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Abstract. In this paper, we establish two weighted integral inequalities for commutators

of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this

kind of commutator, denoted by Hα
b , is bounded from L

p
xγ (R+) to L

q

xδ (R+) with the bound

explicitly worked out.
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1 Introduction and Main Results

Let f be a non-negative integrable function on R+ = (0,∞). The classical Hardy operator

and its adjoint operator are defined by

H f (x) :=
1

x

∫ x

0
f (t)dt, x > 0

and

H∗ f (x) :=
∫ ∞

x

f (t)

t
dt, x > 0.

The following well-known integral inequalities is due to Hardy (cf.[5,6]).

Theorem A. If f is a non-negative measurable function on R+ and 1 < p < ∞, then the

following two inequalities

‖H f‖Lp(R+) ≤
p

p−1
‖ f‖Lp(R+)
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and

‖H∗ f‖Lp(R+) ≤ p‖ f‖Lp(R+)

hold, where the constants
p

p−1
and p are sharp.

For the n-dimensional case, Lu[9] discussed the following Hardy operator defined on the

product space,

H f (x) :=
1

x1 · · ·xn

∫ x1

0
· · ·

∫ xn

0
f (t1, · · · , tn)dt1 · · ·dtn, x = (x1,x2, · · · ,xn) ∈ Rn

+ (1)

and the adjoint operator of the Hardy operator defined by

H
∗ f (x) :=

∫ ∞

x1

· · ·
∫ ∞

xn

f (t1, · · · , tn)

t1 · · · tn
dt1 · · ·dtn, x = (x1,x2, · · · ,xn) ∈ Rn

+, (2)

where Rn
+ = (0,∞)n and f is a non-negative measurable function on Rn

+.

In [9], the following Theorem B is obtained.

Theorem B. Suppose that f is any non-negative measurable function on Rn
+ and 1 < p ≤

q < ∞. Then the Hardy operator H defined by (1) is bounded from Lp(Rn
+,xγ ) to Lq(Rn

+,xδ ),

that is, the inequality

(

∫

Rn
+

(H f (x))q
xδ dx

)
1
q

≤C

(

∫

Rn
+

f p(x)xγ dx

)
1
p

(3)

holds for some constant C, if and only if

γ < p−1 and δ =
q

p
(γ + 1)−1. (4)

Moreover, if the conditions in (4) are satisfied, then we have

(

∫

Rn
+

(H f (x))q
xβ dx

)
1
q

≤

(

n

∏
i=1

q

r(q−δi −1)

)
1
r (∫

Rn
+

f p(x)xγ dx

)
1
p

; (5)

and the adjoint operator of the Hardy operator H
∗ defined by (2) is also bounded from Lp(Rn

+,xγ )

to Lq(Rn
+,xδ ), that is, the inequality

(

∫

Rn
+

(H∗ f (x))q
xδ dx

)
1
q

≤C

(

∫

Rn
+

f p(x)xγ dx

)
1
p

(6)

holds for some constant C, if and only if

γ + 1 > 0 and δ =
q

p
(γ + 1)−1. (7)

Furthermore, if the conditions in (7) are satisfied, then we have

(

∫

Rn
+

(H∗ f (x))q
xδ dx

)
1
q

≤

(

n

∏
i=1

q

r(δi + 1)

)
1
r (∫

Rn
+

f p(x)xγ dx

)
1
p

, (8)
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where 1
r

= 1 + 1
q
− 1

p
,γ = (γ1,γ2, . . . ,γn), 1 = (1, . . . ,1), p = (p, . . . , p) and δ = (δ1,δ2 . . . ,δn),

γ < δ means γi < δi, i = 1, . . . ,n, and xγ = x
γ1

1 x
γ2

2 · · ·x
γn
n , x ∈ Rn

+.

The fractional Hardy operator on higher dimensional product space is defined by

H
α f (x) = H

(α1,...,αn) f (x) :=
1

x
1−α1

1 · · ·x1−αn
n

∫ x1

0
· · ·
∫ xn

0
f (t1, · · · , tn)dt1 · · ·dtn. (9)

It immediately follows from the formula (9) that its adjoint operator is as follows

H
α∗ f (x) = H

(α1,··· ,αn)∗ f (x) :=

∫ ∞

x1

· · ·

∫ ∞

xn

f (t1, · · · , tn)

t
1−α1

1 · · · t1−αn
n

dt1 · · ·dtn, (10)

where x = (x1,x2, · · · ,xn) ∈ Rn
+, α = (α1, · · · ,αn),0 ≤ αi < 1, i = 1, · · · ,n.

Obviously, if αi = 0, i = 1, . . . ,n, then H
α = H. This means that the Hardy operator is a

special case of the fractional Hardy operator.

