WEIGHTED BOUNDEDNESS OF COMMUTATORS OF FRACTIONAL HARDY OPERATORS WITH BESOV-LIPSCHITZ FUNCTIONS

Shimo Wang

(Graduate University of Chinese Academy of Sciences, Heilongjiang University, China)

Dunyan Yan

(Graduate University of Chinese Academy of Sciences, China)

Received Dec. 24, 2011

Abstract. In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H_b^{α} , is bounded from $L_{x\gamma}^p(\mathbf{R}_+)$ to $L_{x\delta}^q(\mathbf{R}_+)$ with the bound explicitly worked out.

Key words: *fractional Hardy operator, commutator, Besov-Lipschitz function* **AMS (2010) subject classification:** 42B20, 42B35

1 Introduction and Main Results

Let f be a non-negative integrable function on $\mathbf{R}_+ = (0, \infty)$. The classical Hardy operator and its adjoint operator are defined by

$$Hf(x) := \frac{1}{x} \int_0^x f(t) \mathrm{d}t, \qquad x > 0$$

and

$$H^*f(x) := \int_x^\infty \frac{f(t)}{t} \mathrm{d}t, \qquad x > 0.$$

The following well-known integral inequalities is due to Hardy (cf.[5,6]).

Theorem A. If *f* is a non-negative measurable function on \mathbf{R}_+ and 1 , then the following two inequalities

$$\|Hf\|_{L^p(\mathbf{R}_+)} \le \frac{p}{p-1} \|f\|_{L^p(\mathbf{R}_+)}$$

Supported in part by the Natural Science Foundation of China under the Grant 10771221 and Natural Science Foundation of Beijing under the Grant 1092004.

and

$$||H^*f||_{L^p(\mathbf{R}_+)} \le p||f||_{L^p(\mathbf{R}_+)}$$

hold, where the constants $\frac{p}{p-1}$ and p are sharp.

For the n-dimensional case, Lu^[9] discussed the following Hardy operator defined on the product space,

$$\mathcal{H}f(x) := \frac{1}{x_1 \cdots x_n} \int_0^{x_1} \cdots \int_0^{x_n} f(t_1, \cdots, t_n) \mathrm{d}t_1 \cdots \mathrm{d}t_n, \quad x = (x_1, x_2, \cdots, x_n) \in \mathbf{R}_+^n$$
(1)

and the adjoint operator of the Hardy operator defined by

$$\mathcal{H}^*f(x) := \int_{x_1}^{\infty} \cdots \int_{x_n}^{\infty} \frac{f(t_1, \cdots, t_n)}{t_1 \cdots t_n} \mathrm{d}t_1 \cdots \mathrm{d}t_n, \quad x = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n_+, \tag{2}$$

where $\mathbf{R}_{+}^{n} = (0, \infty)^{n}$ and f is a non-negative measurable function on \mathbf{R}_{+}^{n} .

In [9], the following Theorem B is obtained.

Theorem B. Suppose that f is any non-negative measurable function on \mathbb{R}^n_+ and $1 . Then the Hardy operator <math>\mathcal{H}$ defined by (1) is bounded from $L^p(\mathbb{R}^n_+, x^{\gamma})$ to $L^q(\mathbb{R}^n_+, x^{\delta})$, that is, the inequality

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}f(x)\right)^{q} x^{\delta} \mathrm{d}x\right)^{\frac{1}{q}} \leq C \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}}$$
(3)

holds for some constant C, if and only if

$$\gamma < \mathbf{p} - \mathbf{1}$$
 and $\delta = \frac{q}{p}(\gamma + \mathbf{1}) - \mathbf{1}.$ (4)

Moreover, if the conditions in (4) are satisfied, then we have

$$\left(\int_{\mathbf{R}^{n}_{+}} (\mathcal{H}f(x))^{q} x^{\beta} \mathrm{d}x\right)^{\frac{1}{q}} \leq \left(\prod_{i=1}^{n} \frac{q}{r(q-\delta_{i}-1)}\right)^{\frac{1}{r}} \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}};\tag{5}$$

and the adjoint operator of the Hardy operator \mathcal{H}^* defined by (2) is also bounded from $L^p(\mathbb{R}^n_+, x^{\gamma})$ to $L^q(\mathbb{R}^n_+, x^{\delta})$, that is, the inequality

