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Abstract. In this paper, we consider a two-scale stabilized finite volume method for
the two-dimensional stationary incompressible flow approximated by the lowest equal-
order element pair P1−P1 which do not satisfy the inf-sup condition. The two-scale
method consist of solving a small non-linear system on the coarse mesh and then
solving a linear Stokes equations on the fine mesh. Convergence of the optimal or-
der in the H1-norm for velocity and the L2-norm for pressure are obtained. The error
analysis shows there is the same convergence rate between the two-scale stabilized
finite volume solution and the usual stabilized finite volume solution on a fine mesh
with relation h=O(H2). Numerical experiments completely confirm theoretic results.
Therefore, this method presented in this paper is of practical importance in scientific
computation.
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1 Introduction

Finite volume method (FVM) is an important numerical tool for solving partial differen-
tial equations. It has been widely used in several engineering fields, such as fluid me-
chanics, heat and mass transfer, and petroleum engineering. The FVM is intuitive in that
it is directly based on local conservation of mass, momentum, or energy over volumes
(control volumes or co-volumes). It lies somewhere between the finite element methods
(FEM) and the finite difference methods (FDM) and has the flexibility similar to that of the
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FEM for handling complicated geometries. Implementation is comparable to that of the
FDM. The FVM is also referred to as the control volume method, the covolum method,
or the first order generalized difference method [4, 6, 8–10, 37]. Its theoretical analysis is
much more complex than that of the FEM.

In the paper [18], the authors consider the finite volume algorithm for solving the S-
tokes problems and shows that it has optimal efficiency for the velocity in L2-norm in the
sense that if f ∈ [H1(Ω)]d, d= 2,3. A superconvergence result is established for the sta-
tionary Navier-Stokes equations by a stabilized finite volume method and L2-projection
on a coarse mesh [16, 30, 31]. Then a new stabilized FVM is studied and developed by Li
et al. in [30] for the stationary incompressible flow. This method is based on a local Gauss
integration technique and uses the lowest equal order finite element pair P1−P1 that do
not satisfy the inf-sup (LBB) stability conditions [13,22,24,25]. Stability and convergence
of the optimal order in the L2-norm and H1-norm for velocity and the L2-norm for pres-
sure are obtained. A new duality for the incompressible flow is introduced to establish
the convergence of the optimal order in the L2-norm for velocity [19, 30].

Two-scale schemes have been applied to a variety of the steady semilinear equation-
s by Xu [35, 36], the steady non-linear saddle point problems with the non-linear con-
straints by Niemisto in his thesis [33], and the steady incompressible flow by Layton, Li
and Hou [17,20,23,26–29], and later on by Girault and Lions with particular emphasis on
the three-dimensional problem on domains with corners [11].At the same time, Chen and
Liu [7] have also studied this method for semilinear parabolic problems. However, more
study is required for the stationary incompressible flow of finite volume approximation.
Moreover, the theoretic analysis of two-scale stabilized FVM is more difficult than that of
FEM.

In this article, we combine stabilized FVM based on P1−P1 element with two-scale
strategy to obtain a two-scale stabilized FVM for the two-dimensional incompressible
flow.The main procedure is stated as follows:

Step 1 Solve a small non-linear system on the coarse scale.

Step 2 Solve a linear system on the fine scale.

The convergence of the optimal order in the H1-norm for velocity and L2-norm for
pressure are obtained. We choose the two-scale spaces as two conforming finite element
spaces VH, QH and Vh, Qh on one coarse grid with mesh size H and one fine grid with
mesh size h≪ H. The two-scale method consist of solving a small incompressible flow
problem on the coarse mesh and then solving a linear Stokes problem on the fine mesh.
Then, we prove that the two-scale stabilized finite volume solution (uh, ph) has the fol-
lowing error estimate:

‖∇(u−uh)‖0+‖p−ph‖0≤C(h+H2).

In solving approximate solution of the stationary incompressible flow on a fine mesh
sizes satisfying h =O(H2), the error analysis shows that the two-scale stabilized FVM
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provides the same approximate solution with the convergence rate of the same order
as the usual stabilized finite volume method. Finally, numerical tests here showed the
stability and efficiency of the presented method.

The rest of the paper is organized as follows: In the next section, we introduce some
notations of the stationary incompressible flow and the stabilized FEM. Then, in the third
section, the stabilized FVM is defined, and some useful theorems are shown. A two-scale
stabilized FVM is constructed and optimal order estimates for this method are obtained,
in the fourth section. Finally, numerical results to check the theoretical results are provid-
ed in the fifth section.

