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LOCAL AND PARALLEL FINITE ELEMENT ALGORITHM

BASED ON MULTILEVEL DISCRETIZATION FOR

EIGENVALUE PROBLEMS

XIAOLE HAN, YU LI, HEHU XIE, AND CHUNGUANG YOU

Abstract. In this paper, a local and parallel algorithm based on the multilevel discretization is
proposed for solving the eigenvalue problem by the finite element method. With this new scheme,
the eigenvalue problem solving in the finest grid is transferred to solutions of the eigenvalue
problems on the coarsest mesh and a series of solutions of boundary value problems on each level
mesh. Therefore this type of multilevel local and parallel method improves the overall efficiency
of solving the eigenvalue problem. Some numerical experiments are presented to validate the
efficiency of the new method.

Key words. eigenvalue problem, multigrid, multilevel correction, local and parallel method,
finite element method.

1. Introduction

Solving large scale eigenvalue problems becomes a fundamental problem in mod-
ern science and engineering society. However, it is always a very difficult task to
solve high-dimensional eigenvalue problems which arise from physical and chem-
istry sciences. Xu and Zhou [28] give a type of two-grid discretization method
to improve the efficiency of the solution of eigenvalue problems. By the two-grid
method, the solution of eigenvalue problem on a fine mesh is reduced to a solution
of eigenvalue problem on a coarse mesh (which depends on the fine mesh) and a so-
lution of the corresponding boundary value problem on the fine mesh [28]. For more
details, please read [25, 26]. Combing the two-grid idea and the local and parallel
finite element technique [27], a type of local and parallel finite element technique
to solve the eigenvalue problems is given in [29] (also see [10]). Recently, a new
type of multilevel correction method for solving eigenvalue problems which can be
implemented on multilevel grids is proposed in [14]. In the multilevel correction
scheme, the solution of eigenvalue problem on the finest mesh can be reduced to
a series of solutions of the eigenvalue problem on a very coarse mesh (independent
of the finest mesh) and a series of solutions of the boundary value problems on the
multilevel meshes. The multilevel correction method gives a way to construct a
type of multigrid scheme for the eigenvalue problem [15].

In this paper, we propose a type of multilevel local and parallel scheme to
solve the eigenvalue problem based on the combination of the multilevel correction
method and the local and parallel technique. The special property of this scheme
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is that we can do the local and parallel computing for any level grids and the mesh
size of the original coarse triangulation is independent of the finest triangulation.
With this new method, the solution of the eigenvalue problem is not going to be
more difficult than the solution of the boundary value problems by the local and
parallel algorithm since the main part of the computation in the multilevel local
and parallel method is solving the boundary value problems.

The standard Galerkin finite element method for eigenvalue problems has been
extensively investigated, e.g. Babuška and Osborn [2, 3], Chatelin [8] and references
cited therein. There also exists analysis for the local and parallel finite element
method for the boundary value problems and eigenvalue problems [10, 21, 22, 27,
28, 29]. Here we adopt some basic results in these papers for our analysis. The
corresponding error and computational work estimates of the proposed multilevel
local and parallel scheme for the eigenvalue problem will be analyzed. Based on the
analysis, the new method can obtain optimal errors with an optimal computational
work in each processor.

An outline of this paper goes as follows. In the next section, a basic theory about
the local error estimate of the finite element method is introduced. In Section 3, we
introduce the finite element method for the eigenvalue problem and the correspond-
ing error estimates. A local and parallel type of one correction step and multilevel
correction algorithm will be given in Section 4. The estimate of the computational
work for the multilevel local and parallel algorithm is presented in section 5. In Sec-
tion 6, three numerical examples are presented to validate our theoretical analysis
and some concluding remarks are given in the last section.

2. Discretization by the finite element method

In this section, we introduce some notation and error estimates of the finite
element approximation of linear elliptic problems. The letter C (with or without
subscripts) denotes a generic positive constant which may be different at its different
occurrences throughout the paper. For convenience, the symbols ., & and ≈ will
be used in this paper. That x1 . y1, x2 & y2 and x3 ≈ y3, mean that x1 ≤ C1y1,
x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are
independent of mesh sizes (see, e.g., [24]). We shall use the standard notation for
Sobolev spaces W s,p(Ω) and their associated norms and seminorms (see, e.g., [1]).
For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},
where v|∂Ω = 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω.

For G ⊂ D ⊂ Ω, the notation G ⊂⊂ D means that dist(∂D \ ∂Ω, ∂G \ ∂Ω) > 0
(see Figure 1). It is well known that any w ∈ H1

0 (Ω0) can be naturally extended to
be a function in H1

0 (Ω) with zero outside of Ω0, where Ω0 ⊂ Ω. Thus we will show
this fact by the abused notation H1

0 (Ω0) ⊂ H1
0 (Ω).

2.1. Finite element space. Now, let us define the finite element space. First
we generate a shape-regular decomposition Th(Ω) of the computing domain Ω ⊂
R

d (d = 2, 3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for
d = 3). The diameter of a cell K ∈ Th(Ω) is denoted by hK . The mesh size function
is denoted by h(x) whose value is the diameter hK of the element K including x.

