the pressure waves than
the ACM [12]. In the LBM, the Poisson equation is not required to solve. The LBM is an
explicit scheme and the code is easy to be parallelized.

Here, through LBM simulations, we try to understand the mechanisms of the interac-
tion between vortex ring and ellipsoidal particle. The effects of the ellipticity and Re are
investigated.
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This paper is organized as the following. Section 2 is a brief introduction of multiple-
relaxation-time (MRT) lattice Boltzmann method, and corresponding boundary condi-
tions. The vortex interaction with a flat wall was simulated to validate our numerical
method through quantitative and qualitative comparison with experimental data. In Sec-
tion 3, a vortex ring impacting an elliptical spheroid is studied. The effects of ellipticity
and the Re (200 < Re <900) are investigated in detail and the evolution of the vortex
structure is discussed. Finally, the conclusion is presented.

2 Numerical method and the computational model

In this section, our MRT-LBM will be validated through cases of a vortex ring impacting
a flat wall. Macroscopically, the lattice Boltzmann equation is able to recover the incom-
pressible N-S equation. The simplest lattice Boltzmann method is the Bhatnagar-Gross-
Krook (BGK) model, which is based on an approximation of a single relaxation time [13].
Until the 1990s, the MRT lattice Boltzmann method was developed, which overcomes
some obvious defects of the BGK model, such as fixed ratio between the kinematic and
bulk viscosities, improved the numerical stability [14].

The reasons why we use the MRT-LBM are illustrated in the follows. First, the LBM
method is easy to implement and parallelized for this incompressible flow. Second, com-
pared to conventional Navier-Stokes solvers of equal order of accuracy, the LBM has
relatively low numerical dissipation and dispersion [12].

2.1 MRT-LBM

There are only two main steps in the code: streaming and collision. In the streaming step,
the Distribution Functions (DF) in different directions (e.g., there are 19 components in
the D3Q19 velocity model) at a computational node would propagate to its neighbour-
hood. The collision step is implemented locally. With the DF streaming from the neigh-
bourhood, the macroscopic variables can be calculated as the moments of the DF. The DF
can be updated through the collision step. In the collision step, the multiple-relax-time
model [14] is used to ensure a better numerical stability.

In our study, the fluid flow is solved by the MRT-LBM [14]. The following MRT
lattice Boltzmann (LB) equation [14] is employed to solve the incompressible Navier-
Stokes equations,

f (xFedtt+A8)) —|f(x,t)) = =M 18 [|m(x,t)) — |m D (x,1))], 2.1)

where the Dirac notation of ket |-) vectors symbolize the column vectors. The particle
distribution function |f(x,t)) has 19 components f; with i =0,1,---,18 in our 3D simu-
lations because the D3Q19 velocity model is used. e; are the discrete velocities of the
velocity model. The directions of the velocities are shown in Fig. 1(a), and for example,
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e; can be written as e; = (1,0,0)c. Here ¢ = Ax/At is the lattice speed, where Ax and At
are the lattice spacing (1/u) and time step (1fs) in LB simulations, respectively.

The collision matrix S = M-S-M~! is diagonal with S [14] S =
diag(0,51,52,0,54,0,54,0,54,59,510,59,510,513,513,513,516,516,516 ) - ]m(e‘”) is the equilibrium
value of the moment |m). The 19x19 matrix M is a linear transformation which is
used to map a vector |f) in discrete velocity space to a vector |m) in moment space, i.e.,
im)=M-|f), |f) =M~1-|m). The matrix M, the discrete velocities of the D3Q19 model,
and |m(¢?)) are all identical as those used by [14].

The macro-variables density p and momentum j; are obtained from

p=Y fi, jc=) fei, 2.2)

where { denotes x, y, or z coordinates. Here the collision process is executed in moment
space [14]. In our simulations, the parameters are chosen as: s1=1.19, s,=s190=1.4,54=1.2,
s9=1/T, s13=59, and s16=1.98. The parameter 7 is related to the kinematic viscosity of the
fluid with v¢ =c2(1—0.5)At and c;=c/+/3. The pressure in the flow field can be obtained
from the density via the equation of state p =c2p.