Now let us consider the commutator of fractional Hardy operator and the commutator of

adjoint fractional Hardy operator on one-dimensional space.

The commutator of fractional Hardy operators with a function b and its adjoint commutator

are defined by

Hα
b f (x) :=

1

x1−α

∫ x

0
f (t)(b(x)−b(t))dt (11)

and

Hα∗
b f (x) :=

∫ ∞

x

f (t)(b(x)−b(t))

t1−α
dt, (12)

where b is a locally integrable function, x ∈ R+ and 0 ≤ α < 1.

The boundedness of commutators Hα
b and Hα∗

b is worth deeply studying, consequently, re-

ceives considerable attention. In 2002, Long[8] proved that the two commutators of Hα
b and

Hα∗
b are bounded from Lp(R+) to Lq(R+) with the function b in one sided dyadic CMOmax(p,p′),

where 1 < p < q < ∞,
1
p
− 1

q
= α + β and 1

p
+ 1

p′
= 1. Similarly, in 2006, Fu[3] and Zheng[15]

showed that Hα
b and Hα∗

b are bounded from Lp(R+) to Lq(R+) with b in Λ̇β (R+), respectively.

In this paper, applying the results in Theorem B and combining the properties of the Besov-

Lipschitz function b, we show that both commutators Hα
b and Hα∗

b are bounded from Lp(R+)

to Lq(R+) with a power weight, where b ∈ Λ̇β (R+). Moreover, the bounds of the commutators

Hα
b and Hα∗

b are explicitly worked out. The proof is very concise.

We formulate our main results as follows.

Theorem 1.1. Suppose that 0 ≤ α < 1, 0 < β < 1 and f is a non-negative measurable

function on R+ and b ∈ Λ̇β (R+). If 1 < p < q < ∞, γ < p−1, and
γ+1

p
− δ+1

q
= α +β , then the

commutator Hα
b is bounded from L

p
xγ (R+) to L

q

xδ (R+), that is,

‖Hα
b f‖L

q

xδ
(R+) ≤

(

p

r(p− γ −1)

)
1
r

‖b‖Λ̇β (R+)‖ f‖L
p

xγ (R+), (13)
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where r satisfies
1

r
= 1+

1

q
−

1

p
.

Theorem 1.2. Suppose that 0 ≤ α < 1, 0 < β < 1 and f is a non-negative measurable

function on R+ and b ∈ Λ̇β (R+). If 1 < p < q < ∞, γ +1 > p(α +β ), and
γ+1

p
− δ+1

q
= α +β ,

then the commutator Hα∗
b is bounded from L

p
xγ (R+) to L

q

xδ (R+), that is,

‖Hα∗
b f‖L

q

xδ
(R+) ≤

(

p

r(γ + 1− pα − pβ )

)
1
r

‖b‖Λ̇β (R+)‖ f‖L
p

xγ (R+), (14)

where r satisfies
1

r
= 1+

1

q
−

1

p
.

2 Proofs of Main Theorems

To prove our theorems, we first provide some definitions and lemmas which will be used in

the sequel.

Definition 2.1. Suppose 0 < β < 1. Besov-Lipschitz space is defined by

Λ̇β (R+) :=

{

f : x,h ∈ R+,‖ f‖Λ̇β (R+) = sup
x,h∈R+

| f (x+ h)− f (x)|

hβ
< ∞

}

.

By Definition 2.1, it is clear that the following lemma holds.

Lemma 2.1. If b ∈ Λ̇β (R+),0 < β < 1, then

|b(x)−b(y)| ≤ |x− y|β‖b‖Λ̇β (R+)

holds for any x,y ∈ R+.

Proof of Theorem 1.1. By Lemma 2.1, it follows that

|Hα
b f (x)| =

∣

∣

∣

∣

1

x1−α

∫ x

0
f (t)
(

b(x)−b(t)
)

dt

∣

∣

∣

∣

≤
1

x1−α

∫ x

0
f (t)|b(x)−b(t)|dt

≤
1

x1−α

∫ x

0
f (t)|x− t|β‖b‖Λ̇β (R+)dt

≤ ‖b‖Λ̇β (R+)

1

x1−α
xβ
∫ x

0
f (t)dt

= ‖b‖Λ̇β (R+)x
α+β 1

x

∫ x

0
f (t)dt

= ‖b‖Λ̇β (R+)x
α+β H f (x).



Anal. Theory Appl., Vol. 28, No.1 (2011) 83

We conclude

‖Hα
b f‖L

q

xδ
(R+) ≤

(

∫ ∞

0

(

‖b‖Λ̇β (R+)H f (x)xα+β
)q

xδ dx

)
1
q

= ‖b‖Λ̇β (R+)

(

∫ ∞

0
[H f (x)]q xq(α+β)+δ dx

)
1
q

= ‖b‖Λ̇β (R+)‖H f‖L
q

xq(α+β)+δ
(R+).