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}^{*}f(x)\right)^{q} x^{\delta} \mathrm{d}x\right)^{\frac{1}{q}} \leq C \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}}$$
(6)

holds for some constant C, if and only if

$$\gamma + 1 > 0$$
 and $\delta = \frac{q}{p}(\gamma + 1) - 1.$ (7)

Furthermore, if the conditions in (7) are satisfied, then we have

$$\left(\int_{\mathbf{R}^{n}_{+}} \left(\mathcal{H}^{*}f(x)\right)^{q} x^{\delta} \mathrm{d}x\right)^{\frac{1}{q}} \leq \left(\prod_{i=1}^{n} \frac{q}{r(\delta_{i}+1)}\right)^{\frac{1}{r}} \left(\int_{\mathbf{R}^{n}_{+}} f^{p}(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}},\tag{8}$$

where $\frac{1}{r} = 1 + \frac{1}{q} - \frac{1}{p}$, $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_n)$, $\mathbf{1} = (1, \dots, 1)$, $\mathbf{p} = (p, \dots, p)$ and $\delta = (\delta_1, \delta_2, \dots, \delta_n)$, $\gamma < \delta$ means $\gamma_i < \delta_i$, $i = 1, \dots, n$, and $x^{\gamma} = x_1^{\gamma_1} x_2^{\gamma_2} \cdots x_n^{\gamma_n}$, $x \in \mathbf{R}_+^n$.

The fractional Hardy operator on higher dimensional product space is defined by

$$\mathcal{H}^{\alpha}f(x) = \mathcal{H}^{(\alpha_1,\dots,\alpha_n)}f(x) := \frac{1}{x_1^{1-\alpha_1}\cdots x_n^{1-\alpha_n}} \int_0^{x_1} \cdots \int_0^{x_n} f(t_1,\cdots,t_n) dt_1 \cdots dt_n.$$
(9)

It immediately follows from the formula (9) that its adjoint operator is as follows

$$\mathcal{H}^{\alpha*}f(x) = \mathcal{H}^{(\alpha_1,\cdots,\alpha_n)*}f(x) := \int_{x_1}^{\infty} \cdots \int_{x_n}^{\infty} \frac{f(t_1,\cdots,t_n)}{t_1^{1-\alpha_1}\cdots t_n^{1-\alpha_n}} dt_1 \cdots dt_n,$$
(10)

where $x = (x_1, x_2, \cdots, x_n) \in \mathbf{R}^n_+$, $\alpha = (\alpha_1, \cdots, \alpha_n), 0 \le \alpha_i < 1, i = 1, \cdots, n$.

Obviously, if $\alpha_i = 0, i = 1, ..., n$, then $\mathcal{H}^{\alpha} = \mathcal{H}$. This means that the Hardy operator is a special case of the fractional Hardy operator.

Now let us consider the commutator of fractional Hardy operator and the commutator of adjoint fractional Hardy operator on one-dimensional space.

The commutator of fractional Hardy operators with a function b and its adjoint commutator are defined by

$$H_b^{\alpha} f(x) := \frac{1}{x^{1-\alpha}} \int_0^x f(t) (b(x) - b(t)) dt$$
(11)

and

$$H_b^{\alpha*} f(x) := \int_x^\infty \frac{f(t)(b(x) - b(t))}{t^{1-\alpha}} dt,$$
 (12)

where *b* is a locally integrable function, $x \in \mathbf{R}_+$ and $0 \le \alpha < 1$.

