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Abstract. In this paper, we study the mathematical formulation for an optimal control
problem governed by a linear parabolic integro-differential equation and present the
optimality conditions. We then set up its weak formulation and the finite element
approximation scheme. Based on these we derive the a priori error estimates for its
finite element approximation both in H1 and L2 norms. Furthermore some numerical
tests are presented to verify the theoretical results.
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1 Introduction

Optimal control problems governed by partial differential equations have been a major
research topic in applied mathematics and control theory. Since the milestone work of J.
P. Lions [10], a great deal of progress has been made in many aspects like stability, ob-
servability and numerical methods, which are too extensive to be mentioned here even
very briefly. Among them, finite element approximations of optimal control problems
governed by various partial differential equations, either linear or nonlinear, have been
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much studied in the literature. For instance, optimal control problems governed by lin-
ear elliptic PDEs have been much studied, and their finite element approximation, and a
prior error estimates were established in [3]. Many results in convergence of the standard
finite element approximation of optimal control problems governed by linear or nonlin-
ear elliptic and parabolic equations can be found in, for examples, [1, 3, 4, 17–19, 22–24],
although it is impossible to give even a very brief review here. Recently, optimal con-
trol problems with more complicated state equations have been considered, particularly
those with the integro-differential state equations, which are often met in real applica-
tions. For example, progress on the finite element method for the optimal control prob-
lem governed by elliptic integral equations and integro-differential equations has been
made in [8], in which the a priori and a posteriori error estimations were obtained.

Parabolic integro-differential equations and their control are often met in applications
such as heat conduction in materials with memory, population dynamics, and viscous-
elasticity, cf. e.g., Friedman and Shinbrot [5], Heard [7], and Renardy, Hrusa and No-
hel [20]. For equations with nonsmooth kernels, we refer to Grimmer and Pritchard [6],
Lunardi and Sinestrari [12], and Lorenzi and Sinestrari [13] and references therein. Fur-
thermore finite element methods for parabolic integro-differential equations problems
with a smooth kernel have been discussed in, e.g., Cannon and Lin [2], LeRoux and
Thomée [14], Lin, Thomée, and Wahlbin [15], Sloan and Thomée [21], Thomée and
Zhang [25], and Yanik and Fairweather [27].

However there exists little research on optimal control problems governed by
parabolic integro-differential equations, in spite of the fact that such control problems
are widely encountered in practical engineering applications and scientific computations.
Furthermore the finite element method of this optimal control problem governed by such
equations is not well-studied although there exists much research on the finite element
approximation of parabolic integro-differential equations as mentioned above. Those
will be studied in this work with numerical verifications.

The content of the paper is as follows. In Section 2, we present the weak formulation
and analyze the existence of the solution for the optimal control problem. In Section 3,
we give the optimality conditions and the finite element approximation of the optimal
control problems. In Section 4, we establish the a priori error estimates for the finite
element approximation of the control problem. In the last section, we perform some
numerical tests, which illustrate the theoretical results.

Throughout the paper, we adopt the standard notations for Sobolev spaces as
in [9–11, 26], such as Wm,q(Ω) on Ω with norm ‖·‖m,q,Ω, and semi-norm |·|m,q,Ω for

1≤ q≤∞. Set W
m,q
0 (Ω)= {w∈Wm,q(Ω) : w|∂Ω = 0}. Also denote Wm,2(Ω)(Wm,2

0 (Ω)) by
Hm(Ω) (Hm

0 (Ω)), with norm ‖·‖m,Ω, and semi-norm |·|m,Ω. Denote by Ls(0,T;Wm,q(Ω))
the Banach space of all Ls integrable functions from (0,T) into Wm,q(Ω) with norm

‖v‖Ls(0,T;Wm,q(Ω)) = (
∫ T

0 ‖v‖s
Wm,q(Ω)dt)1/s for s ∈ [1,∞) and the standard modification for

s=∞. Similarly, one can define the spaces H1(0,T;Wm,q(Ω)) and Ck(0,T;Wm,q(Ω)). The
details can be found in [11].
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2 Model problem, weak formulation and well-posedness

Let Ω and ΩU be bounded open sets in Rd for 1≤ d≤ 3, and T> 0. To fix idea, we shall
take the state space W= L2(0,T;V) with V = H1

0(Ω) and the control space X= L2(0,T;U)
with U= L2(ΩU). Let the observation space Y= L2(0,T;H) with H= L2(Ω). In addition
c or C denotes a general positive constant independent of unknowns and the meshes
parameters introduced later.

Introduce the objective functional

J(u,y)=
{1

2

∫ T

0
‖y−zd‖

2
0,Ωdt+

α

2

∫ T

0
‖u‖2

0,ΩU
dt
}

,

where α is a positive regularity constant.
We investigate the optimal control problem governed by a parabolic integro-

differential equation as follows:
min
u∈Uad

J(u,y(u)) (2.1)

subject to














yt+Ay+
∫ t

0
C(t,τ)y(τ)dτ= f +Bu in Ω×(0,T],

y=0 on ∂Ω×[0,T],
y|t=0=y0 in Ω,

(2.2)

where u is control, y is state, zd is the observation, Uad is a closed convex subset with
respect to the control, f , zd and y0 are some suitable functions to be specified later. A

is a linear strongly elliptic self-adjoint partial differential operator of second order with
coefficients depending smoothly on spacial variables, and C(t,τ) is an arbitrary second-
order linear partial differential operator, with coefficients depending smoothly on both
of time and spacial variables in the closure of their respective domains, B is a suitable
continuous operator. A precise formulation of this problem is given later.