2 A stabilized finite element method

let Ω be a bounded domain in R2, assumed to have a Lipschitz-continuous boundary
∂Ω and to satisfy a further condition stated in (A1) below. The equations of stationary
incompressible flow are considered as follows:

−ν∆u+∇p+(u·∇)u= f in Ω, (2.1a)

∇·u=0 in Ω, (2.1b)

u|∂Ω =0, (2.1c)

where the symbols ∆, ∇, and ∇· denote the Laplace, gradient, and divergence operators,
respectively, and u=(u1,u2) is the velocity vector, p= p(x,y) is the pressure, f = f (x,y)
the prescribed body force, and ν>0 the viscosity of the fluid.

We set

V≡H1
0(Ω)2, Q≡ L2

0(Ω), X≡ L2(Ω)2, D(A)≡H2(Ω)2∩V,

where

L2
0(Ω)≡

{

q∈L2(Ω);
∫

Ω
qdx=0

}

.

Here ‖·‖i denotes the usual norm of the Sobolev space Hi(Ω) or Hi(Ω)2 for i=0,1,2. we
denotes by (·,·) and (|·|) the inner product and norm on L2(Ω) or L2(Ω)2 respectively.
The space H1

0(Ω) and V are equipped with their usual scalar product and norm

((u,υ))=(∇u,∇υ), ‖u‖1 =((u,u))1/2.

It is well known that for each υ∈V hold the following inequalities:

‖υ‖L4 ≤C0‖υ‖1/2
0 ‖∇υ‖1/2

0 , ‖υ‖0 ≤C1‖∇υ‖0, (2.2a)

‖∇υ‖L4 ≤C0‖∇υ‖1/2
0 ‖υ‖1/2

2 , ‖υ‖∞ ≤C2‖υ‖1/2
0 ‖υ‖1/2

2 , (2.2b)



666 J. H. Yang, G. Lei and J. W. Yang / Adv. Appl. Math. Mech., 6 (2014), pp. 663-679

the generic positive constant C (with or without a subscript) depends only on Ω. Subse-
quently, C will denote a generic positive constant depending at most on the data Ω,v and
f . As mention above, a further assumption on Ω is presented:

(A1) Assume that Ω regular so that the unique solution (υ,q)∈(V,Q) of the steady Stokes
problem

−∆υ+∇q= g in Ω, ∇·υ=0 in Ω, υ|∂Ω =0, (2.3)

for a prescribed g∈X exists and satisfies

‖υ‖2+‖q‖1 ≤C‖g‖0. (2.4)

Then the mixed variational form of (2.1a)-(2.1c) is to seek (u,p)∈(V,Q), such that ∀(υ,q)∈
(V,Q) hold equations

a(u,υ)−d(υ,p)+d(u,q)+b(u,u,υ)=( f ,v), (2.5)

where the continuous bilinear forms a(·,·), d(·,·) and the trilinear term b(·,·,·) are defined
by

a(u,v)=ν((u,v))=ν(∇u,∇v), ∀u,v∈V, (2.6a)

d(v,q)=(∇·v,q), ∀v∈V, ∀q∈Q, (2.6b)

b(u,υ,w)=((u·∇)υ,w)+
1

2
((divu)υ,w)

=
1

2
((u·∇)υ,w)−

1

2
((u·∇)w,υ), ∀u,υ,w∈V, (2.6c)

and the trilinear term satisfies

b(u,υ,w)=−b(u,w,υ), (2.7a)

|b(u,υ,w)|≤C3‖∇u‖0‖∇v‖0‖∇w‖0, ∀u,υ,w∈V, (2.7b)

|b(u,υ,w)|+|b(υ,u,w)|+|b(w,u,υ)|≤C3‖u‖2‖υ‖1‖w‖0, (2.7c)

where u∈V, υ∈D(A), w∈X.