For generality, following [27, 29], we shall consider a class of finite element spaces
that satisfy certain assumptions. Now we describe such assumptions.

A.0. There exists γ > 1 such that

hγΩ . h(x), ∀x ∈ Ω,

where hΩ = maxx∈Ω h(x) is the largest mesh size of Th(Ω).
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Figure 1. G ⊂⊂ D ⊂⊂ Ω.

Based on the triangulation Th(Ω), we define the finite element space Vh(Ω) as
follows

Vh(Ω) =
{
v ∈ C(Ω̄) : v|K ∈ Pk, ∀K ∈ Th(Ω)

}
,

where Pk denotes the space of polynomials of degree not greater than a positive
integer k. Then we know Vh(Ω) ⊂ H1(Ω) and define V0h(Ω) = Vh(Ω) ∩ H1

0 (Ω).
Given G ⊂ Ω, we define Vh(G) and Th(G) to be the restriction of Vh(Ω) and Th(Ω)
to G, respectively, and

V0h(G) =
{
v ∈ Vh(Ω) : suppv ⊂⊂ G

}
.

For any G ⊂ Ω mentioned in this paper, we assume that it aligns with the partition
Th(Ω).

As we know, the finite element space Vh satisfy the following proposition (see,
e.g., [7, 9, 27, 29]).

Proposition 2.1. (Fractional Norm) For any G ⊂ Ω, we have

inf
v∈V0h(G)

‖w − v‖1,G . ‖w‖1/2,∂G, ∀w ∈ Vh(Ω).(1)

2.2. A linear elliptic problem. In this subsection, we repeat some basic prop-
erties of a second order elliptic boundary value problem and its finite element
discretization, which will be used in this paper. The following results is presented
in [21, 22, 27, 29].

We consider the homogeneous boundary value problem

(2)

{
Lu = f, in Ω,
u = 0, on ∂Ω.

Here the linear second order elliptic operator L : H1
0 (Ω) → H−1(Ω) is define as

Lu = −div(A∇u),

where A = (aij)1≤i,j≤d ∈ R
d×d is uniformly positive definite symmetric on Ω with

aij ∈W 1,∞(Ω). The weak form for (2) is as follows:
Find u ≡ L−1f ∈ H1

0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω),(3)

where (·, ·) is the standard inner-product of L2(Ω) and

a(u, v) =
(
A∇u,∇v

)
.

Uniform positive definiteness of the coefficent matrices implies

‖w‖21,Ω . a(w,w), ∀w ∈ H1
0 (Ω).
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We assume (c.f. [12]) that the following regularity estimate holds for the solution
of (2) or (3)

‖u‖1+α,Ω . ‖f‖−1+α,Ω

for some α ∈ (0, 1] depending on Ω and the coefficient of L.
For the analysis, we define the Galerkin-Projection operator Ph : H1

0 (Ω) →
V0h(Ω) by

a(u − Phu, v) = 0, ∀v ∈ V0h(Ω)(4)

and apparently

‖Phu‖1,Ω . ‖u‖1,Ω, ∀u ∈ H1
0 (Ω).(5)

Based on (5), the global priori error estimate can be obtained from the approximate
properties of the finite dimensional subspace V0h(Ω) (cf. [7, 9]). For the following
analysis, we introduce the following quantity:

ρΩ(h) = sup
f∈L2(Ω),‖f‖0,Ω=1

inf
v∈V0h(Ω)

‖L−1f − v‖1,Ω.(6)

The following results can be found in [3, 7, 9, 28, 29].

Proposition 2.2.

‖(I − Ph)L
−1f‖1,Ω . ρΩ(h)‖f‖0,Ω, ∀f ∈ L2(Ω),

‖u− Phu‖0,Ω . ρΩ(h)‖u− Phu‖1,Ω, ∀u ∈ H1
0 (Ω).

Now, we state an important and useful result about the local error estimates
[21, 22, 29] which will be used in the following.

Proposition 2.3. Suppose that f ∈ H−1(Ω) and G ⊂⊂ Ω0 ⊂ Ω. If Assumptions
A.0 holds and w ∈ Vh(Ω0) satisfies

a(w, v) = (f, v), ∀v ∈ V0h(Ω0).

Then we have the following estimate

‖w‖1,G . ‖w‖0,Ω0
+ ‖f‖−1,Ω0

.

3. Error estimates for eigenvalue problems

In this section, we introduce the concerned eigenvalue problem and the corre-
sponding finite element discretization.

In this paper, we consider the following eigenvalue problem:
Find (λ, u) ∈ R×H1

0 (Ω) such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ H1
0 (Ω),(7)

where

b(u, u) = (u, u).

For the eigenvalue λ, there exists the following Rayleigh quotient expression (see,
e.g., [2, 3, 28])

λ =
a(u, u)

b(u, u)
.

From [3, 8], we know the eigenvalue problem (7) has an eigenvalue sequence {λj} :

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,
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and the associated eigenfunctions

u1, u2, · · · , uk, · · · ,

where b(ui, uj) = δij . In the sequence {λj}, the λj are repeated according to their
multiplicity.