In order to give the weak formulation of problem mentioned-above and study the
existence and regularity of the solution, we introduce L2-inner products:

( f1, f2)=
∫

Ω

f1 f2, ∀( f1, f2)∈H×H, (u,v)U =
∫

ΩU

uv, ∀(u,v)∈U×U,

and bilinear forms:

a(z,w)=(Az,w), c(t,τ;z,w)=(C(t,τ)z,w), ∀z,w∈V×V.

In the case that f1∈V and f2∈V∗, the dual pair ( f1, f2) is understood as 〈 f1, f2〉V×V∗ .
Then a possible weak formulation for the state equation reads:

{

(yt,w)+a(y,w)+
∫ t

0 c(t,τ;y(τ),w)dτ=( f +Bu,w), ∀w∈V, t∈ (0,T],

y|t=0=y0.
(2.3)
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From Yanik and Fairweather [27], we know that the above weak formulation has a unique
solution in y∈W(0,T)={w∈L2(0,T;H1

0(Ω)), wt∈L2(0,T;H−1(Ω))}.
Therefore the control problem (2.1)-(2.2) can be restated as (OCP):

min
u∈Uad

J(u,y(u)), (2.4a)







(yt,w)+a(y,w)+
∫ t

0
c(t,τ;y(τ),w)dτ=( f +Bu,w), ∀w∈V, t∈ (0,T],

y|t=0=y0.
(2.4b)

Assume that Ct(t,τ) exists, ct(t,τ;z,w)=(Ct(t,τ)∇z,∇w). Then there are constants c and
C, such that for all t and τ in [0,T]:

(a) a(z,z)≥ c‖z‖2
1,Ω , ∀z∈V, (2.5a)

(b) |a(z,w)|≤C‖z‖1,Ω‖w‖1,Ω, ∀z, w∈V, (2.5b)

(c) |c(t,τ;z,w)|≤C‖z‖1,Ω‖w‖1,Ω, ∀z, w∈V, (2.5c)

(d) |ct(t,τ;z,w)|≤C‖z‖1,Ω‖w‖1,Ω, ∀z, w∈V. (2.5d)

In the following, we will analyze the existence, uniqueness of the solution of the system
(2.4).

Theorem 2.1. Assume that the conditions (2.5a)-(2.5c) hold. There exists a
unique solution (u,y) for the minimization problem (2.4) such that u ∈ X and
y∈L∞(0,T;L2(Ω))

⋂

L2(0,T;H1
0(Ω)) and yt ∈L2(0,T;H−1(Ω)).

Proof. Let {(un,yn)}∞

n=1 be a minimization sequence for the system (2.4), then it is clear
that {un}∞

n=1 are bounded in L2(0,T;L2(ΩU)). Thus there is a subsequence of {un}∞

n=1 (
still denote by {un}∞

n=1 ) such that un converges to u weakly in L2(0,T;L2(ΩU)).
For the subsequence un, we have

(yn
t ,w)+a(yn ,w)+

∫ t

0
c(t,τ;yn(τ),w)dτ=( f +Bun,w), ∀w∈V, t∈ (0,T]. (2.6)

Taking w=yn in (2.6), we gives

(yn
t ,yn)+a(yn ,yn)+

∫ t

0
c(t,τ;yn(τ),yn(t))dτ=( f +Bun,yn), t∈ (0,T]. (2.7)

Integrating time from 0 to t in (2.7), we have

1

2
‖yn(t)‖2

0,Ω+c
∫ t

0
‖yn‖2

1,Ωdτ

≤
1

2
‖y0‖

2
0,Ω+

c

2

∫ t

0
‖yn‖2

1,Ωdτ+C
∫ t

0
(‖ f‖2

−1,Ω+‖un‖2
0,ΩU

)dτ

+C
∫ t

0

∫ τ

0
‖y(s)‖2

1,Ωdsdτ, (2.8)



556 W. F. Shen, L. Ge, D. P. Yang and W. B. Liu / Adv. Appl. Math. Mech., 6 (2014), pp. 552-569

such that

∫ t

0
‖yn‖2

1,Ωdτ≤C
{

‖y0‖
2
0,Ω+

∫ T

0
(‖ f‖2

−1,Ω+‖un‖2
0,ΩU

)dt+
∫ t

0

∫ τ

0
‖yn(s)‖2

1,Ωdsdτ
}

. (2.9)

Applying Gronwall’s inequality to (2.9), we have

∫ T

0
‖yn‖2

1,Ωdt≤C
(

‖y0‖
2
0,Ω+

∫ T

0
(‖ f‖2

−1,Ω+‖un‖2
0,ΩU

)dt
)

eCT ≤C∗
<∞. (2.10)

From (2.8) and (2.10), we also obtain

max
0≤t≤T

‖yn(t)‖2
0,Ω ≤C

{

‖y0‖
2
0,Ω+

∫ T

0
(‖ f‖2

−1,Ω+‖un‖2
0,ΩU

)dt
}

≤C∗
<∞. (2.11)

Then we have un∈L2(0,T;L2(ΩU)), yn ∈L∞(0,T;L2(Ω))
⋂

L2(0,T;H1
0(Ω)). Thus











un −→u weakly in L2(0,T;L2(ΩU)),

yn −→y weakly in L∞(0,T;L2(Ω))
⋂

L2(0,T;H1(Ω)),

yn(T)−→y(T) weakly in L2(Ω).