Moreover, a generalized bilinear forms on (V,Q)×(V,Q) by

B((u,p),(υ,q))= a(u,υ)−d(υ,p)+d(u,q), (2.8)

so (2.5) can be rewrite in a compact form: find (u,p)∈ (V,Q) such that

B((u,p),(υ,q))+b(u,u,v)=( f ,v). (2.9)

The existence and uniqueness solution of (2.9) can be found in [12, 34].
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Theorem 2.1 (see [30]). If ν>0 and f ∈X satisfy

1−
C1C3

ν2
‖ f‖0 >0, (2.10)

then the variational problem (2.9) admits a unique solution (u,p)∈(D(A),H1(Ω)∩Q) such that

‖u‖1≤
C1

ν
‖ f‖0, ‖u‖2+‖p‖1 ≤C‖ f‖0, (2.11)

where the positive constants C1 and C3 are given by (2.2a) and (2.7b).

In general, (2.9) has more than one solution. Uniqueness is guaranteed if the viscos-
ity and body force satisfy (2.10). For h> 0, let Kh be a triangulation of Ω into triangles,
assumed to be shape regular in the usual sense [3, 5, 12]. Associated with Kh we intro-
duce finite dimensional subspaces (Vh,Qh) ∈ (V,Q). For these spaces we assume that
the following approximation properties hold: For (v,q)∈ (D(A),H1(Ω)∩Q), there exist
approximations Ihv∈Vh and Jhq∈Qh such that

‖v− Ihv‖0+h‖v− Ihv‖1 ≤Ch2‖v‖2, (2.12a)

‖q− Jhq‖0+h‖q− Jhq‖1≤Ch‖q‖1. (2.12b)

In particular, the interpolation operator Ih satisfies

‖Ihυ‖1 ≤C‖υ‖1. (2.13)

Due to the quasi-uniformness of the triangulation Kh, the following properties hold [5,
34]:

‖υh‖1≤C4h−1‖υh‖0, ‖υh‖∞ ≤C5|logh|1/2‖υh‖1, ∀υh ∈Xh. (2.14)

We define a discrete analogue Ah [14]of the Laplace operator ∆ by

(Ahuh,vh)=(∇uh,∇vh), uh,vh ∈Vh,

and define

V̄h={vh ∈Vh : d(vh,qh)=0, ∀qh∈Qh}.

The restriction of Ah to V̄h is invertible, with the inverse A−1
h . we define the discrete

Sobolev norm of A1/2
h on V̄h by

‖vh‖1,h =‖A1/2
h vh‖0, vh ∈ V̄h.

In this paper, we use the lowest equal-order pairs (Vh,Qh) to approximate problem (2.1a)-
(2.1c),

Vh={vh ∈ (C0(Ω))2∩V : vh|K ∈ (P1(K))2, ∀K∈Kh},

Qh={qh ∈C0(Ω)∩Q : qh|K ∈P1(K), ∀K∈Kh},
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where P1(K) is the set of linear functions on element K. But it does not satisfy the discrete
inf-sup condition:

sup
0 6=vh∈Vh

d(vh,qh)

‖vh‖1
≥β1‖qh‖0, qh ∈Qh, (2.15)

where the constant β1 > 0 is independent of h. The local Gauss integration term is used
to fulfill this condition [30]:

Gh(ph,qh)=ΣK∈Kh

{

∫

K,2
phqhdx−

∫

K,1
phqhdx

}

, ph,qh ∈Qh, (2.16)

where
∫

K,i g(x)dx indicates an appropriate Gauss integral over K that is exact for polyno-

mials of degree i, i=1,2 and g(x)= phqh is a polynomial of degree not greater than two.
In particular, the trial function ph ∈Qh must be projected to piecewise constant space Wh

defined below when i = 1 for any qh ∈ Qh. Consequently, we define the L2-projection
operator Πh : L2(Ω)→Wh :

(p,qh)=(Πh p,qh), ∀p∈L2(Ω), qh ∈Wh, (2.17)

where Wh⊆L2(Ω) denotes the piecewise constant space associated with the triangulation
Kh. The following properties of the projection operator Πh can be proved [5]

‖Πh p‖0≤C‖p‖0, ∀p∈L2(Ω), (2.18a)

‖p−Πh p‖0≤Ch‖p‖1, ∀p∈H1(Ω). (2.18b)

As a result of (2.17), the bilinear form Gh(·,·) can be expressed as

Gh(ph,qh)=(ph−Πh ph,qh)

=(ph−Πh ph,qh−Πhqh), ph,qh ∈Qh. (2.19)

So the corresponding discrete variational formulation of (2.9) for the incompressible flow
is recast: to find (ūh, p̄h)∈ (Vh,Qh) such that