Then we can define the discrete approximation for the exact eigenpair (λ, u) of
(7) based on the finite element space as:

Find (λh, uh) ∈ R× V0h(Ω) such that b(uh, uh) = 1 and

a(uh, vh) = λhb(uh, vh), ∀vh ∈ V0h(Ω).(8)

From (8), we know the following Rayleigh quotient expression for λh holds (see,
e.g., [2, 3, 28])

λh =
a(uh, uh)

b(uh, uh)
.

Similarly, we know from [3, 8] the eigenvalue problem (8) has eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,

and the corresponding eigenfunctions

u1,h, u2,h, · · · , uk,h, · · · , uNh,h,

where b(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element
space V0h(Ω)).

From the minimum-maximum principle (see, e.g., [2, 3]), the following upper
bound result holds

λi ≤ λi,h, i = 1, 2, · · · , Nh.

Let M(λi) denote the unit set in the eigenspace corresponding to the eigenvalue
λi which is defined by

M(λi) =
{
w ∈ H1

0 (Ω) : w is an eigenvalue of (7) corresponding to λi

and ‖w‖b = 1
}
,(9)

where ‖w‖b =
√
b(w,w). Then we define

δh(λi) = sup
w∈M(λi)

inf
v∈V0h(Ω)

‖w − v‖1.(10)

For the eigenpair approximations by the finite element method, there exist the
following error estimates.

Proposition 3.1. ([2, Lemma 3.7, (3.28b,3.29b)], [3, P. 699] and [8])
(i) For any eigenfunction approximation ui,h of (8) (i = 1, 2, · · · , Nh), there is an
eigenfunction ui of (7) corresponding to λi such that ‖ui‖b = 1 and

‖ui − ui,h‖1,Ω ≤ Ciδh(λi).

Furthermore,

‖ui − ui,h‖0,Ω ≤ CiρΩ(h)δh(λi).

(ii) For each eigenvalue, we have

λi ≤ λi,h ≤ λi + Ciδ
2
h(λi).

Here and hereafter Ci is some constant depending on i but independent of the mesh
size h.

To analyze our method, we introduce the error representation of eigenvalue by
the Rayleigh quotient formula which comes from [2, 3, 13, 28].
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Proposition 3.2. Assume (λ, u) is the true solution of the eigenvalue problem (7)
and 0 6= ψ ∈ H1

0 (Ω). Let us define

λ̂ =
a(ψ, ψ)

b(ψ, ψ)
.

Then we have

λ̂− λ =
a(u− ψ, u− ψ)

b(ψ, ψ)
− λ

b(u− ψ, u− ψ)

b(ψ, ψ)
.

4. Multilevel local and parallel algorithms

In this section, we present a new multilevel parallel algorithm to solve the eigen-
value problem based on the combination of the local and parallel finite element
technique and the multilevel correction method. First, we introduce an one cor-
rection step with the local and parallel finite element scheme and then present a
parallel multilevel method for the eigevalue problem.

For the description of the numerical scheme, we need to define some notation.
Given an coarsest triangulation TH(Ω), we first divide the domain Ω into a number
of disjoint subdomains D1, · · · , Dm such that

⋃m
j=1 D̄j = Ω̄, Di ∩ Dj = ∅, then

enlarge and reduce each Dj to obtain Ωj and Gj respectly, which both align with
TH(Ω). We get the sequence of subdomains Gj ⊂⊂ Dj ⊂ Ωj ⊂ Ω for i = 1, · · · ,m
and Gm+1 = Ω \ (∪m

j=1Ḡj) (see Figure 2).

Figure 2. the left –
⋃4

j=1 D̄j = Ω̄; the middle – G1 ⊂⊂ D1 ⊂ Ω1;

the right – G5 = Ω \ (∪4
j=1Ḡj).

In this paper we assume the domain decomposition satisfies the following prop-
erty

(11)
m∑

j=1

‖v‖2ℓ,Ωj
. ‖v‖2ℓ,Ω

for any v ∈ Hℓ(Ω) with ℓ = 0, 1.

4.1. One correction step. First, we present the one correction step to improve
the accuracy of the given eigenvalue and eigenfunction approximation. This cor-
rection method contains solving an auxiliary boundary value problem in the finer
finite element space on each subdomain and an eigenvalue problem on the coarsest
finite element space.



LOCAL AND PARALLEL ALGORITHM FOR EIGENVALUE PROBLEMS 79

For simplicity of notation, we set (λ, u) = (λi, ui) (i = 1, 2, · · · , k, · · · ) and
(λh, uh) = (λi,h, ui,h) (i = 1, 2, · · · , Nh) to denote an eigenpair and its correspond-
ing approximation of problems (7) and (8), respectively. For the clear understand-
ing, we only describe the algorithm for the simple eigenvalue case. The correspond-
ing algorithm for the multiple eigenvalue case can be given in the similar way as in
[23].

In order to do the correction step, we build original coarsest finite element space
V0H(Ω) on the background mesh TH(Ω). This coarsest finite element space V0H(Ω)
will be used as the background space in our algorithm.

Assume we have obtained an eigenpair approximation (λhk
, uhk

) ∈ R×V0hk
(Ω).