The boundedness of commutators H_b^{α} and $H_b^{\alpha*}$ is worth deeply studying, consequently, receives considerable attention. In 2002, $\text{Long}^{[8]}$ proved that the two commutators of H_b^{α} and $H_b^{\alpha*}$ are bounded from $L^p(\mathbf{R}_+)$ to $L^q(\mathbf{R}_+)$ with the function *b* in one sided dyadic $CMO^{\max(p,p')}$, where $1 and <math>\frac{1}{p} + \frac{1}{p'} = 1$. Similarly, in 2006, $\text{Fu}^{[3]}$ and $\text{Zheng}^{[15]}$ showed that H_b^{α} and $H_b^{\alpha*}$ are bounded from $L^p(\mathbf{R}_+)$ to $L^q(\mathbf{R}_+)$ to $L^q(\mathbf{R}_+)$ with *b* in $\dot{\Lambda}_{\beta}(\mathbf{R}_+)$, respectively.

In this paper, applying the results in Theorem B and combining the properties of the Besov-Lipschitz function b, we show that both commutators H_b^{α} and $H_b^{\alpha*}$ are bounded from $L^p(\mathbf{R}_+)$ to $L^q(\mathbf{R}_+)$ with a power weight, where $b \in \dot{\Lambda}_{\beta}(\mathbf{R}_+)$. Moreover, the bounds of the commutators H_b^{α} and $H_b^{\alpha*}$ are explicitly worked out. The proof is very concise.

We formulate our main results as follows.

Theorem 1.1. Suppose that $0 \le \alpha < 1$, $0 < \beta < 1$ and f is a non-negative measurable function on \mathbf{R}_+ and $b \in \dot{\Lambda}_{\beta}(\mathbf{R}_+)$. If $1 , <math>\gamma , and <math>\frac{\gamma+1}{p} - \frac{\delta+1}{q} = \alpha + \beta$, then the commutator H_b^{α} is bounded from $L_{x\gamma}^p(\mathbf{R}_+)$ to $L_{x\delta}^q(\mathbf{R}_+)$, that is,

$$\|H_{b}^{\alpha}f\|_{L^{q}_{x^{\delta}}(\mathbf{R}_{+})} \leq \left(\frac{p}{r(p-\gamma-1)}\right)^{\frac{1}{r}} \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} \|f\|_{L^{p}_{x^{\gamma}}(\mathbf{R}_{+})},\tag{13}$$

where r satisfies

$$\frac{1}{r} = 1 + \frac{1}{q} - \frac{1}{p}.$$

Theorem 1.2. Suppose that $0 \le \alpha < 1$, $0 < \beta < 1$ and f is a non-negative measurable function on \mathbf{R}_+ and $b \in \dot{\Lambda}_{\beta}(\mathbf{R}_+)$. If $1 , <math>\gamma + 1 > p(\alpha + \beta)$, and $\frac{\gamma + 1}{p} - \frac{\delta + 1}{q} = \alpha + \beta$, then the commutator $H_b^{\alpha*}$ is bounded from $L_{x^{\gamma}}^p(\mathbf{R}_+)$ to $L_{x^{\delta}}^q(\mathbf{R}_+)$, that is,

$$\|H_b^{\alpha*}f\|_{L^q_{x^\delta}(\mathbf{R}_+)} \le \left(\frac{p}{r(\gamma+1-p\alpha-p\beta)}\right)^{\frac{1}{r}} \|b\|_{\dot{\Lambda}_\beta(\mathbf{R}_+)} \|f\|_{L^p_{x^\gamma}(\mathbf{R}_+)},\tag{14}$$

where *r* satisfies

$$\frac{1}{r} = 1 + \frac{1}{q} - \frac{1}{p}.$$

2 **Proofs of Main Theorems**

To prove our theorems, we first provide some definitions and lemmas which will be used in the sequel.

