DOI: 10.4208/ata.2013.v29.n1.2

Stability Results for Jungck-Kirk-Mann and Jungck-Kirk Hybrid Iterative Algorithms

M. O. Olatinwo*

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

Received 22 February 2010

Abstract. In this paper, we introduce two hybrid iterative algorithms of Jungck-Kirk-Mann (J-K-M) and Jungck-Kirk (J-K) types to obtain some stability results for nonselfmappings by employing a certain general contractive condition. Our results generalize and extend most of the existing ones in the literature.

Key Words: Stability result, Jungck-Kirk-Mann, Jungck-Kirk.

AMS Subject Classifications: 47H06, 54H25

1 Introduction

Let (E,d) be a complete metric space, and for $T: E \rightarrow E$ a selfmap of E, let

$$F_T = \{ p \in E | Tp = p \}$$

be the set of fixed points of *T*. Also, for $S,T:Y \rightarrow E$, let $C(S,T) = \{z \in Y | Sz = Tz = p\}$ be the set of all coincidence points of *S* and *T*.

Definition 1.1. (see [20]) Let $S,T:Y \rightarrow E,T(Y) \subseteq S(Y)$ and z a coincidence point of S and T, that is,

$$Sz = Tz = p$$
.

For any $x_0 \in Y$, let the sequence $\{Sx_n\}_{n=0}^{\infty}$ generated by the iterative procedure

$$Sx_{n+1} = f(T, x_n), \quad n = 0, 1, \cdots,$$
 (1.1)

converge to *p*. Let $\{Sy_n\}_{n=0}^{\infty} \subset E$ be an arbitrary sequence, and set

$$\epsilon_n = d(Sy_{n+1}, f(T, y_n)), \quad n = 0, 1, \cdots$$

Then, the iterative procedure (1.1) will be called (S,T)-stable if and only if $\lim_{n\to\infty} \epsilon_n = 0$ implies that $\lim_{n\to\infty} Sy_n = p$.

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. *Email address:* molaposi@yahoo.com (M. O. Olatinwo)

This definition reduces to that of the stability of iterative process in the sense of Harder and Hicks [6] when Y = E and S = I (identity operator).

Remark 1.1. (i) If in (1.1), for $x_0 \in E$,

$$Sx_{n+1} = f(T, x_n) = (1 - \alpha_n)Sx_n + \alpha_n Tx_n, \quad n = 0, 1, \cdots, \quad \alpha_n \in [0, 1],$$
(1.2)

then we get the iterative process of Singh et al. [25].

(ii) If in (1.1), for $x_0 \in E$, Y = E, S = I (identity operator), then we obtain

$$x_{n+1} = f(T, x_n) = (1 - \alpha_n) x_n + \alpha_n T x_n, \quad n = 0, 1, \cdots, \quad \alpha_n \in [0, 1],$$
(1.3)

which is known as the Mann iterative process (see Mann [11]).

(iii) Also, if in (1.1), for $x_0 \in E$, Y = E, S = I (identity operator), we have

$$x_{n+1} = f(T, x_n) = \sum_{i=0}^k \alpha_i T^i x_n, \quad \sum_{i=0}^k \alpha_i = 1, \quad n = 0, 1, \cdots,$$
(1.4)

where *k* is a fixed integer and $\alpha_i \ge 0$, $\alpha_0 \ne 0$, $\alpha_i \in [0,1]$, and (1.4) is the Kirk's iterative process [9].

For several stability results that have been obtained by various authors and different contractive definitions, we refer to Berinde [3], Harder and Hicks [6], Osilike [14], Rhoades [17, 18] and others in the reference of this paper.

We introduce the following hybrid iterative algorithms to establish our results:

Let $(E, \|.\|)$ be a normed linear space, $S, T : Y \to E$ and $T(Y) \subseteq S(Y)$. Then, for $x_0 \in Y$, consider the sequence $\{Sx_n\}_{n=0}^{\infty} \subset E$ defined by

$$Sx_{n+1} = \alpha_{n,0}Sx_n + \sum_{i=1}^k \alpha_{n,i}T^ix_n, \quad n = 0, 1, \cdots, \quad \sum_{i=0}^k \alpha_{n,i} = 1,$$
(1.5)

 $\alpha_{n,i} \ge 0$, $\alpha_{n,0} \ne 0$, $\alpha_{n,i} \in [0,1]$, where *k* is a fixed integer.