Set

λ = q(α + β )+ δ .

Since the conditions γ < p−1 and
γ+1

p
− δ+1

q
= α + β hold, simple calculation leads to

λ =
q

p
(γ + 1)−1.

Using the inequality (5) in Theorem B, we have

‖H f‖L
q

xλ
(R+) ≤

(

q

r(q−λ −1)

)
1
r
(

∫ ∞

0
f p(x)xγ dx

)
1
p

=

(

p

r(p− γ −1)

)
1
r

‖ f‖L
p

xγ (R+),

where r satisfies
1

r
= 1+

1

q
−

1

p
.

Therefore we obtain

‖Hα
b f‖L

q

xδ
(R+) ≤

(

p

r(p− γ −1)

)
1
r

‖b‖Λ̇β (R+)‖ f‖L
p

xγ (R+). (15)

This finishes the proof of Theorem 1.1.

Remark 2.1 For the special case, if γ = δ = 0, then

1

p
−

1

q
= α + β .

It follows from the inequality (15) that

‖Hα
b f‖Lq(R+) ≤

(

p− pα − pβ

p−1

)1−α−β

‖b‖Λ̇β (R+)‖ f‖Lp(R+).

If we set
(

p− pα − pβ

p−1

)1−α−β

= C,

then we have

‖Hα
b f‖Lq(R+) ≤C‖b‖Λ̇β (R+)‖ f‖Lp(R+),
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which is the main result in Fu[3].

Proof of Theorem 1.2. It follows from Lemma 2.1 that

|Hα∗
b f (x)| =

∣

∣

∣

∣

∣

∫ ∞

x

f (t)
(

b(x)−b(t)
)

t1−α
dt

∣

∣

∣

∣

∣

≤

∫ ∞

x

f (t)|b(x)−b(t)|

t1−α
dt

≤

∫ ∞

x

f (t)(t − x)β‖b‖Λ̇β (R+)

t1−α
dt

≤

∫ ∞

x

f (t)tβ‖b‖Λ̇β (R+)

t1−α
dt

≤ ‖b‖Λ̇β (R+)

∫ ∞

x

tα+β f (t)

t
dt

= ‖b‖Λ̇β (R+)H
∗g(x), (16)

where g(t) = tα+β f (t), t ∈ (0,∞).

Thus we have

‖Hα∗
b f‖L

q

xδ
(R+) ≤

(

∫ ∞

0

(

‖b‖Λ̇β (R+)H
∗g(x)

)q

xδ dx

)
1
q

= ‖b‖Λ̇β (R+)‖H∗g‖L
q

xδ
(R+). (17)

Set

λ = γ − p(α + β ).

Since the conditions γ + 1 > p(α + β ) and δ = q
p
(γ + 1− p(α + β ))−1 hold, we have

λ + 1 > 0 and δ =
q

p
(λ + 1)−1.

This means that λ , p and q satisfy the condition (7) in Theorem B. Therefore, we conclude

‖H∗g‖L
q

xδ
(R+) ≤

(

q

r(δ + 1)

)
1
r

‖g‖L
p

xλ
(R+)

=

(

p

r(λ + 1)

)
1
r

‖g‖L
p

xλ
(R+)

=

(

p

r(λ + 1)

)
1
r
(

∫ ∞

0

(

xα+β f (x)
)p

xλ dx

)
1
p

=

(

p

r(λ + 1)

)
1
r

‖ f‖L
p

xλ+p(α+β)
(R+)

=

(

p

r(γ + 1− pα − pβ )

)
1
r

‖ f‖L
p

xγ (R+), (18)
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where r satisfies
1

r
= 1+

1

q
−

1

p
.

Thus, combining the inequalities (16), (17) with (18) yields that

‖Hα∗
b f‖L

q

xδ
(R+) ≤

(

p

r(γ + 1− pα − pβ )

)
1
r

‖b‖Λ̇β (R+)‖ f‖L
p

xγ (R+). (19)

This finishes the proof of Theorem 1.2.

Remark 2.2. For the special case γ = δ = 0, then we have

1

p
−

1

q
= α + β .

It follows from the inequality (19) that

‖Hα∗
b f‖Lq(R+) ≤

(

p− pα − pβ

1− pα − pβ

)1−α−β

‖b‖Λ̇β (R+)‖ f‖Lp(R+).

Set
(

p− pα − pβ

1− pα − pβ

)1−α−β

= C,

then we have

‖Hα∗
b f‖Lq(R+) ≤C‖b‖Λ̇β (R+)‖ f‖Lp(R+),

which obviously covers the main result in [15].
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