Definition 2.1. Suppose $0 < \beta < 1$. Besov-Lipschitz space is defined by

$$\dot{\Lambda}_{\beta}(\mathbf{R}+) := \left\{ f: x, h \in \mathbf{R}_+, \|f\|_{\dot{\Lambda}_{\beta}(\mathbf{R}+)} = \sup_{x, h \in \mathbf{R}_+} \frac{|f(x+h) - f(x)|}{h^{\beta}} < \infty \right\}.$$

By Definition 2.1, it is clear that the following lemma holds. Lemma 2.1. If $b \in \dot{\Lambda}_{\beta}(\mathbf{R}_{+}), 0 < \beta < 1$, then

$$|b(x) - b(y)| \le |x - y|^{\beta} ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})}$$

holds for any $x, y \in \mathbf{R}_+$ *.*

Proof of Theorem 1.1. By Lemma 2.1, it follows that

$$\begin{aligned} |H_b^{\alpha}f(x)| &= \left| \frac{1}{x^{1-\alpha}} \int_0^x f(t) \Big(b(x) - b(t) \Big) dt \right| \\ &\leq \frac{1}{x^{1-\alpha}} \int_0^x f(t) |b(x) - b(t)| dt \\ &\leq \frac{1}{x^{1-\alpha}} \int_0^x f(t) |x - t|^{\beta} ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} dt \\ &\leq ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} \frac{1}{x^{1-\alpha}} x^{\beta} \int_0^x f(t) dt \\ &= ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} x^{\alpha+\beta} \frac{1}{x} \int_0^x f(t) dt \\ &= ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} x^{\alpha+\beta} Hf(x). \end{aligned}$$

We conclude

$$\begin{aligned} \|H_b^{\alpha}f\|_{L^q_{x^{\delta}}(\mathbf{R}_+)} &\leq \left(\int_0^{\infty} \left(\|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_+)} Hf(x) x^{\alpha+\beta}\right)^q x^{\delta} dx\right)^{\frac{1}{q}} \\ &= \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_+)} \left(\int_0^{\infty} [Hf(x)]^q x^{q(\alpha+\beta)+\delta} dx\right)^{\frac{1}{q}} \\ &= \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_+)} \|Hf\|_{L^q_{x^{q(\alpha+\beta)+\delta}(\mathbf{R}_+)}. \end{aligned}$$

Set

 $\lambda = q(\alpha + \beta) + \delta.$

Since the conditions $\gamma < p-1$ and $\frac{\gamma+1}{p} - \frac{\delta+1}{q} = \alpha + \beta$ hold, simple calculation leads to

$$\lambda = \frac{q}{p}(\gamma + 1) - 1.$$

Using the inequality (5) in Theorem B, we have

$$\begin{aligned} \|Hf\|_{L^q_{x^{\lambda}}(\mathbf{R}_+)} &\leq \left(\frac{q}{r(q-\lambda-1)}\right)^{\frac{1}{r}} \left(\int_0^\infty f^p(x) x^{\gamma} \mathrm{d}x\right)^{\frac{1}{p}} \\ &= \left(\frac{p}{r(p-\gamma-1)}\right)^{\frac{1}{r}} \|f\|_{L^p_{x^{\gamma}}(\mathbf{R}_+)}, \end{aligned}$$

where r satisfies

$$\frac{1}{r} = 1 + \frac{1}{q} - \frac{1}{p}$$

Therefore we obtain

$$\|H_{b}^{\alpha}f\|_{L_{x^{\delta}}^{q}(\mathbf{R}_{+})} \leq \left(\frac{p}{r(p-\gamma-1)}\right)^{\frac{1}{r}} \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} \|f\|_{L_{x^{\gamma}}^{p}(\mathbf{R}_{+})}.$$
(15)

This finishes the proof of Theorem 1.1.

Remark 2.1 For the special case, if $\gamma = \delta = 0$, then

$$\frac{1}{p} - \frac{1}{q} = \alpha + \beta.$$

It follows from the inequality (15) that

$$\|\mathcal{H}_b^{\alpha}f\|_{L^q(\mathbf{R}_+)} \leq \left(\frac{p-p\alpha-p\beta}{p-1}\right)^{1-\alpha-\beta} \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_+)} \|f\|_{L^p(\mathbf{R}_+)}.$$

If we set

$$\left(\frac{p-p\alpha-p\beta}{p-1}\right)^{1-\alpha-\beta}=C,$$

then we have

$$\|\mathcal{H}_b^{\alpha}f\|_{L^q(\mathbf{R}_+)} \leq C \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_+)} \|f\|_{L^p(\mathbf{R}_+)},$$

which is the main result in $Fu^{[3]}$.