The one correction step will improve the accuracy of the current eigenpair ap-
proximation (λhk

, uhk
). Let V0hk+1

(Ω) ba a finer finite element space such that
V0hk

(Ω) ⊂ V0hk+1
(Ω). Here we assume the finite element spaces V0hk

(Ω) and
V0hk+1

(Ω) are consistent with the domain decomposition and V0H(Ω) ⊂ V0hk
(Ω).

Based on this finer finite element space V0hk+1
(Ω), we define the following one

correction step.

Algorithm 4.1. One Correction Step
We have a given eigenpair approximation (λhk

, uhk
) ∈ R× V0hk

(Ω).

(1) Define the following auxiliary boundary value problem:

For each j = 1, 2, · · · ,m, find ejhk+1
∈ V0hk+1

(Ωj) such that

(12) a(ejhk+1
, vhk+1

) = λhk
b(uhk

, vhk+1
)− a(uhk

, vhk+1
), ∀vhk+1

∈ V0hk+1
(Ωj).

Set ũjhk+1
= uhk

+ ejhk+1
∈ Vhk+1

(Ωj).

(2) Construct ũhk+1
∈ V0hk+1

(Ω) such that ũhk+1
= ũjhk+1

in Gj (j = 1, · · · ,m)

and ũhk+1
= ũm+1

hk+1
in Gm+1 with ũ

m+1
hk+1

being defined by solving the following

problem:
Find ũm+1

hk+1
∈ Vhk+1

(Gm+1) such that ũm+1
hk+1

|∂Gj∩∂Gm+1
= ũjhk+1

(j =

1, · · · ,m) and

(13) a(ũm+1
hk+1

, vhk+1
) = λhk

b(uhk
, vhk+1

), ∀vhk+1
∈ V0hk+1

(Gm+1).

(3) Define a new finite element space VH,hk+1
= V0H(Ω) + span{ũhk+1

} and
solve the following eigenvalue problem:

Find (λhk+1
, uhk+1

) ∈ R× VH,hk+1
such that b(uhk+1

, uhk+1
) = 1 and

a(uhk+1
, vH,hk+1

) = λhk+1
b(uhk+1

, vH,hk+1
), ∀vH,hk+1

∈ VH,hk+1
.(14)

Summarize the above three steps into

(λhk+1
, uhk+1

) = Correction(V0H(Ω), λhk
, uhk

, V0hk+1
(Ω)),

where λhk
and uhk

are the given eigenvalue and eigenfunction approximation, re-
spectively.

Theorem 4.1. Assume the current eigenpair approximation (λhk
, uhk

) ∈ R ×
V0hk

(Ω) has the following error estimates

‖u− uhk
‖1,Ω . εhk

(λ),(15)

‖u− uhk
‖0,Ω . ρΩ(H)εhk

(λ),(16)

|λ− λhk
| . ε2hk

(λ).(17)

Then after one step correction, the resultant approximation (λhk+1
, uhk+1

) ∈ R ×
V0hk+1

(Ω) has the following error estimates

‖u− uhk+1
‖1,Ω . εhk+1

(λ),(18)
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‖u− uhk+1
‖0,Ω . ρΩ(H)εhk+1

(λ),(19)

|λ− λhk+1
| . ε2hk+1

(λ),(20)

where εhk+1
(λ) := ρΩ(H)εhk

(λ) + ε2hk
(λ) + δhk+1

(λ).

Proof. We focus on estimating ‖u− ũhk+1
‖1,Ω. First, we have

(21) ‖u− ũhk+1
‖1,Ω ≤ ‖u− Phk+1

u‖1,Ω + ‖ũhk+1
− Phk+1

u‖1,Ω,

and

(22) ‖ũhk+1
− Phk+1

u‖21,Ω .

m∑

j=1

|ũjhk+1
− Phk+1

u|21,Gj
+ |ũm+1

hk+1
− Phk+1

u|21,Gm+1
.

From problems (4), (7) and (12), the following equation holds

a(ũjhk+1
− Phk+1

u, v) = b(λhk
uhk

− λu, v), ∀v ∈ V0hk+1
(Ωj),

for j = 1, 2, · · · ,m. According to Proposition 2.3

‖ũjhk+1
− Phk+1

u‖1,Gj
. ‖ũjhk+1

− Phk+1
u‖0,Ωj

+ ‖λhk
uhk

− λu‖−1,Ωj

. ‖ũjhk+1
− uhk

‖0,Ωj
+ ‖uhk

− Phk+1
u‖0,Ωj

+ ‖λhk
uhk

− λu‖0,Ωj
.(23)

We will estimate the first term, i.e. ‖ejhk+1
‖0,Ωj

by using the Aubin-Nitsche duality
argument.

Given any φ ∈ L2(Ωj), there exists wj ∈ H1
0 (Ωj) such that

a(v, wj) = b(v, φ), ∀v ∈ H1
0 (Ωj).

Let wj
hk+1

∈ V0hk+1
(Ωj) and w

j
H ∈ V0H(Ωj) satisfying

a(vhk+1
, wj

hk+1
) = a(vhk+1

, wj), ∀vhk+1
∈ V0hk+1

(Ωj),

a(vH , w
j
H) = a(vH , w

j), ∀vH ∈ V0H(Ωj).