Macroscopically, (2.1) is able to recover the incompressible Navier-Stokes equa-
tion [14]. In the implementation to ensure the incompressibility condition, usually the
velocity in the flow field should not exceed 0.1c.

2.2 Boundary conditions

As we know, the non-slip boundary condition should be ensured in the particle’s sur-
face. Here, the non-slip boundary condition in our study is based on the scheme of Lalle-
mand [15].

In Fig. 1(b), the computational domain was separated by a solid surface. Some lattice
nodes which inside the surface are solid nodes (filled black circles) and the collision steps
are not implemented in these nodes. Outside the surface, there are fluid nodes, which
are represented by the filled blue circles and black circles. The filled blue circle denote
the fluid nodes which have at least one link of the 18 directions (shown in Fig. 1(a))
connecting with the solid nodes. Usually the half-way bounce back is used to ensure the
non-slip boundary condition. In Fig. 1(b), we can see that after streaming step, there are
6 directions are unknown for the lattice node b, i.e., fi(b), f3(b), f5(b), f7(b), fi5(b),
f11(b). For the half-way bounce back scheme (or simple bounce back), the unknown
DF that comes from the solid node is set to be the DF in the reverse direction, which is
already known. For example, f1(b)= f2(b).

Here a more accurate curve wall boundary condition [15] is applied. In the follows, an
example about how to get f7(b) is illustrated in detail and the other DFs can be obtained
in the similar way. In Fig. 1(b), suppose the line ab intersects with the solid surface at
point p. |bp| denotes the length of the green line bp. Here a parameter 4= |bp|/|ab| is
defined to describe the fraction in fluid region of a grid spacing intersected by the solid
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Figure 1: (Color online) (a) D3Q19 velocity model, e; to ejg represent 18 non-zero components and eg is a
zero component and not labeled; (b) illustration of "interpolation bounce-back”. The black filled circles are
solid nodes, which are inside the surface of the solid body. The other circles are fluid nodes and the blue filled
circles denote the fluid nodes which have at least one link with solid nodes (any of the 18 directions).

surface. After the streaming step, the unknown f7(b) can be obtained through a second-
order interpolation from the surrounding points [15]. For example, if 4 <1/2, f;(b) =
q(1+29) fio(a) +(1—44%) fio(b) —q(1—24) fio(c). More details about the “interpolation
bounce back” can be found in [15].

2.3 Computational model

In this work, the size of the computational domain was Hx H x L in the x, y, and z-
directions, respectively, where H =12ry and L =11ry. rp is the initial radius of the ring
and is used as a characteristic length. For an ellipsoidal particle rq, r5, r3 denote the half of
three major axes in the x, y, and z-directions, respectively. The equation of the ellipsoidal
particle can be written as

(%) =y (=2 (2:3)
r r r
1 2 3

where (x9,1/0,20) is the initial position of the ellipsoidal particle. As illustrated in Fig. 2,
the vortex ring and the elliptical sphere are initially placed at a distance z=9ry and zp =
7rp, respectively. The spheroidal particle is placed exactly under the vortex ring center
and the line connecting the centers of the vortex ring and the particle is on the z-axis.

The initial vorticity distribution of the vortex ring is assigned by a Gaussian function,
i.e., the initial velocity field ug= (u,v,w)y is specified as [1]

T 2
_ _ (/o)
up=5 [1—e 16, (24)
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Figure 2: Computation model for a vortex ring approaching a spheroidal particle. rq is the initial radius of the
vortex ring.

where I is the circulation of the ring, 6 is the unit vector tangential to circulation circles
of the vortex ring core, ¢ is the radial distance from the center of the core and the initial
one is 0p = arg. The corresponding initial translational speed of the vortex ring w, is

approximately [16]
T 81’0 1
= (In—/-2). 2.
We 47rr0<nc70 4) 2.5)
The non-dimensional variables, the Reynolds number of the vortex ring, the position
R=(X,Y,Z), the vorticity Q), time T, and pressure P are defined as

Zucro’ REL, sz—r%, _Tot PEL@_PO{’), (2.6)

Re= =—,
v 0 Ty 1’% pl"%

where r= (x,y,z) is the spatial vector in the coordinates system, w = (wy,wy,w;) is the
vorticity.