If in (1.5), $\alpha_{n,i} = \alpha_i$, then we obtain the following interesting iterative scheme: For $x_0 \in Y$, define the sequence $\{Sx_n\}_{n=0}^{\infty} \subset E$ by

$$Sx_{n+1} = \alpha_0 Sx_n + \sum_{i=1}^k \alpha_i T^i x_n, \quad n = 0, 1, \cdots, \quad \sum_{i=0}^k \alpha_i = 1,$$
(1.6)

 $\alpha_i \ge 0, \alpha_0 \ne 0, \alpha_i \in [0,1]$, where *k* is a fixed integer.

Remark 1.2. The scheme defined in (1.5) shall be called the Jungck-Kirk-Mann iterative algorithm while that of (1.6) shall be called the Jungck-Kirk iterative algorithm.

Remark 1.3. (i) If in (1.5), k=1, Y=E, S=I (*I* being the identity operator), then we obtain the Mann iterative process in (1.3).

(ii) Also, if in (1.5), k = 1, then we obtain the Jungck-Mann iterative process in (1.2).

(iii) The iterative processes of Picard [1], Jungck [8], Krasnoselskij [10] and Schaefer [19] are also particular cases of those defined in (1.5) and (1.6). Indeed, (1.5) also generalizes one of the iterative processes defined by the author in [16] but independent of those introduced in [14, 15, 17, 18].

Lemma 1.1. (see [3,4]) If δ is a real number such that $0 \le \delta < 1$, and $\{\epsilon'_n\}_{n=0}^{\infty}$ is a sequence of positive numbers such that $\lim_{n\to\infty} \epsilon'_n = 0$, then for any sequence of positive numbers $\{u_n\}_{n=0}^{\infty}$ satisfying $u_{n+1} \le \delta u_n + \epsilon'_n$, $n = 0, 1, \cdots$, we have $\lim_{n\to\infty} u_n = 0$.

We shall employ the following contractive condition: For commuting operators S,T: $Y \rightarrow E$ on an arbitrary set Y with values in $E, T(Y) \subseteq S(Y)$, there exist $a \in [0,1)$ and $\varphi \colon \mathbf{R}^+ \rightarrow \mathbf{R}^+$, a sublinear, monotone increasing function with $\varphi(0) = 0$ such that

$$||Tx - Ty|| \le \varphi(||Sx - Tx||) + a||Sx - Sy||, \quad \forall x, y \in Y.$$
(1.7)

Remark 1.4. The contractive condition (1.7) is more general than those of Singh et al. [25] and several others in the literature. For instance, if in (1.7), $\varphi(u) = Lu$, $\forall u \in \mathbf{R}^+$, $L \ge 0$, then we obtain one of the contractive conditions of [25].

Also, if in (1.7), $\varphi(u) = 0$, $\forall u \in \mathbf{R}^+$, then we obtain the second contractive condition in [25].

The contractive condition (1.7) also reduces to those of [7, 13, 16, 19, 20] and so on, in the selfmapping setting.

Lemma 1.2. Let $(E, \|\cdot\|)$ be a normed linear space and $S, T: Y \to E$ be commuting operators on an arbitrary set Y with values in E satisfying (1.7) such that

$$T(Y) \subseteq S(Y), \quad \|S^2 x - T(Sx)\| \le \|Sx - Tx\|, \quad \forall x \in Y,$$

and

$$||S^2x - S^2y|| \le ||Sx - Sy||, \quad \forall x, y \in Y.$$

Let $\varphi : \mathbf{R}^+ \to \mathbf{R}^+$ be a sublinear, monotone increasing function such that $\varphi(0) = 0$. Let z be a coincidence point of S,T,Sⁱ and Tⁱ, i.e.,

$$Sz = Tz = p$$
 and $S^i z = T^i z = p$.