Integrating time from 0 to T in (2.6), we obtain

(yn(T),w(T))−(y0,w(0))−
∫ T

0
(yn,wt)dt+

∫ T

0
a(yn ,w)dt

+
∫ T

0

∫ t

0
c(t,τ;yn(τ),w)dτdt=

∫ T

0
( f +Bun,w)dt, ∀w∈W. (2.12)

Take limits in (2.12) as n→∞, we have

(y(T),w(T))−(y0,w(0))−
∫ T

0
(y,wt)dt+

∫ T

0
a(y,w)dt

+
∫ T

0

∫ t

0
c(t,τ;y(τ),w)dτdt=

∫ T

0
( f +Bu,w)dt, ∀w∈W.

So we have

(yt,w)+a(y,w)+
∫ t

0
c(t,τ;y(τ),w)dτ=( f +Bu,w), ∀w∈V, t∈ (0,T]. (2.13)

Further, we have

‖yt‖L2(0,T;H−1(Ω))= sup
w∈L2(0,T;H1

0(Ω))

∫ T
0 (yt,w)dt

‖w‖L2(0,T;H1
0(Ω))

≤C
(

‖y0‖
2
0,Ω+

∫ T

0
(‖ f‖2

−1,Ω+‖u‖2
0,ΩU

)dt
)

eCT .
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Thus yt ∈ L2(0,T;H−1(Ω)). Since
∫ T

0 ‖y−zd‖
2
0,Ωdt is a convex function on space

L2(0,T;L2(Ω)) and
∫ T

0 ‖u‖2
0,ΩU

dt is a strictly convex function on U, we have

1

2

∫ T

0
‖y−zd‖

2
0,Ωdt+

α

2

∫ T

0
‖u‖2

0,ΩU
dt

≤ lim
n→∞

{1

2

∫ T

0
‖yn−zd‖

2
0,Ωdt+

α

2

∫ T

0
‖un‖2

0,ΩU
dt
}

.

So (u,y) is one solution of (2.4). Since J(u,y(u)) is a strictly convex function on U, hence
the solution of the minimization problem (2.4) is unique. This completes the proof.

The following lemma states the regularity of the solution of (2.4).

Theorem 2.2. Assume that the condition (2.5) holds, A is H2-regular elliptic operator of second
order, f ∈L2(0,T;L2(Ω)) and y0 ∈H1

0(Ω). Then the solution of (2.4) obeys

y∈L∞(0,T;H1
0(Ω))

⋂

L2(0,T;H2(Ω)), yt ∈L2(0,T;L2(Ω)). (2.14)

Proof. Taking w=yt in (2.13), we have

(yt,yt)+
1

2

d

dt
a(y,y)+

d

dt

∫ t

0
c(t,τ;y(τ),y)dτ−c(t,t;y(t),y(t))

−
∫ t

0
ct(t,τ;y(τ),y)dτ=( f +Bu,yt). (2.15)

Integrating time from 0 to t in (2.15), we obtain

∫ t

0
‖yt‖

2
0,Ωdτ+

c

2
‖y(t)‖2

1,Ω

≤
1

2

(

∫ t

0
‖yt‖

2
0,Ωdτ+

c

2
‖y(t)‖2

1,Ω

)

+C
{

‖y0‖
2
1,Ω+(1+T)

∫ T

0
‖y‖2

1,Ωdt

+
∫ t

0

∫ τ

0
‖y(s)‖2

1,Ωdsdτ+
∫ t

0
(‖ f‖2

0,Ω+‖u‖2
0,ΩU

)dτ
}

. (2.16)

Applying Gronwall’s inequality to (2.16), we have

∫ t

0
‖yt‖

2
0,Ωdτ+‖y(t)‖2

1,Ω ≤C
{

‖y0‖
2
1,Ω+

∫ T

0
(‖ f‖2

0,Ω+‖u‖2
0,ΩU

)dt
}

. (2.17)

Then y∈L∞(0,T;H1
0(Ω)) and yt∈L2(0,T;L2(Ω)). Further we have

‖Ay‖L2(0,T;L2(Ω))

≤C
{

‖yt‖L2(0,T;L2(Ω))+‖ f‖L2(0,T;L2(Ω))+‖u‖L2(0,T;L2(ΩU))+‖Cy‖L2(0,T;H1(Ω))

}

.

Since ‖y‖2,Ω ≤C‖Ay‖0,Ω, we have y∈L2(0,T;H2(Ω)). This completes the proof.
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3 Optimality condition and its finite element approximation

By the theory of optimal control problem (see [10]), we can similarly deduce the following
optimality conditions of the problem (2.4).