In all of our simulations, constant-pressure boundary condition is applied on the six
faces of the computational domain. For the boundary condition, the density of the fluid
is specified as unity and the velocity is extrapolated from the inner fluid nodes. Then
the equilibrium distribution function in the boundary fluid node can be calculated. The
non-equilibrium part of the distribution function is extrapolated from the inner fluid
nodes [17].

2.4 Validation of the numerical method

To validate our code, grid-independence study was performed first. The vortex ring im-
pacting a flat wall is simulated. As we know, some previous studies [1,3,8] demonstrate
that for intermediate Re (Re < 1000), as long as H and L > 10ry, the effect due to finite
domain is negligible. Here, H =12ry and L = 11rq are adopted. In the grid-independence
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Table 1: Peak value of the vorticity in the (y,z)-plane at dimensionless time T=10, 12, 14 for different meshes.

ro=20lu | ro=25lu | ro=30lu | ro=35lu
T=10 | 4.53626 | 4.67464 | 4.71982 | 4.73279
T=14 | 4.60296 | 4.75269 | 4.75864 | 4.76046
T=18 | 5.18556 | 5.24038 | 5.25373 | 5.25698

study, four different meshes are used. The mesh resolutions are ry = 20Iu,25/1,30/u, and
35lu, respectively. The corresponding domain sizes in the simulations are 240 x240x220,
300x300x275, 360x360x330, 420x420x 385 respectively. In the simulations, the vortex
ring is initially put 3rp above the flat wall, x =0.21 and Re=830.

The peak values of vorticities in the (y,z)-plane at different times are compared and
shown in Table 1. From Table 1, we can see that at the times listed, there are significant
discrepancies between the case of ro=20/u and other cases (with maximum 3.2% discrep-
ancy). On the other hand, the discrepancies between cases of 1o =30/u and ro =35lu are
much smaller (less than 0.3%) and negligible. The result shows that the grid with resolu-
tion ro=30lu is fine enough to carry out relevant numerical study. Hence, in the following
study, the mesh resolution is set to be 7o =30[u, i.e., the domain size is 360 x360x330.

To further validate our code, the trajectory of the primary vortex ring core is compared
with the experimental data for the case Re=830. The location of the primary vortex (,z)
is calculated through

y:% /A yeordydz, z:% /A 2eordydz, (2.7)

where A€[0,H /2] x L in the (y,z)-plane. As shown in Fig. 3, the LBM trajectory (Y=i/ro,
Z=1z/ry) fits very well with the experiment data [5].

The evolution of the vortex is also compared with the experimental data and shown
in Fig. 4. We can see the when the primary vortex ring approaches the flat wall, the sec-
ondary vortex is generated from the wall and rolls up ((a) and (b) in the figure). With the

= experiment
—+— LBM

0 T T 1
0 1 2 3

Figure 3: The trajectory of the primary votex ring center for the case Re=830. The line and squares denote
our LBM result and the experimental data [5], respectively. Y and Z are normalized by rj.
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Figure 4: The evolution of the vortex impacting a flat for Re =830. The left and right columns are the
experimental data [5] and our LBM result, respectively.
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Figure 5: The circulation as a function of time in the (y,z)-plane. The thick solid and dash lines represent the
circulation of the primary and secondary vortices of Re =830, respectively. The thin dash and dashdot lines
are those of Re=1300. Iy is the initial circulation of the primary vortex ring. The result of Re=1300 comes
from [3].

expansion of the primary vortex, the secondary vortex rolls up to the top of the primary
vortex ((c) and (d)). Even the tertiary vortex structures can be seen in the last row of the
figure.

Finally, the circulation of the primary and the secondary vortices in the (y,z) sym-
metry plane for the case Re =830 is compared with the data of Orlandi and Verzicco [3].
Although the data is from the case of Re =1300, the circulation as a function of time for
the Re=2830 is expected to be similar to that of Re=1300. From Fig. 5, we can see that our
LBM result for Re =830 is similar to the data for Re=1300.
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3 Results and discussion

In this section, first a vortex ring impacting a sphere is studied. Effect of sphere size
(the size of vortex ring is fixed) on the evolution of vortex structure is discussed. Then,
the geometric effect due to the elliptical spheroid is investigated. The Re-effect is also
addressed. The dynamics of the flow, e.g., the evolution of the vortices, are analyzed. In
the following study, « is set to be 0.45, which means the primary vortex ring is thick.