Then the following equations hold

b(ũjhk+1
− uhk

, φ) = a(ũjhk+1
− uhk

, wj
hk+1

)

= b(λhk
uhk

, wj
hk+1

)− a(uhk
, wj

hk+1
)

= b(λhk
uhk

− λu,wj
hk+1

) + a(Phk+1
u− uhk

, wj
hk+1

)

= b(λhk
uhk

− λu,wj
hk+1

− wj
H) + b(λhk

uhk
− λu,wj

H)

+a(Phk+1
u− uhk

, wj
hk+1

)

= b(λhk
uhk

− λu,wj
hk+1

− wj
H) + a(Phk+1

u− uhk
, wj

hk+1
− wj

H),(24)

where V0H(Ω) ⊂ V0hk
(Ω) and (4), (7), (8), (12) are used in the last equation.

Combining (24) and the following standard finite element methods error esti-
mates [7, 9]

‖w − wj
hk+1

‖1,Ωj
. ρΩj

(hk+1)‖φ‖0,Ωj
, ‖w − wj

H‖1,Ωj
. ρΩj

(H)‖φ‖0,Ωj
,

we have

(25) ‖ũjhk+1
− uhk

‖0,Ωj
. ρΩj

(H)
(
‖uhk

− Phk+1
u‖1,Ωj

+ ‖λhk
uhk

− λu‖0,Ωj

)
.

From (23) and (25), for j = 1, 2 . . . ,m, we have

‖ũjhk+1
− Phk+1

u‖1,Gj
. ρΩj

(H)‖uhk
− Phk+1

u‖1,Ωj

+‖uhk
− Phk+1

u‖0,Ωj
+ ‖λhk

uhk
− λu‖0,Ωj

.(26)



LOCAL AND PARALLEL ALGORITHM FOR EIGENVALUE PROBLEMS 81

Now, we estimate |ũm+1
hk+1

− Phk+1
u|1,Gm+1

. From (4), (7) and (13), we obtain

a(ũm+1
hk+1

− Phk+1
u, v) = b(λhk

uhk
− λu, v), ∀v ∈ V0hk+1

(Gm+1).

For any v ∈ V0hk+1
(Gm+1), the following estimates hold

|ũm+1
hk+1

− Phk+1
u|21,Gm+1

. a(ũm+1
hk+1

− Phk+1
u, ũm+1

hk+1
− Phk+1

u− v) + b(λhk
uhk

− λu, v)

. ‖ũm+1
hk+1

− Phk+1
u‖1,Gm+1

inf
χ∈V0hk+1

(Gm+1)
‖ũm+1

hk+1
− Phk+1

u− χ‖1,Gm+1

+‖λhk
uhk

− λu‖−1,Gm+1

(
‖ũm+1

hk+1
− Phk+1

u‖1,Gm+1

+ inf
χ∈V0hk+1

(Gm+1)
‖ũm+1

hk+1
− Phk+1

u− χ‖1,Gm+1

)
.(27)

Combining (27), the following estimate (by the definition of the norm ofH1/2(∂Gm+1))

‖ũm+1
hk+1

− Phk+1
u‖21/2,∂Gm+1

.

m∑

j=1

‖ũjhk+1
− Phk+1

u‖21/2,∂Gj

.

m∑

j=1

‖ũjhk+1
− Phk+1

u‖21,Gj
,

Proposition 2.1, Friedrichs inequality, trace inequality and Cauchy-Schwarz inequal-
ity, we have

|ũm+1
hk+1

− Phk+1
u|21,Gm+1

. ‖ũm+1
hk+1

− Phk+1
u‖21,Gm+1

+ inf
χ∈V0hk+1

(Gm+1)
‖ũm+1

hk+1
− Phk+1

u− χ‖21,Gm+1

+‖λhk
uhk

− λu‖2−1,Gm+1

. ‖ũm+1
hk+1

− Phk+1
u‖20,∂Gm+1

+ ‖ũhk+1
− Phk+1

u‖21/2,∂Gm+1

+‖λhk
uhk

− λu‖20,Gm+1

.

m∑

j=1

‖ũjhk+1
− Phk+1

u‖21,Gj
+ ‖λhk

uhk
− λu‖20,Gm+1

.(28)

Combining (11), (22), (26) and (28) leads to

‖ũhk+1
− Phk+1

u‖21,Ω

.

m∑

j=1

ρΩj
(H)2‖uhk

− Phk+1
u‖1,Ωj

+
m+1∑

j=1

‖uhk
− Phk+1

u‖20,Ωj

+

m∑

j=1

‖λhk
uhk

− λu‖20,Ωj
+ ‖λhk

uhk
− λu‖20,Gm+1

. ρ2Ω(H)‖uhk
− Phk+1

u‖21,Ω + ‖uhk
− Phk+1

u‖20,Ω + ‖λhk
uhk

− λu‖20,Ω

. ρ2Ω(H)‖uhk
− u‖21,Ω + ρ2Ω(H)‖u− Phk+1

u‖21,Ω + ‖uhk
− u‖20,Ω

+‖u− Phk+1
u‖20,Ω + |λ− λhk

|2‖u‖20,Ω + λ2‖uhk
− u‖20,Ω.