Theorem 3.1. A pair (y,u)∈M(0,T)×X is the solution of the optimal control problem (2.4), if
and only if there exists a co-state p∈ M(0,T) such that the triple (y,p,u) satisfies the following
optimality conditions:







(yt,w)+a(y,w)+
∫ t

0
c(t,τ;y(τ),w)dτ=( f +Bu,w), ∀w∈V, t∈ (0,T],

y|t=0=y0,
(3.1a)







−(q,pt)+a(q,p)+
∫ T

t
c(τ,t;q,p(τ))dτ=(y−zd,q), ∀q∈V, t∈ [0,T),

p|t=T =0,
(3.1b)

∫ T

0
(αu+B∗p,v−u)Udt≥0, ∀v∈Uad, (3.1c)

where B : L2(ΩU)→ L2(Ω) is independent with t. B∗ is the adjoint operator of B.

In the following, we discuss the finite element approximation of the control problem
(2.4). Here we only consider triangular conforming elements.

Let Ω
h(Ωh

U) be a polygonal approximation to Ω(ΩU) with boundary ∂Ω
h(∂Ω

h
U). For

simplicity, we assume that Ω(ΩU) are convex polygons so that Ω=Ω
h(ΩU =Ω

h
U). Let

Th(Th
U) be a partitioning of Ω

h(Ωh
U) into disjoint regular n-simplices τ(τU), so that Ω̄=

⋃

τ∈Th τ̄(Ω̄U =
⋃

τU∈Th
U

τ̄U).

Associated with Th is a finite-dimensional subspace Sh of C(Ω̄h), such that χ|τ are
polynomials of order m (m≥1) for all χ∈Sh and τ∈Th. Let Vh={vh ∈Sh : vh(Pi)=0 (i=
1,··· , J)}, Wh = L2(0,T;Vh). It is easy to see that Vh⊂V, Wh ⊂W.

Associated with Th
U is another finite-dimensional subspace Uh of L2(ΩU), such that

χ|τU
are polynomials of order m (m ≥ 0) for all χ ∈ Uh and τU ∈ Th

U . Here there is no
requirement for the continuity. Let Xh = L2(0,T;Uh). It is easy to see that Xh ⊂ X. Let
hτ(hτU

) denote the maximum diameter of the element τ (τU) in Th (Th
U).

Due to the limited regularity of the optimal control u in general, there will be no
advantage in considering higher-order finite element spaces than the piecewise constant
space for the control. We therefore only consider the piecewise constant finite element
space for the approximation of the control, though higher-order finite element spaces
will be used to approximate the state and the co-state. Let P0(Ω) denote all the 0-order
polynomial over Ω. Therefore we always takeXh={u∈X :u(x,t)|x∈τU

∈P0(τU), ∀t∈[0,T]}.
Uh

ad is a closed convex set in Xh. For ease of exposition, in this paper we assume thatUh
ad⊂

Uad∩Xh.
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Then the semi-discrete finite element approximation of (OCP) is thus defined by
(OCP)h:

min
uh∈Uh

ad

{1

2

∫ T

0
‖yh−zd‖

2
0,Ωdt+

α

2

∫ T

0
‖uh‖

2
0,ΩU

dt
}

, (3.2)

such that















( ∂

∂t
yh,wh

)

+a(yh,wh)+
∫ t

0
c(t,τ;yh(τ),wh)dτ

=( f +Buh,wh), ∀wh∈Vh, t∈ (0,T],

yh|t=0=yh
0,

(3.3)

where yh ∈Wh and yh
0 ∈Vh is a approximation of y0.

Since (3.3) is linear functional equation, (3.2) is strictly convex and finite dimensional
optimal control problem, we can prove that the problem (3.2)-(3.3) has a unique solution
(yh,uh)∈Wh×Uh

ad in the same way of proving the uniqueness of the solution of (OCP).

It is well known if a pair (yh,uh)∈Wh×Uh
ad is a solution of (3.2)-(3.3), if and only there

exists a co-state ph ∈Wh, such that the triple (yh,ph,uh) satisfies the following optimality
conditions:







( ∂

∂t
yh,wh

)

+a(yh,wh)+
∫ t

0
c(t,τ;yh(τ),wh)dτ=( f +Buh,wh), ∀wh∈Vh,

yh|t=0=yh
0,

(3.4a)







−
(

qh,
∂

∂t
ph

)

+a(qh,ph)+
∫ T

t
c(τ,t;qh,ph(τ))dτ=(yh−zd,qh), ∀qh ∈Vh,

ph|t=T =0,

(3.4b)

∫ T

0
(αuh+B∗ph,vh−uh)Udt≥0, ∀vh ∈Uh

ad. (3.4c)

Let πhU
be local averaging operator given by

(πhU
w)|τU

:=

∫

τU
w

∫

τU
1

, ∀τU ∈Th
U . (3.5)

It is the obvious fact that
∫

ΩU
w=

∫

ΩU
πhU

w for any w∈ L2(ΩU). Then (3.4c) is equivalent
to

∫ T

0
(αuh+πhU

(B∗ph),vh−uh)Udt≥0, ∀vh ∈Uh
ad. (3.6)

In the following sections, we will establish the a priori error estimates of the approxima-
tion solution.
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4 A priori error analysis

For simplicity, we consider the following two control constraints:

(1) the zero obstacle problem:

Uad=
{

v∈X; v≥0, a.e. in ΩU, t∈ [0,T]
}

, (4.1)

(2) the integral obstacle problem:

Uad=
{

v∈X;
∫

ΩU

v≥0, t∈ [0,T]
}

. (4.2)

In the case of (4.1), (3.1c) and (3.4c) yield

αu=max
{

0,−B∗p
}

, αuh =max
{

0,−πhU
(B∗ph)

}

. (4.3)

In the case of (4.2), (3.1c) and (3.4c) yields

αu=−B∗p+max
{

0,
1

|ΩU |

∫

ΩU

B∗p
}

, αuh=−πhU
(B∗ph)+max

{

0,
1

|ΩU |

∫

ΩU

B∗ph

}

. (4.4)

And following from Theorem 2.2 that:
In the case of (4.1), (3.1c) and (3.4c) yield

(y,p,u)∈L2(0,T;H2(Ω))×L2(0,T;H2(Ω))×L2(0,T;H1(ΩU)). (4.5)

In the case of (4.2), (3.1c) and (3.4c) yield

(y,p,u)∈L2(0,T;H2(Ω))×L2(0,T;H2(Ω))×L2(0,T;H2(ΩU)). (4.6)

In the next two subsections, we will give the a priori error estimates in L2(0,T;H1(Ω))-
norm and L2(0,T;L2(Ω))-norm respectively.

4.1 Convergent rate in L2(0,T;H1(Ω))-norm.

In order to give the a priori error estimate in L2(0,T;H1(Ω))-norm, we need the following
lemmas.

Lemma 4.1. Let Uad be given by (4.1) or (4.2). Then πhU
w∈Uh

ad, for any w∈Uad.

Lemma 4.2. Let (y,p,u) and (yh,ph,uh) be the solutions of the systems (3.1a)-(3.1c) and (3.4a)-
(3.4c). Then there holds the estimate:

α‖πhU
u−uh‖

2
L2(0,T;L2(ΩU))

≤
∫ T

0

[

(B∗(p−ph),uh−πhU
u)U+(B∗p+αu,πhU

u−u)U

]

dt. (4.7)
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Proof. It follows from (3.1c) and (3.4c) that

α‖πhU
u−uh‖

2
L2(0,T;L2(ΩU))

=α
∫ T

0
(πhU

u−uh,πhU
u−uh)Udt

=α
∫ T

0
[(u,πhU

u−uh)U−(uh,πhU
u−uh)U]dt

=α
∫ T

0
[(u,u−uh)U+(uh,uh−πhU

u)U+(u,πhU
u−u)U]dt

≤
∫ T

0
[(B∗p,uh−u)U+(B∗ph,πhU

u−uh)U+α(u,πhU
u−u)U]dt

=
∫ T

0
[(B∗(p−ph),uh−πhU

u)U+(B∗p+αu,πhU
u−u)U]dt. (4.8)

Thus (4.7) is derived. This completes the proof.

In the following we bounded the terms on the right-hand side of (4.7). Introduce the
following auxiliary problem:















( ∂

∂t
yh(u),wh

)

+a(yh(u),wh)+
∫ t

0
c(t,τ;yh(u)(τ),wh)dτ

=( f +Bu,wh), ∀wh∈Vh,

yh(u)|t=0=yh
0,

(4.9a)















−
(

qh,
∂

∂t
ph(u)

)

+a(qh,ph(u))+
∫ T

t
c(τ,t;qh,ph(u)(τ))dτ

=(y−zd,qh), ∀qh∈Vh,

ph(u)|t=T =0.

(4.9b)

Lemma 4.3. Let (yh(u),ph(u)) and (yh,ph,uh) be the solutions of the systems (4.9a)-(4.9b) and
(3.4a)-(3.4c). Then there holds the a priori error estimate:

‖yh−yh(u)‖L2(0,T;H1(Ω))+‖ph−ph(u)‖L2(0,T;H1(Ω))

≤C
{

‖uh−πhU
u‖L2(0,T;L2(ΩU))+hU‖u−πhU

u‖L2(0,T;L2(ΩU))

+‖y−yh(u)‖L2(0,T;L2(Ω))

}

. (4.10)

Proof. From (4.9a) and (3.4a), we obtain















( ∂

∂t
(yh−yh(u)),wh

)

+a(yh−yh(u),wh)+
∫ t

0
c(t,τ;(yh−yh(u))(τ),wh)dτ

=(B(uh−u),wh), ∀wh∈Vh,

(yh−yh(u))|t=0=0.

(4.11)
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Similarly, from (4.9b) and (3.4b), we have















−
(

qh,
∂

∂t
(ph−ph(u))

)

+a(qh,ph−ph(u))+
∫ T

t
c(τ,t;qh,(ph−ph(u))(τ))dτ

=(yh−y,qh), ∀qh∈Vh,

(ph−ph(u))|t=T =0.