Proof of Theorem 1.2. It follows from Lemma 2.1 that

$$|H_{b}^{\alpha*}f(x)| = \left| \int_{x}^{\infty} \frac{f(t)(b(x) - b(t))}{t^{1-\alpha}} dt \right|$$

$$\leq \int_{x}^{\infty} \frac{f(t)|b(x) - b(t)|}{t^{1-\alpha}} dt$$

$$\leq \int_{x}^{\infty} \frac{f(t)(t-x)^{\beta} ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})}}{t^{1-\alpha}} dt$$

$$\leq \int_{x}^{\infty} \frac{f(t)t^{\beta} ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})}}{t^{1-\alpha}} dt$$

$$\leq ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} \int_{x}^{\infty} \frac{t^{\alpha+\beta}f(t)}{t} dt$$

$$= ||b||_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})} H^{*}g(x), \qquad (16)$$

where $g(t) = t^{\alpha+\beta} f(t), t \in (0,\infty)$.

Thus we have

$$\begin{aligned} \|H_{b}^{\alpha*}f\|_{L_{x^{\delta}}^{q}(\mathbf{R}_{+})} &\leq \left(\int_{0}^{\infty} \left(\|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})}H^{*}g(x)\right)^{q}x^{\delta}dx\right)^{\frac{1}{q}} \\ &= \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_{+})}\|H^{*}g\|_{L_{x^{\delta}}^{q}(\mathbf{R}_{+})}. \end{aligned}$$
(17)

Set

$$\lambda = \gamma - p(\alpha + \beta).$$

Since the conditions $\gamma + 1 > p(\alpha + \beta)$ and $\delta = \frac{q}{p}(\gamma + 1 - p(\alpha + \beta)) - 1$ hold, we have

$$\lambda + 1 > 0$$
 and $\delta = \frac{q}{p}(\lambda + 1) - 1.$

This means that λ , p and q satisfy the condition (7) in Theorem B. Therefore, we conclude

$$\begin{aligned} \|H^*g\|_{L^q_{x\delta}(\mathbf{R}_+)} &\leq \left(\frac{q}{r(\delta+1)}\right)^{\frac{1}{r}} \|g\|_{L^p_{x\lambda}(\mathbf{R}_+)} \\ &= \left(\frac{p}{r(\lambda+1)}\right)^{\frac{1}{r}} \|g\|_{L^p_{x\lambda}(\mathbf{R}_+)} \\ &= \left(\frac{p}{r(\lambda+1)}\right)^{\frac{1}{r}} \left(\int_0^\infty \left(x^{\alpha+\beta}f(x)\right)^p x^{\lambda} dx\right)^{\frac{1}{p}} \\ &= \left(\frac{p}{r(\lambda+1)}\right)^{\frac{1}{r}} \|f\|_{L^p_{x\lambda+p(\alpha+\beta)}(\mathbf{R}_+)} \\ &= \left(\frac{p}{r(\gamma+1-p\alpha-p\beta)}\right)^{\frac{1}{r}} \|f\|_{L^p_{x\gamma}(\mathbf{R}_+)}, \end{aligned}$$
(18)

where r satisfies

$$\frac{1}{r} = 1 + \frac{1}{q} - \frac{1}{p}.$$

Thus, combining the inequalities (16), (17) with (18) yields that

$$\|H_b^{\alpha*}f\|_{L^q_{x\delta}(\mathbf{R}_+)} \le \left(\frac{p}{r(\gamma+1-p\alpha-p\beta)}\right)^{\frac{1}{r}} \|b\|_{\dot{\Lambda}_{\beta}(\mathbf{R}_+)} \|f\|_{L^p_{x\gamma}(\mathbf{R}_+)}.$$
(19)

This finishes the proof of Theorem 1.2.