Bh((ūh, p̄h),(vh,qh))+b(ūh,ūh,vh)=( f ,vh), ∀(vh,qh)∈ (Vh,Qh), (2.20)

where the bilinear form Bh(·,·) on (Vh,Qh)×(Vh,Qh) is given by

Bh((ūh, p̄h),(vh,qh))

=a(ūh,vh)−d(vh, p̄h)+d(ūh,qh)+Gh( p̄h,qh), (ūh, p̄h),(vh,qh)∈ (Vh,Qh). (2.21)

The following theorem establishes the continuity and weak coercivity of (2.21) for the
equal-order finite element pair P1−P1 [1, 2, 22].
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Theorem 2.2 (see [22]). Let (Vh,Qh) be defined as above, then Bh((·,·),(·,·)) in (2.21) hold

|Bh((ūh, p̄h),(vh,qh))|≤C(‖∇ūh‖0+‖p̄h‖0)(‖∇vh‖0+‖qh‖0), (2.22)

and

β2(‖∇ūh‖0+‖p̄h‖0)≤ sup
(vh,qh)∈(Vh,Qh)

|Bh((ūh, p̄h),(vh,qh))|

‖∇vh‖0+‖qh‖0
, (2.23)

where β2>0 is independent of h.

By Theorem 2.2, Eq. (2.20) can be shown to have a unique solution [15]. Moreover, the
optimal error estimate for the finite element solution (ūh, p̄h) holds for sufficiently small
h>0 [13]:

‖u−ūh‖0+h(‖∇(u−ūh)‖0+‖p− p̄h‖0)≤Ch2(‖u‖2+‖p‖1+‖ f‖0). (2.24)

3 A stabilized finite volume method

In order to construct of the FVM scheme for the problem (2.1a)-(2.1c), we will introduce a
dual partition K̃h based on the partition Kh whose element are called control volumes. Let
Nh be the set containing all the interior nodes associated with the triangulation Kh, and N
be the total number of the nodes. The dual mesh can be constructed by the following rule:
For each element K∈Kh with vertices Pj, j=1,2,3, select its barycenter Qj and the midpoint
Mj on each of the edges of K, and construct the control volumes in K̃h by connecting Qj

to Mj as shown in Fig. 1.

Figure 1: Control volumes associated with triangles.

Associated with K̃h, the dual finite element space is defined as

Ṽh=
{

ṽ∈
(

L2(Ω)
)2

: ṽ|K̃ ∈P0(K̃), ∀K̃∈ K̃h; ṽ|∂K̃ =0
}

.
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Obviously, the dimensions of Ṽh same as Vh. We defined an invertible linear mapping
Γh :Vh→Ṽh such that for

vh(x)=
N

∑
j=1

vh(Pj)ϕj(x), x∈Ω, vh ∈Vh, (3.1)

we have

Γhvh(x)≡v∗h =
N

∑
j=1

vh(Pj)χj(x), x∈Ω, vh ∈Vh, (3.2)

where {ϕj} indicates the basis of the finite element space Vh and {χj} denotes the basis
of the finite volume space Ṽh that are the characteristic functions associated with the dual
partition K̃h:

χj(x)=

{

1, if x∈ K̃j ∈ K̃h,
0, otherwise.

The above idea of connecting the trial and test spaces in the Petrov-Galerkin method
through the mapping Γh was first introduced in [32] the context of elliptic problems.

Theorem 3.1 (see [30]). Let K∈Kh. If vh ∈Vh and 1≤ r≤∞, then

∫

K
(vh−v∗h)dx=0, (3.3a)

‖vh−v∗h‖0,r,K ≤C6hK‖vh‖1,r,K, (3.3b)

‖v∗h‖0≤C7‖vh‖0, (3.3c)

where hK is the diameter of the element K.

Here, a useful map Γh is introduced to build relationship between FEM and FVM. To
introduce a variational formulation of the FVM, we multiply Eq. (2.1a) by v∗h ∈ Ṽh and
integrate over the dual elements K̃∈ K̃h, multiply Eq. (2.1b) by qh∈Qh and integrate over
the primal elements K ∈Kh, and apply Green’s formula to obtain the following bilinear
forms:

A(uh,v∗h)=−
N

∑
j=1

vh(Pj)·
∫

∂K̃j

∂uh

∂~n
ds, uh,vh ∈Vh,

D(v∗h,ph)=−
N

∑
j=1

vh(Pj)·
∫

∂K̃j

ph~nds, ph ∈Qh,

( f ,v∗h)=
N

∑
j=1

vh(Pj)·
∫

K̃j

f dx, vh ∈Vh,
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where~n is the unit normal outward to ∂K̃j. Also, we define the trilinear form b(·,·,·): Vh×
Vh×Ṽh→R for the FVM

b(uh,vh,w∗
h)=((uh ·∇)vh,w∗

h)+
1

2
((divuh)vh,w∗

h), ∀uh,vh,wh∈Vh. (3.4)

Then the stabilized FVM for the incompressible flow (2.1a)-(2.1c) is to find (uh,ph) ∈
(Vh,Qh) such that

Ch((uh,ph),(υh,qh))+b(uh,uh,v∗h)=( f ,v∗h), ∀(υh,qh)∈ (Vh,Qh), (3.5)

where the bilinear term Ch(·,·) on (Vh,Qh)×(Vh,Qh) is

Ch((uh,ph),(υh,qh))=A(uh,v∗h)+D(v∗h,ph)+d(uh,qh)+Gh(ph,qh), (3.6)

such that [18, 30]

|Ch((uh,ph),(vh,qh))|≤C(‖∇uh‖0+‖ph‖0)(‖∇vh‖0+‖qh‖0), (3.7)

and

β3(‖∇uh‖0+‖ph‖0)

≤ sup
(vh,qh)∈(Vh,Qh)

|Ch(uh,ph),(vh,qh))|

‖∇vh‖0+‖qh‖0
, ∀(uh,ph),(vh,qh)∈ (Vh,Qh), (3.8)

where β3>0 is independent of h.

The optimal analysis of finite element approximation based on the relationship be-
tween the FEM and the FVM can be found in [18]. The equivalence is stated for the
bilinear term A(·,·) and D(·,·) as follows:

Theorem 3.2 (see [18, 37]). There holds

A(uh,v∗h)= a(uh,vh), ∀uh,vh ∈Vh, (3.9a)

D(v∗h,qh)=−d(vh,qh), ∀(vh,qh)∈ (Vh,Qh), (3.9b)

with the following properties:

A(uh,v∗h)=A(vh,u∗
h), (3.10a)

|A(uh,v∗h)|≤C‖∇uh‖0‖∇vh‖0, (3.10b)

|A(vh,v∗h)|≥C‖vh‖
2
1. (3.10c)

The existence and the uniqueness of solution to the Eq. (3.5) are proved in Theorem
3.3.
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Theorem 3.3 (see [30]). For each h>0 such that

0<h0 ≤
1

2
, (3.11)

system (3.5) admits a solution (uh,ph)∈ (Vh,Qh). Moreover, if the viscosity ν>0, the body force
f ∈X, and the mesh size h>0 satisfy

0<h0 ≤
1

4
, 1−

4C1C3C7

ν2
‖ f‖0 >0, (3.12)

then the solution (uh,ph)∈ (Vh,Qh) is unique. Furthermore, it satisfies

‖∇uh‖0≤
2C1C7

ν
‖ f‖0, (3.13a)

‖ph‖0≤2β−1
2 C1C7‖ f‖0

(

1+
2C1C3C7

ν2
‖ f‖0

)

, (3.13b)

‖Ahuh‖0≤
2C7

ν
‖ f‖0

(

1+
25C4

1C2
2C4

7

ν4
‖ f‖2

0

)

. (3.13c)

Moreover, the estimates for velocity in the H1- and L2-norm and the pressure in the
L2-norm is presented as follows.

Theorem 3.4 (see [30]). Assume that h>0 satisfies (3.11) and f∈X and ν>0. Let (u,p)∈(V,Q)
and (uh,ph)∈ (Vh,Qh) be the solution of (2.9) and (3.5), respectively. Then it holds

‖∇(u−uh)‖0+‖p−ph‖0≤Ch(‖u‖2+‖p‖1+‖ f‖0), (3.14)

and

‖u−uh‖0≤Ch2(‖u‖2+‖p‖1+‖ f‖1). (3.15)

4 Two-scale picard stabilized finite volume method

In this section, we aim to present the two-scale stabilized FVM and derive some optimal
bounds of the errors.

let H and h≪H will be two real positive parameters tending to 0. A coarse mesh tri-
angulation of KH(Ω) of Ω is made and a fine mesh triangulation Kh(Ω) is generated by
a mesh refinement process to KH(Ω). The conforming finite element space pairs (Vh,Qh)
and (VH,QH)⊂ (Vh,Qh) based on the triangulations Kh(Ω) and KH(Ω) respectively, are
constructed as like in Section 2. Two-scale stabilized finite volume approximation is de-
fined as follows.