(4.12)

Taking wh=yh−yh(u) in (4.11) and qh = ph−ph(u) in (4.12) and noting

(B(uh−u),yh−yh(u))

=(B(uh−πhU
u),yh−yh(u))+

(

πhU
u−u,(I−πhU

)
(

B∗(yh−yh(u))
)

)

U

≤Cε−1
{

‖πhU
u−uh‖

2
0,ΩU

+h2
U‖πhU

u−u‖2
0,ΩU

}

+ε‖yh−yh(u)‖
2
1,Ω, 0< ε<1, (4.13)

similar to (2.9), we have

∫ T

0
‖yh−yh(u)‖

2
1,Ωdt≤C

{

∫ T

0

(

‖uh−πhU
u‖2

0,ΩU
+h2

U‖u−πhU
u‖2

0,ΩU

)

dt
}

, (4.14)

and
∫ T

0
‖ph−ph(u)‖

2
1,Ωdt≤C

∫ T

0
‖yh−y‖2

0,Ωdt. (4.15)

Note that

‖yh−y‖L2(0,T;L2(Ω))≤‖y−yh(u)‖L2(0,T;L2(Ω))+‖yh(u)−yh‖L2(0,T;L2(Ω)).

Then (4.10) is derived. This completes the proof.

Since (yh(u),ph(u)) is the standard finite element of (y,p), from [2, 14, 15, 21, 25, 27],
we get the following results.

Lemma 4.4. Let (yh(u),ph(u)) be the solutions of the systems (4.9a)-(4.9b). Then there holds
the a priori error estimate:

‖y−yh(u)‖L2(0,T;H1(Ω))+‖p−ph(u)‖L2(0,T;H1(Ω))≤Ch, (4.16)

and
‖y−yh(u)‖L∞(0,T;L2(Ω))+‖p−ph(u)‖L∞(0,T;L2(Ω))≤Ch2. (4.17)

Then from Lemma 4.1-4.4, we have the following Theorem.

Theorem 4.1. Let (y,p,u) and (yh,ph,uh) be the solutions of the systems (3.1a)-(3.1c) and
(3.4a)-(3.4c). Then there holds the a priori error estimate:

‖y−yh‖L2(0,T;H1(Ω))+‖p−ph‖L2(0,T;H1(Ω))+‖u−uh‖L2(0,T;L2(ΩU))≤C(hU+h). (4.18)
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Proof. Taking wh= ph−ph(u) in (4.11) and qh =yh−yh(u) in (4.12), we get

∫ T

0

(

(B(uh−u),ph−ph(u))−(yh−y,yh−yh(u))
)

dt

=(yh−yh(u),ph−ph(u))|t=T−(yh−yh(u),ph−ph(u))
∣

∣

t=0

+
∫ T

0

∫ t

0
c(t,τ;(yh−yh(u))(τ),(ph−ph(u))(t))dτdt

−
∫ T

0

∫ T

t
c(τ,t;(yh−yh(u))(t),(ph−ph(u))(τ))dτdt

=0.

Such that
∫ T

0
(uh−πhU

u,B∗(p−ph))Udt

=
∫ T

0
(uh−πhU

u,B∗(p−ph(u)))Udt+
∫ T

0
(yh−yh(u),y−yh)dt

+
∫ T

0
(πhU

u−u,B∗(ph−ph(u)))Udt

=
∫ T

0
(uh−πhU

u,B∗(p−ph(u)))Udt+
∫ T

0
(yh−yh(u),y−yh(u))dt

+
∫ T

0
(yh−yh(u),yh(u)−yh)dt+

∫ T

0
(πhU

u−u,B∗(ph−ph(u)))Udt

≤
∫ T

0
(uh−πhU

u,B∗(p−ph(u)))Udt+
∫ T

0
(yh−yh(u),y−yh(u))dt

+
∫ T

0
(πhU

u−u,B∗(ph−ph(u)))Udt

≤C
{

‖y−yh(u)‖
2
L2(0,T;L2(Ω))+‖p−ph(u)‖

2
L2(0,T;L2(Ω))+h2

U‖u−πhU
u‖2

L2(0,T;L2(ΩU))

}

+ε
(

‖uh−πhU
u‖2

L2(0,T;L2(ΩU))+‖yh−yh(u)‖
2
L2(0,T;L2(Ω))+‖ph−ph(u)‖

2
L2(0,T;H1(Ω))

)

. (4.19)

On the other hand, we have

(B∗p+αu,πhU
u−u)U ≤(B∗p−πhU

(B∗p),πhU
u−u)U

≤C
(

‖B∗p−πhU
(B∗p)‖2

0,ΩU
+‖u−πhU

u‖2
0,ΩU

)

. (4.20)

Applying these two estimates and (4.10) to (4.7) yields

‖uh−πhU
u‖L2(0,T;L2(ΩU))≤C(hU+h2). (4.21)

Putting (4.21) into (4.10), we have

‖yh−yh(u)‖L2(0,T;H1(Ω))+‖ph−ph(u)‖L2(0,T;H1(Ω))≤C(hU+h2). (4.22)

Finally, by using triangle inequality and (4.16), we derive (4.18).
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4.2 Convergent rate in L2-norm

In this subsection, we concern with the a priori error estimate in L2-norm with the respect
to the state. In many cases of engineering applications, L2 estimates are more useful.

We divide our proofs into two parts for the two control constraints respectively. For
first case we only can derive the results when the boundary of the contacting set of the
optimal control is made of smooth curves with finite lengths in the 2-D case or smooth
surfaces with finite areas in the 3-D case.