Together with the error estimate of the finite element projection

‖u− Phk+1
u‖1,Ω . δhk+1

(λ)
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and (17), (21), we have

‖u− ũhk+1
‖1,Ω . ‖u− Phk+1

u‖1,Ω + |λ− λhk
|+ ‖u− uhk

‖0,Ω

+ρΩ(H)‖u− uhk
‖1,Ω

. ρΩ(H)εhk
(λ) + ε2hk

(λ) + δhk+1
(λ).(29)

We come to estimate the error for the eigenpair solution (λhk+1
, uhk+1

) of problem
(14). Based on the error estimate theory of eigenvalue problems by finite element
methods (see, e.g., Proposition 3.1 or [3, Theorem 9.1]) and the definition of the
space VH,hk+1

, the following estimates hold

‖u− uhk+1
‖1,Ω . sup

w∈M(λ)

inf
v∈VH,hk+1

‖w − v‖1,Ω . ‖u− ũhk+1
‖1,Ω,(30)

and

‖u− uhk+1
‖0,Ω . ρ̃Ω(H)‖u− uhk+1

‖1,Ω,

where

ρ̃Ω(H) = sup
f∈V,‖f‖0,Ω=1

inf
v∈VH,hk+1

‖L−1f − v‖1,Ω ≤ ρΩ(H).

So we obtain the desired result (18), (19) and the estimate (20) can be obtained by
Proposition 3.2 and (18). �

4.2. Multilevel correction process. Now we introduce a type of multilevel local
and parallel scheme based on the one correction step defined in Algorithm 4.1. This
type of multilevel method can obtain the same optimal error estimate as solving
the eigenvalue problem directly in the finest finite element space.

In order to do multilevel local and parallel scheme, we define a sequence of
triangulations Thk

(Ω) of Ω determined as follows. Suppose Th1
(Ω) is obtained from

TH(Ω) by the regular refinement and let Thk
(Ω) be obtained from Thk−1

(Ω) via

regular refinement (produce βd congruent elements) such that

hk ≈
1

β
hk−1 for k ≥ 2.

Based on this sequence of meshes, we construct the corresponding linear finite
element spaces such that for each j = 1, 2, · · · ,m

V0H(Ωj) ⊂ V0h1
(Ωj) ⊂ V0h2

(Ωj) ⊂ · · · ⊂ V0hn
(Ωj)

and the following relation of approximation errors holds

δhk
(λ) ≈

1

β
δhk−1

(λ), k = 2, · · · , n.(31)

Remark 4.1. The relation (31) is reasonable since we can choose δhk
(λ) = hk (k =

1, · · · , n). Always the upper bound of the estimate δhk
(λ) . hk holds. Recently, we

also obtain the lower bound δhk
(λ) & hk (c.f. [16]).

Algorithm 4.2. Multilevel Correction Scheme

(1) Solve the following eigenvalue problem in V0h1
(Ω):

Find (λh1
, uh1

) ∈ R× V0h1
(Ω) such that b(uh1

, uh1
) = 1 and

a(uh1
, vh1

) = λh1
b(uh1

, vh1
), ∀vh1

∈ V0h1
(Ω).

(2) Construct a series of finer finite element spaces V0h2
(Ωj), · · · , V0hn

(Ωj)
such that ρΩ(H) & δh1

(λ) ≥ δh2
(λ) ≥ · · · ≥ δhn

(λ) and (31) holds.
(3) Do k = 1, · · · , n− 1
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• Obtain a new eigenpair approximation (λhk+1
, uhk+1

) ∈ R× V0hk+1
(Ω)

by Algorithm 4.1

(λhk+1
, uhk+1

) = Correction(V0H(Ω), λhk
, uhk

, V0hk+1
(Ω)).

end Do

Finally, we obtain an eigenpair approximation (λhn
, uhn

) ∈ R× V0hn
(Ω).

The following theorem states the prior analysis of an eigenpair approximation
(λhn

, uhn
) obtained by Algorithm 4.2.

Theorem 4.2. After implementing Algorithm 4.2, there exists an eigenfunction
u ∈ M(λ) such that the resultant eigenpair approximation (λhn

, uhn
) has the fol-

lowing error estimate

‖u− uhn
‖1,Ω . δhn

(λ),(32)

‖u− uhn
‖0,Ω . ρΩ(H)δhn

(λ),(33)

|λ− λhn
| . δ2hn

(λ),(34)

under the condition CβρΩ(H) < 1 for some constant C.

Proof. Based on Proposition 3.1, there exists an eigenfunction u ∈M(λ) such that

|λ− λh1
| . δ2h1

(λ),(35)

‖u− uh1
‖1,Ω . δh1

(λ),(36)

‖u− uh1
‖0,Ω . ρΩ(h1)δh1

(λ).(37)

Let εh1
(λ) := δh1

(λ). From (35)-(37) and Theorem 4.1, we have

εhk+1
(λ) . ρΩ(H)εhk

(λ) + ε2hk
(λ) + δhk+1

(λ)

. ρΩ(H)εhk
(λ) + δhk+1

(λ), for 1 ≤ k ≤ n− 1.

by a process of induction with the condition ρΩ(H) & δh1
(λ) ≥ δh2

(λ) ≥ · · · ≥
δhn

(λ). Then by recursive relation, we obtain

εhn
(λ) . ρΩ(H)εhn−1

(λ) + δhn
(λ)

. ρ2Ω(H)εhn−2
(λ) + ρΩ(H)δhn−1

(λ) + δhn
(λ)

.

n∑

k=1

(ρΩ(H))n−kδhk
(λ).(38)

Based on the proof in Theorem 4.1, (31) and (38), the final eigenfunction approxi-
mation uhn

has the error estimate

‖u− uhn
‖1,Ω . εhn

(λ) .

n∑

k=1

(ρΩ(H))n−kδhk
(λ)

=

n∑

k=1

(
βρΩ(H)

)n−k
δhn

(λ) .
δhn

(λ)

1− βρΩ(H)

. δhn
(λ).