Then, $\forall i \in \mathbf{N}$ *and* $\forall x, y \in Y$ *, we have*

$$\|T^{i}x - T^{i}y\| \leq \sum_{j=1}^{i} {i \choose j} a^{i-j} \varphi^{j} (\|Sx - Tx\|) + a^{i} \|Sx - Sy\|.$$
(1.8)

Proof. We now prove that φ is sublinear: In order to show that φ^i (i.e., iterate of φ) is sublinear, we have to show that φ is both subadditive and positively homogeneous.

We first establish that φ subadditive implies that each iterate φ^j of φ is also subadditive. Since φ is subadditive, we have

$$\varphi(x+y) \leq \varphi(x) + \varphi(y), \quad \forall x, y \in \mathbf{R}_+.$$

Therefore, using subadditivity of φ in φ yields

$$\varphi^2(x+y) = \varphi(\varphi(x+y)) \le \varphi(\varphi(x) + \varphi(y)) \le \varphi(\varphi(x)) + \varphi(\varphi(y)) = \varphi^2(x) + \varphi^2(y),$$

which implies that φ^2 is subadditive.

Similarly, applying subadditivity of φ^2 in φ^3 , we get

$$\varphi^{3}(x+y) = \varphi(\varphi^{2}(x+y)) \le \varphi(\varphi^{2}(x) + \varphi^{2}(y)) \le \varphi(\varphi^{2}(x)) + \varphi(\varphi^{2}(y))$$

= $\varphi^{3}(x) + \varphi^{3}(y),$

which implies that φ^3 is also subadditive. Hence, in general, each φ^n , $n = 1, 2, \dots$, is sub-additive.

We now prove that φ positively homogeneous implies that each iterate φ^i of φ is also positively homogeneous: Therefore, we have

$$\varphi(\alpha x) = \alpha \varphi(x), \quad \forall x \in \mathbf{R}^+ \text{ and } \alpha > 0.$$

Using positive homogeneity of φ in φ^2 , we have

$$\varphi^{2}(\alpha x) = \varphi(\varphi(\alpha x)) = \varphi(\alpha \varphi(x))$$
$$= \alpha \varphi(\varphi(x)) = \alpha \varphi^{2}(x), \quad \forall x \in \mathbf{R}_{+} \text{ and } \alpha > 0,$$

which implies that φ^2 is positively homogeneous.

Hence, in general, each φ^n , $n = 1, 2, \cdots$, is positively homogeneous.

The second part of the proof of this Lemma is by mathematical induction (i.e., induction on *i*). If i = 1, then (1.8) becomes

$$||Tx - Ty|| \le \sum_{j=1}^{1} {\binom{1}{j}} a^{1-j} \varphi^{j} (||Sx - Tx||) + a||Sx - Sy|| = \varphi (||Sx - Tx||) + a||Sx - Sy||.$$

i.e., (1.8) reduces to (1.7) when i = 1 and hence the result holds.

Assume as an inductive hypothesis that (1.8) holds for $i = m, m \in \mathbb{N}$, i.e.,

$$\|T^{m}x - T^{m}y\| \leq \sum_{j=1}^{m} {m \choose j} a^{m-j} \varphi^{j}(\|Sx - Tx\|) + a^{m} \|Sx - Sy\|.$$

We then show that the statement is true for i = m + 1;