Remark 2.2. For the special case $\gamma = \delta = 0$, then we have

$$\frac{1}{p} - \frac{1}{q} = \alpha + \beta.$$

It follows from the inequality (19) that

$$\|H_b^{\alpha*}f\|_{L^q(\mathbf{R}_+)} \leq \left(\frac{p-p\alpha-p\beta}{1-p\alpha-p\beta}\right)^{1-\alpha-\beta} \|b\|_{\dot{\Lambda}_\beta(\mathbf{R}_+)} \|f\|_{L^p(\mathbf{R}_+)}.$$

Set

$$\left(\frac{p-p\alpha-p\beta}{1-p\alpha-p\beta}\right)^{1-\alpha-\beta}=C,$$

then we have

$$\|H_b^{lpha*}f\|_{L^q(\mathbf{R}_+)} \le C \|b\|_{\dot{\Lambda}_{eta}(\mathbf{R}_+)} \|f\|_{L^p(\mathbf{R}_+)},$$

which obviously covers the main result in [15].

References

- Bicheng, Y., Zhuohua, Z. and Debnath, L., Generalizations of Hardy Integral Inequality, Internat. J. Math. Math. Sci., 22:3 (1999), 535-542.
- [2] Christ, M. and Grafakos, L., Best Constants for Two Nonconvolution Inequalities, Proc. Amer. Math. Soc., 123:6 (1995), 1687-1693.
- [3] Fu, Z. W., Commutators of Hardy-Littlewood Average Operators, Journal of Beijing normal university (Nature Science), 42:4 (2006), 342-345.
- [4] Fu, Z. W., Grafakos, L., Lu, S. Z. and Zhao, F. Y., Sharp Bounds for *m*-linear Hardy and Hilbert Operators, to appear in Houston Journal of Mathematics.
- [5] Hardy, G. H., Note on a Theorem of Hilbert, Math. Z., 6 (1920), 314-317.
- [6] Hardy, G. H., Note on Some Points in the Integral Calculus, Messenger Math., 57 (1928), 12-16.
- [7] Kufner, A. and Persson, L., Weighted Inequalities of Hardy Type, World Scientific Publishing Co. Pte. Ltd., 2003.
- [8] Long, S. C. and Wang, J., Commutators of Hardy Operators, J. Math. Anal. Appl., 274 (2002), 626-644.
- [9] Lu, S. Z., Wang, S. M. and Yan, D. Y., Explicit Constants for Hardy's Inequality with Power Weight on *n*-dimensional Product Spaces. (to appear).

- [10] Lu, S. Z., Yan, D. Y. and Zhao, F. Y., Sharp Bounds for Hardy type Operators on Higher Dimensional Product Space. (to appear).
- [11] Muckenhoupt, B., Hardy's Inequality with Weight, Studia Math., 34 (1972), 31-38.
- [12] Pachpatte, B. G., On Multivariale Hardy type Inequalities, An. Stiint. Univ. Al. I. Cuza Iasi, 38 (1992), 355-361.
- [13] Pachpatte, B. G., Mathematical Inequalities, Amsterdam-Boston Elsevier, 2005.
- [14] Pecaric, J. E. and Love, E. R., Still More Generalizations of Hardy's Integral Inequality, J. Austral. Math. Soc. Ser. A, 58 (1995), 1-11.
- [15] Zheng, Q. Y. and Fu, Z. W., Hardy's Integral Inequality for Commutators of Hardy Operators, J. Inequal. Pure and Appl. Math., 7:5, Art. 183, (2006), 1-7.

S. M. Wang School of Mathematics Science Graduate University of Chinese Academy of Sciences Beijing, School of Mathematics Science Heilongjiang University, P. R. China

E-mail: wangshimo2008@yahoo.cn

D. Y. YanSchool of Mathematics ScienceGraduate University of Chinese Academy of SciencesBeijing,P. R. China

E-mail: ydunyan@gucas.ac.cn