The desired result (33) and (34) can also be proved with the similar way in the
proof of Theorem 4.1. �
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5. Work estimate of algorithm

In this section, we turn our attention to the estimate of computational work for
Algorithm 4.2. We will show that Algorithm 4.2 makes solving eigenvalue problem
need almost the same work as solving the boundary value problem by the local and
parallel finite element method.

First, we define the dimension of each level linear finite element space as

N j
k := dimV0hk

(Ωj) and Nk := dimV0hk
(Ω), k = 1, · · · , n, j = 1, · · · ,m+ 1.

Then we have

(39) N j
k ≈

( 1
β

)d(n−k)

N j
n and N j

k ≈
Nk

m
, k = 1, · · · , n.

Theorem 5.1. Assume the eigenvalue problem solving in the coarsest spaces V0H(Ω)
and V0h1

(Ω) need work O(MH) and O(Mh1
), respectively, and the work of solving

the boundary value problem in Vhk
(Ωj) and Vhk

(Gm+1) be O(N j
k) and O(Nm+1

k ),
∀k = 1, 2, · · · , n and j = 1, 2, · · · ,m. Then the tasks involved in Algorithm 4.2
is O(Nn/m +MH logNn +Mh1

) for each computer node of the cluster. Further-
more, the tasks in each computer node will be O(Nn/m) provided MH ≪ Nn/m
and Mh1

≤ Nn/m.

Proof. Let Wk denote the work in any computer node of the one correction step in
the k-th finite element space Vhk

. Then with the definition, we have

Wk = O(Nk/m+MH) for k ≥ 2.(40)

Iterating (40) and using the fact (39), we obtain

The total work in any computer node ≤
n∑

k=1

Wk

= O
(
Mh1

+
n∑

k=2

(
Nk/m+MH

))

= O
( n∑

k=2

Nk/m+ (n− 2)MH +Mh1

)

= O
( n∑

k=2

( 1
β

)d(n−k)
Nn/m+ (n− 2)MH +Mh1

)

= O(Nn/m+MH logNn +Mh1
).(41)

This is the desired result O(Nn/m+MH logNn +Mh1
) and the one O(Nn/m) can

be obtained by the conditions MH ≪ Nn/m and Mh1
≤ Nn/m. �

Remark 5.1. The linear complexity O(N j
k ) and O(Nm+1

k ) can be arrived by the
so-called multigrid method (see, e.g., [5, 6, 11, 17, 24]).

6. Numerical result

In this section, we give two numerical examples to illustrate the efficiency of the
multilevel correction algorithm (Algorithm 4.2) proposed in this paper.

Example 6.1. In this example, the eigenvalue problem (7) is solved on the square
Ω = (−1, 1)× (−1, 1) with a(u, v) =

∫
Ω∇u · ∇vdΩ and b(u, v) =

∫
Ω uvdΩ.
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Figure 3.
⋃4

j=1 D̄j = Ω̄, G5 = Ω \ (∪4
j=1Ḡj).

As in Figure 3, we first divide the domain Ω into four disjoint subdomains D1,

· · · , D4 such that
⋃4

j=1 D̄j = Ω̄, Di ∩Dj = ∅, then enlarge each Dj to obtain Ωj

such that Gj ⊂⊂ Dj ⊂ Ωj ⊂ Ω for i, j = 1, 2, 3, 4 and

G5 = Ω \ (∪4
j=1Ḡj).

Table 1. The errors for the first 5 eigenvalue approximations.

DOFS Errors
1-st
order

2-nd
order

3-rd
order

4-th
order

5-th
order

41 |λ− λh1
|

0.628291
-

3.999872
-

5.883511
-

14.020924
-

19.994750
-

137 |λ− λh2
|

0.167761
1.905019

1.109862
1.849572

1.536843
1.936706

4.242046
1.724749

4.609045
2.117081

497 |λ− λh3
|

0.042247
1.989463

0.264674
2.068088

0.364833
2.074660

0.912915
2.216207

1.199432
1.942116

1889 |λ− λh4
|

0.010636
1.989823

0.065304
2.018958

0.090301
2.014416

0.222163
2.038859

0.324016
1.888211

7361 |λ− λh5
|

0.002668
1.994903

0.016257
2.006052

0.022555
2.001300

0.055572
1.999169

0.088903
1.865761

29057 |λ− λh6
|

0.000667
1.998504

0.004051
2.004732

0.005641
1.999316

0.014060
1.982763

0.025010
1.829718

115457 |λ− λh7
|

0.000166
1.999660

0.001011
2.002346

0.001413
1.996823

0.003588
1.970195

0.007459
1.745342

460289 |λ− λh8
|

0.000041
1.999928

0.000252
1.999725

0.000354
1.994054

0.000924
1.955971

0.002412
1.628473

Table 2. The errors for the simple (1-st and 5-th) eigenfunction approximations.