$$\begin{split} \|T^{m+1}x - T^{m+1}y\| &= \|T^m(Tx) - T^m(Ty)\| \\ &\leq \sum_{j=1}^m \binom{m}{j} a^{m-j} \varphi^j (\|S(Tx) - T^2x\|) + a^m \|S(Tx) - S(Ty)\| \\ &= \sum_{j=1}^m \binom{m}{j} a^{m-j} \varphi^j (\|T(Sx) - T(Tx)\|) + a^m \|T(Sx) - T(Sy)\| \\ &\leq \sum_{j=1}^m \binom{m}{j} a^{m-j} \varphi^j (\varphi(\|S^2x - T(Sx)\|) + a\|S^2x - S(Tx)\|) \\ &+ a^m (\varphi(\|S^2x - T(Sx)\|) + a\|S^2x - S^2y\|)) \\ &\leq \sum_{j=1}^m \binom{m}{j} a^{m-j} \varphi^j (\varphi(\|Sx - Tx\|) + a\|Sx - Tx\|) \\ &+ a^m (\varphi(\|Sx - Tx\|) + a\|Sx - Sy\|)) \\ &\leq \sum_{j=1}^m \binom{m}{j} a^{m-j} \varphi^{j+1} (\|Sx - Tx\|) + \sum_{j=1}^m \binom{m}{j} a^{m+1-j} \varphi^j (\|Sx - Tx\|) \\ &+ a^m \varphi(\|Sx - Tx\|) + a^{m+1}\|Sx - Sy\| \\ &= \binom{m}{m} \varphi^{m+1} (\|Sx - Tx\|) + \left[\binom{m}{m-1} + \binom{m}{m}\right] a \varphi^m (\|Sx - Tx\|) \\ &+ \left[\binom{m}{m-2} + \binom{m}{m-1}\right] a^2 \varphi^{m-1} (\|Sx - Tx\|) + \cdots \\ &+ \left[\binom{m}{2} + \binom{m}{3}\right] a^{m-2} \varphi^3 (\|Sx - Tx\|) + \left[\binom{m}{1} + \binom{m}{2}\right] a^{m-1} \varphi^2 (\|Sx - Tx\|) \\ &+ \left[\binom{m}{1} + \binom{m}{0}\right] a^m \varphi(\|Sx - Tx\|) + (m+1) |Sx - Sy\| \\ &= \binom{m+1}{m+1} \varphi^{m+1} (\|Sx - Tx\|) + \binom{m+1}{m} a \varphi^m (\|Sx - Tx\|) \\ &+ \binom{m+1}{m-1} a^2 \varphi^{m-1} (\|Sx - Tx\|) + \cdots + \binom{m+1}{2} a^{m-1} \varphi^2 (\|Sx - Tx\|) \\ &+ \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^{m+1} \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m \varphi(\|Sx - Tx\|) + a^m \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m (\|Sx - Tx\|) + a^m \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{1} a^m (\|Sx - Tx\|) + a^m \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{m} a^m (\|Sx - Tx\|) + a^m \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{m} a^m (\|Sx - Tx\|) + a^m \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{m} a^m (\|Sx - Tx\|) + a^m \|Sx - Sy\| \\ &= \binom{m+1}{m} \binom{m+1}{m} a^m \|Sx - Sy\| \\ &=$$

2 Main results

Theorem 2.1. Let $(E, \|.\|)$ be a normed linear space. Let $S, T: Y \to E$ be commuting operators on an arbitrary set Y with values in E such that $T(Y) \subseteq S(Y)$ and S(Y) or T(Y) is a complete

subspace of E. Let z be a coincidence point of S, T, S^i and T^i , i.e.,

$$S(z) = T(z) = p, \quad S^i z = T^i z = p.$$

Let $x_0 \in Y$ and let $\{Sx_n\}_{n=0}^{\infty} \subset E$ defined by (1.5) be the Jungck-Kirk-Mann iterative process converging to p, with $\alpha_{n,i} \in [0,1]$, $i=0,1,\cdots,k$ and $\sum_{i=0}^{k} \alpha_{n,i}=1$. Suppose that S and T satisfy the contractive condition (1.7), where $\varphi: \mathbf{R}^+ \to \mathbf{R}^+$ is a sublinear monotone increasing function such that $\varphi(0) = 0$. Then, the Jungck-Kirk-Mann iterative process is (S,T)-stable.

Proof. Let

$$\{Sy_n\}_{n=0}^{\infty}\subset E$$

and

$$\epsilon_n = \left\| Sy_{n+1} - \alpha_{n,0}Sy_n - \sum_{i=1}^k \alpha_{n,i}T^iy_n \right\|.$$