3.1 Effect of sphere size

In this section, the vortex ring impacting a sphere with different sphere size is studied.
Firstly, ry =r, =r3 =4/15r¢ is investigated. Fig. 6 shows the evolution of the vortex ring
for Re=600.

As shown in Fig. 6(1), when the vortex ring approaches the sphere, the intersection
of the ring core is deformed to be an elliptical shape. Then, a very thin boundary layer
is generated near the sphere (Fig. 6(2)). In Fig. 6(3), the boundary layer stretches and
it rapidly grows and separates from the spheroid. At the same time, the radius of the
primary ring increases in response to the presence of sphere and the production of ad-
verse pressure gradient at the solid wall [1]. As the interaction continues, the boundary

]
EpET=4 (2} T=10 (3)  T=18
(4) T=28 (53 T=d0 (6} T=50

(7) T=60 (8) g 9 1-90 e

Figure 6: Vortex structure evolution of the ring impacting a sphere for Re=600 and the radius of the sphere is
4ry/15.
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Figure 7: Primary vortex ring location x and z as a function of time in the (x,z)-plane.

layer rolls up from the sphere and forms a secondary vortex. Since these two vortex rings
have opposite sign vorticity, the secondary vortex expands rapidly and the primary and
secondary vortex rings wrap around each other. Figs. 6(4) and (5) show that the primary
ring starts to decelerate considerably and the secondary-vortex ring revolves as a satellite
around the outside of the primary vortex core. Due to the secondary vortex, the primary
ring was elongated and lost its elliptical form of the ring core and its radius does not
increase as shown in Fig. 6(6). At this point, the primary ring stops its forward moving
(the —z-direction), while the remainder of the secondary vortex ring retains its link with
the solid surface and may evolve a tertiary vortex but it is too weak to visualize [1]. As
shown in Figs. 6(7) and (8), the elongated primary ring forms a “wheel hub” structure
and pinches off. The ring core changes to an elliptical shape again. Then, the primary
ring restarts its forward motion and the radius reaches an approximately constant value.
Finally, two distinct vortex rings are formed in Fig. 6(9). The primary ring continues its
forward movement at a fixed velocity and the second ring is almost stationary around
the sphere.

We explain why the second ring is almost stationary in the following. Obviously,
the circulations of the secondary and the primary vortices are opposite, and the induced
translational velocities are also opposite. On the other hand, the secondary vortex is weak
and inside the velocity field dominated by the primary vortex. The induced upward
translational velocity of the secondary vortex may be canceled by the downward velocity
induced by the primary vortex. Hence, the secondary vortex may be stationary at that
time interval we are interested in.

The evolution of the radius and translational velocity of the ring can be analyzed
in detail in the follows. Fig. 7 shows the locations of x and z of the primary vortex ring,
which were obtained by tracking the peak vorticity of the vortex center in the (x,z)-plane.
It is seen that when the ring approaches the sphere, the velocity of the ring keeps constant
and the displacement of x stays zero. As the ring goes closer to sphere, its radius begins
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Figure 8: The evolution of vortex impacting a small sphere in the (x,z)-plane.

to expand. During this time, the boundary layer starts to roll up and gradually lead to
the secondary vorticity. At T =35, the primary ring nearly stops its forward motion. In
this moment, the primary and secondary vortex rings wrap around each other. About
the time of T =60, the primary ring pinches off. It restarts its forward motion with an
elliptical ring core. The translational velocity is smaller compared to the initial speed.
Finally, the ring moves with a constant velocity and its radius almost reaches a constant.

Cases of spheres with smaller radius 1 =1, =r3=r/6 and ry /15 are simulated. Fig. 8
shows the evolution of vortex rings with r; =r, =13 =r,/15 in the (x,z)-plane, which is
qualitative similar to the behavior of the vortex rings in the case of r; =71, =r3 =4r( /15,
except for the magnitude of vorticity.