Step1 Solve the stabilized Navier-Stokes problem on a coarse mesh: find (uH,pH) ∈
(VH,QH) such that for all (vH ,qH)∈ (VH,QH)

Ch((uH,pH),(vH,qH))+b(uH,uH,v∗H)=( f ,v∗H). (4.1)
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Step2 Solve the stabilized Stokes problem on a fine mesh: find (uh,ph)∈ (Vh,Qh) such
that for all (vh,qh)∈ (Vh,Qh)

Ch((u
h,ph),(vh,qh))+b(uH,uh,v∗h)=( f ,v∗h). (4.2)

To derive error estimates for the finite volume solution (uh,ph), we define a projection
operator (Rh,Th) : (V,Q)→ (Vh,Qh) by

Ch((u−Rh(u,p),p−Th(u,p)),(vh,qh))

=Gh(p,qh), ∀(u,p)∈ (V,Q), (vh,qh)∈ (Vh,Qh), (4.3)

which satisfies the following stability and approximation properties:

Theorem 4.1 (see [19]). Under the assumption of (A1), the projection operator (Rh,Th) satisfies

‖Rh(u,p)‖1+‖Th(u,p)‖0≤C(‖u‖1+‖p‖0), (4.4)

and

‖∇(u−Rh(u,p))‖0+‖p−Th(u,p)‖0≤Ch(‖u‖2+‖p‖1), (4.5)

for all (u,p)∈ (D(A),H1(Ω)∩Q).

For convenience, we set e=Rh(u,p)−uh, η =Th(u,p)−ph. Then a error estimates for
the two-scale error u−uh and p−ph is derived as follows.

Theorem 4.2. Under the assumptions of Theorems 2.1 and Theorems 3.1-3.3, the following two-
scale stabilized finite volume solution (uh,ph) satisfy the following error estimate

‖∇(u−uh)‖0+‖p−ph‖0≤C(h+H2). (4.6)

Proof. Using (4.3), Theorem 3.2 and subtracting (4.2) from (2.9) with (vh,qh)= (e,η), we
have

Ch((e,η),(e,η))+b(u,u,e)−b(uH ,uh,e∗)=( f ,e−e∗). (4.7)

Obviously, it follows that

Ch((e,η),(e,η))≥ν‖∇e‖2
0 , (4.8a)

|( f ,e−e∗)|≤‖ f‖0‖e−e∗‖0≤Ch‖ f‖0‖∇e‖0. (4.8b)

For the trilinear terms, it is easy to find that

|b(u,u,e)−b(uH ,uh,e∗)|=|b(u,u,e)−b(uH ,u,e)+b(uH,u,e)−b(uH,uh,e)

+b(uH,uh,e)−b(uH ,uh,e∗)|

=|b(u−uH ,u,e)+b(uH,u−uh,e)+b(uH ,uh,e−e∗)|

≤|b(u−uH ,u,e)|+|b(uH ,u−uh,e)|+|b(uH ,uh,e−e∗)|. (4.9)
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By (2.7c) and (3.15)

|b(u−uH,u,e)|≤C‖u‖2‖u−uH‖0‖∇e‖0 ≤CH2‖∇e‖0. (4.10)

Using (2.7a), (2.7b), (4.5) and (A1) gives that

|b(uH,u−uh,e)|=|b(uH ,u−Rh(u,p)+Rh(u,p)−uh,e)|

=|b(uH ,u−Rh(u,p),e)+b(uH ,e,e)|

=|b(uH ,u−Rh(u,p),e)|

≤C‖∇uH‖0‖∇(u−Rh(u,p))‖0‖∇e‖0

≤Ch(‖u‖2+‖p‖1)‖∇e‖0

≤Ch‖∇e‖0. (4.11)

As for the third term on the right of (4.9), a simple calculation is used to obtain by setting
E=Rh(u,p)−u

|b(uH,uh,e−e∗)|=|b(uH ,uh−u,e−e∗)+b(uH,u,e−e∗)|

=|b(uH ,−e+Rh(u,p)−u,e−e∗)+b(uH,u,e−e∗)|

=|b(uH−u,e,e−e∗)+b(u,e,e−e∗)+b(uH,E,e−e∗)+b(uH,u,e−e∗)|

≤|b(uH−u,e,e−e∗)|+|b(u,e,e−e∗)|+|b(uH ,E,e−e∗)|+|b(uH ,u,e−e∗)|

=I1+ I2+ I3+ I4. (4.12)