Let $\lim_{n\to\infty} \epsilon_n = 0$. Then, we shall prove that $\lim_{n\to\infty} Sy_n = p$, by using both Lemma 1.1 and Lemma 1.2 as well as the triangle inequality. Therefore,

$$\begin{split} \|Sy_{n+1} - p\| &\leq \left\|Sy_{n+1} - \alpha_{n,0}Sy_n - \sum_{i=1}^k \alpha_{n,i}T^iy_n\right\| + \left\|\alpha_{n,0}Sy_n + \sum_{i=1}^k \alpha_{n,i}T^iy_n - p\right\| \\ &= \epsilon_n + \left\|\alpha_{n,0}Sy_n + \sum_{i=1}^k \alpha_{n,i}T^iy_n - \sum_{i=0}^k \alpha_{n,i}p\right\| \\ &= \epsilon_n + \left\|\alpha_{n,0}(Sy_n - p) + \sum_{i=1}^k \alpha_{n,i}(T^iy_n - p)\right\| \\ &\leq \|\alpha_{n,0}\| \|Sy_n - p\| + \sum_{i=1}^k \alpha_{n,i}\|p - T^iy_n\| + \epsilon_n \\ &= \alpha_{n,0}\|Sy_n - p\| + \sum_{i=1}^k \alpha_{n,i}\left\{\sum_{j=1}^i \binom{i}{j}a^{i-j}\varphi^j(\|Sz - Tz\|) + a^i\|Sz - Sy_n\|\right\} + \epsilon_n \\ &\leq \alpha_{n,0}\|Sy_n - p\| + \sum_{i=1}^k \alpha_i\left\{\sum_{j=1}^i \binom{i}{j}a^{i-j}\varphi^j(0) + a^i\|p - Sy_n\|\right\} + \epsilon_n \\ &= \alpha_{n,0}\|Sy_n - p\| + \sum_{i=1}^k \alpha_i\left\{\sum_{j=1}^i \binom{i}{j}a^{i-j}\varphi^j(0) + a^i\|p - Sy_n\|\right\} + \epsilon_n \end{split}$$

where $\varphi^{j}(0) = 0$. Since

$$0 \leq \sum_{i=0}^{k} \alpha_{n,i} a^{i} \leq \left| \sum_{i=0}^{k} \alpha_{n,i} a^{i} \right| \leq \sum_{i=0}^{k} |\alpha_{n,i}| |a^{i}| < 1,$$

using Lemma 1.1 in (2.1) yields

$$\lim_{n\to\infty} \|Sy_n-p\|=0,$$

that is,

$$\lim_{n\to\infty}Sy_n=p.$$

Conversely, let $\lim_{n\to\infty} Sy_n = p$. Then, by applying both Lemma 1.2 and the triangle inequality, we have

$$\begin{split} \epsilon_{n} &= \left\| Sy_{n+1} - \alpha_{n,0}Sy_{n} - \sum_{i=1}^{k} \alpha_{n,i}T^{i}y_{n} \right\| \\ &\leq \left\| Sy_{n+1} - p \right\| + \left\| p - \alpha_{n,0}Sy_{n} - \sum_{i=1}^{k} \alpha_{n,i}T^{i}y_{n} \right\| \\ &\leq \left\| Sy_{n+1} - p \right\| + \alpha_{n,0}\left\| Sy_{n} - p \right\| + \sum_{i=1}^{k} \alpha_{n,i}\left\| p - T^{i}y_{n} \right\| \\ &= \left\| Sy_{n+1} - p \right\| + \alpha_{n,0}\left\| Sy_{n} - p \right\| + \sum_{i=1}^{k} \alpha_{n,i}\left\| T^{i}z - T^{i}y_{n} \right\| \\ &\leq \left\| Sy_{n+1} - p \right\| + \left(\sum_{i=0}^{k} \alpha_{i}a^{i} \right) \left\| Sy_{n} - p \right\| \to 0 \quad \text{as } n \to \infty. \end{split}$$

The proof is complete.

Theorem 2.2. Let $(E, \|.\|)$ be a normed linear space. Let $S, T: Y \to E$ be commuting operators on an arbitrary set Y with values in E such that $T(Y) \subseteq S(Y)$ and S(Y) or T(Y) is a complete subspace of E. Let z be a coincidence point of S, T, Sⁱ and Tⁱ, i.e.,

$$S(z) = T(z) = p, \quad S^i z = T^i z = p.$$

Let $x_0 \in Y$ and let $\{Sx_n\}_{n=0}^{\infty} \subset E$ defined by (1.6) be the Jungck-Kirk iterative process converging to p, with $\alpha_i \in [0,1]$, $i = 0,1, \dots, k$ and $\sum_{i=0}^k \alpha_i = 1$. Suppose that S and T satisfy the contractive condition (1.7), where $\varphi: \mathbf{R}^+ \to \mathbf{R}^+$ is a sublinear monotone increasing function such that $\varphi(0)=0$. Then, the Jungck-Kirk iterative process is (S,T)-stable.