Fig. 9 shows a quantitative comparison of the trajectories of the cases r1=rp =r3=r(/6
(open symbols) and r; =1, =13 =4r/15 (filled symbols). For the case of r¢/6, the gener-
ated secondary vortex detaches from the sphere later than the case of 4r(/15. It seems the
radius of the sphere would affect the final position of the secondary vortex. For a smaller
sphere, the secondary vortex stays far away from the sphere. That is because when the
sphere is large, the secondary vortex which is generated from the sphere experiences a
stronger vortex stretching.

3.2 Effect of the ellipticity of the ellipsoidal particle

The effect of ellipticity (ratio of long axis to short axis) of the particle is studied in this
section. Here, the Re=600 is fixed. The evolution of vortex rings for the case of ellipsoidal
particle r1 =r3 =ry/6, 1o ="7ry/30 is shown in Fig. 10. The evolution pattern is similar to
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Figure 9: The trajectory of the vortex rings impacting different spheres. Filled symbols represent the case of
r1=ry=r3=4rg/15 and open symbols represent the case of r1=r,=r3=r(/6.

that in the case of a sphere. When the ring approaches the particle, it induces a boundary
layer at the wall, which results in a secondary vortex, as shown in Fig. 10(3). In Figs. 10(4)
and (5), the primary vortex ring will expand, but the expansion along the long axis is
stronger than that in the short axis. The primary and secondary vortices begin to wrap
around each other and continuously expand. Subsequently, the primary ring becomes
non-uniform along the circumference direction and the expansion along the two axes
(x- and y-axes) is different. Then the primary vortex ring wraps around the secondary
vortex, leading to a vortex structure like a flower (Fig. 10(6)). Later, the “flower” begins to
shrink and pass through the secondary vortex, as shown in Fig. 10(7). Hence, in the flow
field, two distinct vortex rings appear. The primary vortex ring resumes to translate along
z-direction and the secondary vortex ring is almost stationary. Finally, both the primary
and secondary vortex rings all deformed into elliptical shapes. They are stretched along
the short and long axes of the spheroid, respectively, as shown in Fig. 10(8).

To quantitatively study the effect of particle’s shape, cases r4 =13 =r/6, 1o =3r9/10
were also simulated. Figs. 11(a) and (b) show the evolution of the vortex ring in the (x,z)
and and (y,z) symmetric planes, respectively. From these slices, it is seen the secondary
vortex ring mainly stretches along the long axis of the particle. In the column (3) of the
figure, the primary vortex also stretches along the long axis. However, from column (4)
and (5), we can see that after the primary vortex ring is recovered, the primary vortex
is mainly stretching in the (x,z)-plane, i.e., along the x-axis, which is the short axis of
the particle. The possible reason is that the secondary vortex stretching along the long
axis of the particle delays the recovery of the primary vortex in the direction. Hence,
finally when the primary and secondary vortices become elliptical, their main axes are
perpendicular.

The case of a smaller ellipsoidal particle r{ =73 =r9/6, ro =1¢/10 is simulated. The
trajectories of the vortex rings at different r1 /7, are shown in Fig. 12. It is found the vortex
evolution is close to that of a sphere (Fig. 12(b)). Due to the smaller size of the particle, the
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Figure 10: The evolution of a ring impacting an elliptical spheroid for Re =600.
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Figure 11: Vortex contours for an ellipsoidal particle with r; =r3=ry/6, ¥ =3r3/10. (a) the (x,z)-plane; (b)

the (y,z)-plane.

different lengthes of the ellipsoid in the x and y axes seem not affect the behavior of the
vortex much compared with the cases of a sphere. From Fig. 12(a), we can see that when
the particle is large and the ellipticity /7 is far from unity (sphere cases), the primary
and secondary rings become more elliptical in the (x,y)-plane.