Using the Hölder inequality, (2.2a) and Theorem 3.4 gives

I1=|b(uH−u,e,e−e∗)|

≤(‖uH−u‖L
4‖∇e‖0+‖e‖L

4‖∇(uH−u)‖0)‖e∗−e‖L
4

≤Ch(‖uH−u‖1/2
0 ‖∇(uH−u)‖1/2

0 ‖∇e‖0

+‖e‖1/2
0 ‖∇e‖1/2

0 ‖∇(uH−u)‖0)‖∇e‖L
4

≤C(H5/2+H2)‖∇e‖2
0. (4.13)

Due to (2.7c) and (3.3b)

I2= |b(u,e,e−e∗)|≤C‖u‖2‖∇e‖0‖e−e∗‖0≤Ch‖u‖2‖∇e‖2
0. (4.14)

Noting that [17]

‖υ‖L6 ≤C‖∇υ‖0, v∈V, (4.15a)

‖vh‖L∞+‖∇vh‖L3 ≤C‖∇vh‖
1/2
0 ‖Ahvh‖

1/2
0 , vh ∈Vh, (4.15b)

and the Hölder inequality, we have

I3=|b(uH ,E,e−e∗)|

≤C(‖uH‖L∞‖∇E‖0+‖∇uH‖L3‖E‖L6)‖e−e∗‖0

≤Ch‖∇uH‖
1/2
0 ‖AHuH‖

1/2
0 ‖∇E‖0‖∇e‖0

≤Ch‖∇e‖0. (4.16)
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Similarly, by (2.7c),

I4=|b(uH,u,e−e∗)|

≤|b(uH−u,u,e−e∗)|+|b(u,u,e−e∗)|

≤(‖∇(uH−u)‖0‖u‖2+‖u‖2‖u‖1)‖e−e∗‖0

≤C(h+H2)‖∇e‖0. (4.17)

Combining all these inequality with (4.7), gives

[ν−C(h+H5/2)]‖∇e‖2
0 ≤C(h+H2)‖∇e‖0. (4.18)

If the coarse mesh scale H is sufficiently small, such that

[1−Cν−1(h+H5/2)]>
1

2
,

it holds

ν

2
‖∇e‖2

0 ≤C(h+H2)‖∇e‖0. (4.19)

Then, we have

‖∇e‖0 ≤C(h+H2). (4.20)

It follows from (3.8) that

‖η‖0 ≤C(h+H2). (4.21)

Finally, using the triangle inequality, (4.5), (4.20), (4.21) and (A1), we obtain

‖u−uh‖1=‖Rh(u,p)−uh+u−Rh(u,p)‖1

≤‖Rh(u,p)−uh‖1+‖u−Rh(u,p)‖1

=‖∇e‖0+‖u−Rh(u,p)‖1

≤C(h+H2), (4.22)

and

‖p−ph‖0 ≤‖Th(u,p)−ph‖0+‖p−Th(u,p)‖0

=‖η‖0+‖p−Th(u,p)‖0

≤C(h+H2), (4.23)

which completes the proof of (4.6).
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5 Numerical experiments

In this section, in order to conform theoretical analysis of Theorem 4.2, we solve the two
dimensional stationary incompressible flow by two-scale stabilized FVM approximated
by the lowest equal-order finite element pairs.

Example 5.1 (Exact solution problem). We consider problem (2.1a)-(2.1c) in the unit square
Ω :{0≤ x,y≤1} with the right hand side function f (x,y) generated by the exact solution

u(x,y)=(u1(x,y),u2(x,y)), p(x,y)=10(2x−1)(2y−1),

u1(x,y)=10x2(x−1)2y(y−1)(2y−1), u2(x,y)=−10x(x−1)(2x−1)y2(y−1)2,

with ν=1.

Table 1 shows the H1-error of the velocity and the L2-error of the pressure. Detailedly,
the first line and the second line that of the one-scale stabilized FEM and FVM, the third
line presents the results of the two-scale FVM with scaling h =O(H2), respectively. In

Table 1: Comparison of the one-scale method with the two-scale methods: ν=1.