Proof. The proof is similar to that of Theorem 2.1.

Remark 2.1. Both Theorem 2.1 and Theorem 2.2 are generalizations and extensions of several results in the literature. In particular, we refer to some similar results in Berinde [3], Osilike [14], Osilike and Udomene [15], Rhoades [17, 18] Singh et al. [20] and some of the results of the author [7, 9, 13, 16]. However, our results are independent of those of [14, 15, 17, 18].

References

- [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181.
- [2] I. Beg and M. Abbas, Equivalence and stability of random fixed point iterative procedures, J. Appl. Math. Stoch. Anal., (2006), Article ID 23297, 1–19.
- [3] V. Berinde, On the stability of some fixed point procedures, Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica-Informatica, Vol. XVIII (1) (2002), 7–14.
- [4] V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag Berlin Heidelberg, 2007.
- [5] Lj and B. Ciric, Some Recent Results in Metrical Fixed Point Theory, University of Belgrade, 2003.
- [6] A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33(5) (1988), 693–706.
- [7] C. O. Imoru and M. O. Olatinwo, On the stability of picard and mann iteration processes, Carp. J. Math., 19(2) (2003), 155–160.
- [8] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83(4) (1976), 261–263.
- [9] M. O. Olatinwo, O. O. Owojori and C. O. Imoru, Some stability results on Krasnolslseskij and Ishikawa fixed point iteration procedures, J. Math. Stat., 2(1) (2006), 360–362.
- [10] W. A. Kirk, On successive approximations for nonexpansive mappings in Banach spaces, Glasgow Math. J., 12 (1971), 6–9.
- [11] M. A. Krasnoselskij, Two remarks on the method of successive approximations, Uspehi Mat. Nauk. 10, 63(1) (1955), 123–127.
- [12] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 44 (1953), 506–510.
- [13] M. O. Olatinwo, O. O. Owojori and C. O. Imoru, Some stability results for fixed point iteration processes, Aus. J. Math. Anal. Appl., 3(2) (2006), Article 8, 1–7.
- [14] M. O. Olatinwo, Some stability and strong convergence results for the Jungck-Ishikawa iteration process, Creative Math. Inform., 17 (2008), 33–42.
- [15] M. O. Olatinwo, Some stability results for two hybrid fixed point iterative algorithms of Kirk-Ishikawa and Kirk-Mann type, J. Adv. Math. Studies, 1(1-2) (2008), 87–96.
- [16] M. O. Olatinwo, Some stability results for two hybrid fixed points iterative algorithms in normed linear space, Math. Vesnik, 614 (2009), 247–256.
- [17] M. O. Olatinwo, Some unifying results on stability and strong convergence for some new iteration processes, Acta Math. Acad. Pedy Nyiregyhuiz, 25(1) (2009), 105–118.
- [18] M. O. Olatinwo, Some stability results for picard iterative process in uniform space, Vlad. Math. J., 12(4) (2010), 67–72.
- [19] M. O. Osilike, Some stability results for fixed point iteration procedures, J. Nigerian Math. Soc. Volume, 14/15 (1995), 17–29.
- [20] M. O. Osilikeand A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings, Indian J. Pure Appl. Math., 30(12) (1999), 1229–1234.
- [21] A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech., 47 (1967), 77–81.
- [22] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian J. Pure Appl. Math., 21(1) (1990), 1–9.
- [23] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures

II, Indian J. Pure Appl. Math., 24(11) (1993), 691–703.

- [24] H. Schaefer, Uber die methode sukzessiver approximationen, Jahresber. Deutsch. Math. Verein., 59 (1957), 131–140.
- [25] S. L. Singh, C. Bhatnagar and S. N. Mishra, Stability of Jungck-Type iterative procedures, Int. J. Math. Math. Sci., 19 (2005), 3035–3043.