3.3 Effect of Re

In this part, we study the evolution of the flow on different Re with a fixed radius r{ =r3=
10/ 6, 2 ="7ry/30. For the case of the Re=200, Fig. 13 shows the flow does not generate a
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Figure 12: The trajectory of the vortex rings at different radical ratio. Filled symbol represent the trajectory in
the (x,z)-plane and open symbol represent those in the (y,z)-plane. (a) rp =3ry/10=91u; (b) ro=r9/10=3lu.
In both cases, r1=r3=r(/6.
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Figure 13: The evolution of a vortex ring impacting an elliptical sphere with Re=200 in the (y,z)-plane.

secondary vortex because the viscous effect is so strong that it diffuses the vorticity and
weakens the intensity of the ring. In other words, the induced vorticity in the boundary
of the solid is quickly dissipated. Hence, only the primary ring moving forward in the
evolution.

For the case of Re=400. As the viscous dissipation becomes weaker, the vortex-solid
interaction shows the same phenomenon as illuminated in Fig. 10 (Re =600). When
Re =900, a more complicated phenomenon appears. Due to the high Re, the inertial of
the flow is more prominent and viscous dissipation is relatively small. Before the ring
approaches the solid, its circulation holds the primary value. When the ring impacts the
particle, the secondary vortex is detached from the wall faster than cases of small Re. It
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Figure 14: The evolution of a vortex ring impacting an elliptical sphere with Re=900 in the (y,z)-plane.
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Figure 15: Circulation of the primary and secondary vortex in (y=0)-plane (x-axis) and (x=0)-plane (y-axis)
as a function of time. (a) Re=900, (b) Re=400. In both cases, r{ =r3=r(/6, rp =7rg/30.

is stronger and moves faster. As we can see in Fig. 14, except the primary and secondary
vortices, a tertiary vortex ring is also separated from the boundary layer.

The relative circulations in the (x =0)- and (y = 0)-planes for cases of Re =900 and
Re =400 are shown in Fig. 15. For the case of Re =900, initially the circulation of the
primary vortex in the (x=0)- and (y=0)-planes are identical. After the secondary vortex
generated, as shown in Fig. 15(a), the circulation values of the primary and secondary
vortices in the (x =0)-plane are larger than those in the (y = 0)-plane. For Re = 400,
Fig. 15(b) demonstrates that the circulation values of the primary and secondary vortices
in the (x=0)-plane are almost identical to those in the (y=0)-plane. Hence, the primary
and secondary vortex rings are stretched more strongly in the former case (Re=900).
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4 Conclusions

In this paper, three-dimensional vortex ring impacting an ellipsoidal particle is studied
using the MRT-LBM. The evolution of the vorticity on the symmetric planes, trajectories
of vortex center, the effects of particle size, Re and the ellipticity on the evolution of vortex
structure are discussed in detail.

When the vortex ring impacting with a spheroidal particle, the interaction is described
as the following three stages. Firstly, the secondary vortex is generated as the stretching
of boundary vorticity at the beginning of impacting. In the second stage, the primary
and secondary vortices expand and shrink radically and will wrap around each other.
Finally, the primary vortex ring will recover from the ‘wheel hub” and ‘flower” structure
for a sphere and a prolate particle, respectively.

The trajectories of the primary and secondary vortices demonstrate that the wrapping
pattern of primary and secondary vortex rings is very different from the situation of the
vortex ring impacting a plate. The evolution of vortex structure seems sensitive to the
size of the particle. When the particle is smaller, the primary ring expands slowly and
eventually, the secondary vortex stays further from the sphere.

When the vortex ring impacting with a prolate spheroid, in the vortex wrapping
stage, the primary vortex recovers along the short axis of the particle faster than the long
axis direction. The possible reason is that the secondary vortex stretching along the long
axis of the particle delays the recovery of the primary vortex in the direction. Eventually,
the primary vortex mainly expands along the short axis of the particle.

For cases with larger ellipticity, it is more significant that the primary and secondary
vortices are mainly stretching along the short and long axes of the particle, respectively.
The Re also plays an important role in the vortex evolution. The second vortex is very
weak at small-Re cases while a more complicated vorticity structure involving a tertiary
vortex ring is generated at large-Re cases.

In the future, our study will be extended to vortex interaction with a moving parti-
cle [9,18].
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