Theorem 4.2. Assume that Uad is given by (4.1). Let (y,p,u) and (yh,ph,uh) be the solutions of
the systems (3.1a)-(3.1c) and (3.4a)-(3.4c). Then there holds the a priori error estimate:

‖y−yh‖L∞(0,T;L2(Ω))+‖p−ph‖L∞(0,T;L2(Ω))≤C(hU+h2). (4.23)

Further, let

Ω
+
h (t)={τ∈Th

U ; u>0 in τ}, Ω
0
h(t)={τ∈Th

U ; u=0 in τ}, Ω
b
h(t)=ΩU\(Ω

+
h (t)∪Ω

0
h(t)),

and assume that
meas(Ωb

h(t))≤ChU , ∀t∈ [0,T]. (4.24)

Then there holds the a priori error estimate:

‖y−yh‖L∞(0,T;L2(Ω))+‖p−ph‖L∞(0,T;L2(Ω))≤C
(

h
3
2
U+h2

)

. (4.25)

Proof. By tri-inequality and Lemma 4.4, we have for t∈ [0,T]

‖y−yh‖L∞(0,T;L2(Ω))≤‖y−yh(u)‖L∞(0,T;L2(Ω))+‖yh−yh(u)‖L∞(0,T;L2(Ω))

≤Ch2+‖yh−yh(u)‖L∞(0,T;L2(Ω)), (4.26a)

‖p−ph‖L∞(0,T;L2(Ω))≤‖p−ph(u)‖L∞(0,T;L2(Ω))+‖ph−ph(u)‖L∞(0,T;L2(Ω))

≤Ch2+‖ph−ph(u)‖L∞(0,T;L2(Ω)). (4.26b)

Taking wh=yh−yh(u) in (4.11) and qh = ph−ph(u) in (4.12), similar to (2.11), and noting

(B(uh−u),yh−yh(u))

=(B(uh−πhU
u),yh−yh(u))+

(

πhU
u−u,(I−πhU

)
(

B∗(yh−yh(u))
)

)

U

≤Cε−1
{

‖πhU
u−uh‖

2
0,ΩU

+h2
U‖πhU

u−u‖2
0,ΩU

}

+ε‖yh−yh(u)‖
2
1,Ω, 0< ε<1,

we have

‖yh−yh(u)‖L∞(0,T;L2(Ω))≤C(‖πhU
u−uh‖L2(0,T;L2(ΩU))+h2

U), (4.27a)

‖ph−ph(u)‖L∞(0,T;L2(Ω))≤C‖yh−y‖L2(0,T;L2(Ω))

≤C‖yh−yh(u)‖L2(0,T;L2(Ω))+‖y−yh(u)‖L2(0,T;L2(Ω))

≤C
(

‖πhU
u−uh‖L2(0,T;L2(ΩU))+h2

U+‖y−yh(u)‖L2(0,T;L2(Ω))

)

≤C(‖πhU
u−uh‖L2(0,T;L2(ΩU))+h2+h2

U). (4.27b)



W. F. Shen, L. Ge, D. P. Yang and W. B. Liu / Adv. Appl. Math. Mech., 6 (2014), pp. 552-569 565

From (4.26a)-(4.27b), we need estimate ‖πhU
u−uh‖L2(0,T;L2(ΩU)). Then from Lemma 4.2,

we have

α‖πhU
u−uh‖

2
L2(0,T;L2(ΩU))

≤
∫ T

0

[

(B∗(p−ph),uh−πhU
u)U+(B∗p+αu,πhU

u−u)U

]

dt. (4.28)

Note that:

(1) In Ω
+
h (t), since α>0, u>0, then αu>0. From (4.3), we have

αu=−B∗p, B∗p+αu=0;

(2) In Ω
0
h(t), since u=0, then

(B∗p+αu,πhU
u−u)=0.

So we have

(B∗p+αu,πhU
u−u)U =

∫

Ωb
h

(B∗p+αu)(πhU
u−u)

≤C
(

‖B∗p−πhU
(B∗p)‖2

0,Ωb
h
+‖u−πhU

u‖2
0,Ωb

h

)

≤Ch2
Umeas(Ωb

h). (4.29)

On the other hand

∫ T

0
(B∗(p−ph),uh−πhU

u)Udt≤C‖p−ph‖
2
L2(0,T;L2(Ω))+ε‖uh−πhU

u‖2
L2(0,T;L2(ΩU))

. (4.30)

Note that

‖p−ph‖
2
L2(0,T;L2(Ω))≤‖p−ph(u)‖

2
L2(0,T;L2(Ω))+‖ph(u)−ph‖

2
L2(0,T;L2(Ω)). (4.31)

Letting ε be small enough, then from (4.28)-(4.31) and Lemma4.4, we obtain

‖uh−πhU
u‖L2(0,T;L2(ΩU))≤C

(

hU

√

meas(Ωb
h)+h2+‖ph(u)−ph‖

2
L2(0,T;L2(Ω))

)

. (4.32)

Then we need to estimate ‖ph(u)−ph‖
2
L2(0,T;L2(Ω))

.