1/H 1/h CPU(s)
‖∇(u−uh)‖0

‖∇u‖0

‖p−ph‖0

‖p‖0
uH1 rate pL2rate

4 0.032 1.53629 0.388664
2 4 0.109 1.54003 0.388749

4 0.047 1.53594 0.388679
9 0.172 0.53869 0.0978643 1.29232 1.70068

3 9 0.172 0.53944 0.0978444 1.29353 1.70120
9 0.157 0.538738 0.0978795 1.29193 1.70054

16 0.657 0.249861 0.035939 1.33523 1.74107
4 16 0.563 0.250038 0.0359277 1.33641 1.74128

16 0.36 0.249876 0.0359448 1.33527 1.74108
25 0.641 0.142015 0.016532 1.26594 1.73999

5 25 1.422 0.142068 0.0165269 1.26669 1.73995
25 0.703 0.142026 0.0165345 1.26589 1.73999
36 2.938 0.0917077 0.0088001 1.19933 1.72916

6 36 2.625 0.0917267 0.00879779 1.19978 1.72906
36 1.406 0.0917165 0.00880141 1.19928 1.72919
49 5.609 0.0643537 0.005187 1.14892 1.71436

7 49 5.344 0.0643616 0.00518621 1.14919 1.71422
49 2.062 0.0643606 0.00518772 1.14887 1.71461
64 10.016 0.047807 0.00329814 1.11295 1.69575

8 64 8.766 0.0478105 0.00329751 1.11312 1.69561
64 4.313 0.0478123 0.00329773 1.11291 1.69645
81 13.844 0.0370032 0.00222498 1.08744 1.67091

9 81 20.343 0.0370051 0.00222463 1.08755 1.67077
81 6.89 0.0370077 0.00222393 1.08741 1.67239
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addition, we want to compare the accuracy and relative efficiency of the one-scale FVM
with the two-scale FVM. Thus, we compare the solution generated at a fixed value of
h for the one-scale method with the results obtained using two-scale method where the
finest grid has the same mesh spacing h. For example, for h= 1/49 and h= 1/64 in the
one-scale method we can compare this with our results using two-scale method with
H=1/7 and H=1/8. In two-scale computations when H was chosen so that h=O(H2)
for the two-scale FVM, we observed that there are same the optimal predicted rate of
convergence between one-scale method and two-scale method, but the two-scale method
was probably two times faster than the one-scale method in CPU times. Also, the finer
grid calculations gave the greater savings in time and number of operations.

Example 5.2 (The driven cavity problem). The driven cavity flow on a unit square with
no-slip boundary conditions only in upper boundary with u=(u1,u2)=(1,0). The cavity
flows have been widely used as test cases for validating the incompressible fluid dynam-
ics algorithm. In this example, the velocity field and the pressure level lines for ν = 1
are plotted in Fig. 2 by using the traditional one-scale stabilized FEM, FVM and the two-
scale stabilized FVM with P1−P1 presented in this article, respectively. Obviously, these
figures can show the stability but computational time that are respectively 1.172s, 1.206s,
0.641s for three different methods. Numerical results also validate the accuracy of the
two-scale stabilized FVM for the stationary incompressible flow.

Figure 2: Comparison of the velocity field and the pressure level lines: ν=1.

6 Conclusions

In this article, we combine stabilized FVM based on P1−P1 element with two-scale strate-
gy to obtain a two-scale stabilized FVM for the two-dimensional Navier-Stokes equation-
s. The two-scale method involves solving one small nonlinear Navier-Stokes problem on
the coarse mesh and one linear Stokes problem on the fine mesh. We have obtained the
optimal error estimates for the two-scale FVM. The error analysis shows that the two-
scale stabilized FVM presented provides an approximate solution with the convergence
rate of the same order as the usual stabilized finite volume solution solving the incom-
pressible flow on a fine mesh for a related choice of mesh sizes satisfy h=O(H2). Finally,
two numerically tests are made to confirm that the two-scale method is efficient and saves
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a large amount of computational time compared to the one-scale method. Therefore, the
two-scale FVM is suitable to solve some practical engineering problems arising in the
fluid dynamics. Furthermore, we will apply two-scale FVM for the three-dimensional
Navier-Stokes equations, and try to establish Multi-scale stabilized FVM [21] or oth-
er norm [20] for the stationary Navier-Stokes equations based on the idea of two-scale
method in this paper.
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