Eigenfunctions ‖u− uh1
‖1,Ω ‖u− uh2

‖1,Ω ‖u− uh3
‖1,Ω ‖u− uh4

‖1,Ω ‖u− uh5
‖1,Ω

1-st 0.269991 0.135956 0.068195 0.034119 0.017064
Order – 0.989771 0.995402 0.999091 0.999619
4-th 1.025704 0.514925 0.259424 0.129254 0.064645
Order – 0.994180 0.989050 1.005103 0.999598
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The sequence of finite element spaces is constructed by using the linear or qua-
dratic element on the nested sequence of triangulations which are produced by the
regular refinement with β = 2 (connecting the midpoints of each edge).

Algorithm 4.2 is applied to solve the eigenvalue problem. If the linear element
is used, from Theorem 4.2, we have the following error estimates for eigenpair
approximation

|λhn
− λ| . h2n, ‖uhn

− u‖1,Ω . hn

which means the multilevel correction method can also obtain the optimal conver-
gence order.

Tables 1 and 2 shows the numerical results for the first five eigenvalues and the
1-st, 4-th eigenfunctions (they are simple) by the linear finite element method in
which “Order” means the estimation of the convergence rate calculated from the
simulation. It is observed from Tables 1 and 2 that the numerical results confirm
the efficiency of the proposed algorithm.

Next we discuss the effectiveness of δ and the coarsest mesh size H to the numer-
ical results by Algorithm 4.2. The variation of approximation error with different
δ and H is illustrated in Figure 4, which shows that Algorithm 4.2 obtains the
optimal convergence order under the soft requirements H ≤ 0.25 and δ ≥ 0.1 (easy
to be met).
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Figure 4. The error estimate for the first 6 eigenvalue approxi-
mations by the linear element: The left subfigure is for H = 0.5
and δ = 0.05, 0.1, 0.2. The right subfigure is for δ = 0.05 and
H = 0.5, 0.25, 0.125.

Example 6.2. In the second example, we solve the eigenvalue problem (7) using
linear and quadratic element on the square Ω = (−1, 1) × (−1, 1) with a(u, v) =∫
Ω
A∇u · ∇vdΩ, b(u, v) =

∫
Ω
φuvdΩ and

A =

(
e1+x2

exy

exy e1+y2

)
and φ = (1 + x2)(1 + y2).

Since the exact eigenvalue is not known, we use the accurate enough approx-
imations [17.982932, 33.384973, 38.381968, 47.670103, 66.874113, 68.323961] by the
extrapolation method as the first 6 exact eigenvalues to investigate the errors. The
corresponding numerical results for the first 6 eigenvalues by the linear finite el-
ement method are shown in Figure 5, from which the efficiency of the proposed
algorithm in this paper is confirmed again.
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Figure 5. The error estimate for the first 6 eigenvalue approxi-
mations with H = 0.1 and δ = 0.1.

Example 6.3. In the third example, the eigenvalue problem with discontinious
coefficients is considered. We solve the eigenvalue problem (7) with the linear finite
element method on the square Ω = (−1, 1)× (−1, 1) and a(u, v) =

∫
ΩA∇u · ∇vdΩ,

b(u, v) =
∫
Ω
uvdΩ and

A =

(
2 0
0 2

)
in (−1, 0]× (−1, 0] ∪ (0, 1)× (0, 1),

A =

(
4 0
0 4

)
in (0, 1)× (−1, 0] ∪ (−1, 0]× (0, 1).

Similar to the second example, the exact eigenvalues are not known. Then
we also use the accurate enough approximations [14.428518, 30.468178, 37.830313,
67.778845, 77.228072, 79.293376] by the extrapolation method as the first 6 exact
eigenvalues to investigate the convergence behavior. The corresponding numerical
results for the first 6 eigenvalues by the linear finite element method are shown
in Figure 6, from which the efficiency of the proposed algorithm in this paper is
confirmed again.
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Figure 6. The error estimate for the first 6 eigenvalue approxi-
mations with H = 0.125 and δ = 0.1.

7. Concluding remarks

In this paper, we give a new type of multilevel local and parallel method based
on multigrid discretization to solve the eigenvalue problems. The idea here is to use
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the multilevel correction method to transform the solution of eigenvalue problem
to a series of solutions of the corresponding boundary value problems with the
local and parallel method. As stated in the numerical examples, Algorithm 4.2 for
simple eigenvalue cases can be extended to the corresponding version for multiple
eigenvalue cases. For more information, please refer [23].

Furthermore, the framework here can also be coupled with the adaptive refine-
ment technique. Some articles [4, 18, 19, 20] have contributed to the adaptive finite
element methods for eigenvalue problems. Also the ideas can be extended to other
types of linear and nonlinear eigenvalue problems. These will be investigated in our
future work.
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