Let ψ be the solution of the equation

a(ω,ψ)=(ph(u)−ph,ω), ∀ω∈W. (4.33)

Note that Ω is convex, we have

‖ψ‖2,Ω ≤C‖ph(u)−ph‖0,Ω, ∀t∈ [0,T]. (4.34)
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Let Ihψ∈Wh be the Lagrange interpolator of ψ, then

‖ph(u)−ph‖
2
0,Ω = a(ph(u)−ph,ψ)= a(ph(u)−ph,ψ− Ihψ)

≤C‖ph(u)−ph‖1,Ω‖ψ− Ihψ‖1,Ω

≤C‖ph(u)− Ih(ph(u))‖1,Ω‖ψ− Ihψ‖1,Ω

≤Ch2‖ph(u)−ph‖0,Ω. (4.35)

We obtain

‖ph(u)−ph‖0,Ω ≤Ch2, ∀t∈ [0,T]. (4.36)

Then from (4.32) and (4.36), we have

‖uh−πhU
u‖L2(0,T;L2(ΩU))≤C

(

hU

√

meas(Ωb
h)+h2

)

. (4.37)

Combing (4.27a)-(4.27b), (4.37), we obtain

‖y−yh‖L∞(0,T;L2(Ω))+‖p−ph‖L∞(0,T;L2(Ω))≤C(hU+h2).

Further, assume that meas(Ωb
h(t))≤ChU , ∀t∈ [0,T], we get

‖y−yh‖L∞(0,T;L2(Ω))+‖p−ph‖L∞(0,T;L2(Ω))≤C
(

hU

√

meas(Ωb
h)+h2

)

≤C
(

h
3
2
U+h2

)

.

This completes the proof.

Theorem 4.3. Assume that Uad is given by (4.2). Let (y,p,u) and (yh,ph,uh) be the solutions of
the systems (3.1a)-(3.1c) and (3.4a)-(3.4c). Then there holds the a priori error estimate:

‖y−yh‖L∞(0,T;L2(Ω))+‖p−ph‖L∞(0,T;L2(Ω))≤C(h2
U+h2). (4.38)

Proof. In this case, from (4.2), we know that αu+B∗p is a constant, then we have

(B∗p+αu,πhU
u−u)U =0.

Then from Lemma 4.2 and (4.36), we have

‖πhU
u−uh‖L2(0,T;L2(ΩU))≤C(h2+h2

U). (4.39)

Combing (4.27a)-(4.27b), (4.39), we have

‖y−yh‖L∞(0,T;L2(Ω))+‖p−ph‖L∞(0,T;L2(Ω))≤C(h2
U+h2).

This completes the proof.
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5 Numerical experiment

In this section, we carry out numerical experiment to check if the a priori error estimates
derived in Section 4 are sharp. The numerical tests were done by using AFEpack software
package (see [16]).

In the numerical examples, Ω= ΩU = [0,1]2. We use linear finite element spaces to
approximate the state and co-state, and the piecewise constant finite element spaces to
approximate the control. For time variable, a Euler backward-difference procedure is
used to solve discrete system. Here time step size is controlled to demonstrate the relation
between the error function and spacial sizes.

The numerical example is the following control problem

min
u≥0

1

2

∫ 1

0

{

∫

Ω

(y−zd)
2+

∫

Ω

u2
}

dt, (5.1a)







yt−∆y−
∫ t

0
(t−τ)∆ydτ= f +u, x∈Ω, 0< t<1,

y|∂Ω =0.
(5.1b)

The solutions of (5.1a)-(5.1b) are:










































p=−(T−t)sinπx1sinπx2, T=1,

u=max{−p,0},

y= tx1(1−x1)x2(1−x2),

zd =y+pt+∆p+
∫ T

t
(t−τ)∆pdτ,

f =yt−∆y−
∫ t

0
(t−τ)∆ydτ−u.

(5.2)

The numerical results are put into the following Table 1. In the Table, the errors in
L2(0,T;H1(Ω))-norm and L∞(0,T;L2(Ω))-norm are listed.

From the Table, we see that the L2-norm convergent rate of the control variable u−uh

is O(h), i.e., the first order accuracy with the respect to the spacial size; that the H1-norm
convergent rate of the state and costate variables y−yh and p−ph also are O(h); however
that the L2-norm convergent rate of the state and costate approximation errors y−yh and
p−ph are O(h1.8), which is less than 2, but consistent with our theoretical analysis.

Table 1: Numerical result: for adaptive time steps 50.

L2−L2 L2−H1 L∞−L2

# nodes # sides # elements u−uh y−yh p−ph u−uh y−yh p−ph

3468 8823 5406 2.3e-01 1.1e-01 1.3e+00 6.7e-02 1.8e-03 1.5e-02
12291 33864 21624 1.1e-01 5.5e-02 6.9e-01 3.3e-02 5.2e-04 4.0e-03
46155 132600 86496 5.8e-02 2.6e-02 3.4e-01 1.6e-02 1.3e-04 1.0e-03

178755 524688 345984 2.9e-02 1.3e-02 1.7e-01 8.3e-03 3.6e-05 2.8e-04
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6 Conclusions

In this paper, we study the semi-discrete finite element method for optimal control prob-
lem governed by a linear parabolic integro-differential equation. We extend the exist-
ing methods in studying finite element approximation of optimal control governed by a
parabolic equation to the control governed by a parabolic integro-differential equation.
The weak formulation is given, the existence and regularity of the solution for the opti-
mal control problem are analyzed. Further, the a priori error estimates are derived and
we carry out some numerical experiments to verify the numerical algorithm is effective
and the a priori error estimates derived in Section 4 is reliable and accurate. The work
will pave a way to derive the a posteriori error estimates of full discrete finite element
approximations of this optimal control problem.
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