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Abstract. In this paper using an argument from [1] , we prove one of the probabilistic

version of Hardy’s inequality.
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1 Introduction

Hardy’s inequality is defined as for a constant c > 0, we have

∞

∑
n=1

| f̂ (n)|
n

≤ c‖ f‖1

for all functions f ∈ L1([0,2π)) with f̂ (n) = 0 for n < 0. This inequality is not true for all

functions f ∈ L1([0,2π)), which can be seen by letting f to be the Fejér kernel of order N for

large enough N.

When McGehee, Pigno and Smith[3] proved the Littlewood conjecture, many questions were

asked of how Hardy’s inequality can be generalized for all functions f ∈ L1([0,2π)). For in-

stance, one of the expected generalizations is the following:

∑
n>0

f̂ (n)|
n

≤ c‖ f‖1 + c ∑
n>0

| f̂ (−n)|
n

, f ∈ L1([0,2π)),

where c > 0 is an absolute constant.

In this paper, we prove one version of Hardy’s inequality for functions whose Fourier coef-

ficients f̂ (n) are random variables on (0,1) for n > 0 without conditions on f̂ (n) for n < 0.
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In my proof use a technique that was motivated by Körner[1], who used this technique in a

different problem to modify a result of Byrnes (see [1]).

In the sequel, [0,2π) denotes the unit circle, L1([0,2π) the space of integrable functions on

[0,2π),µ the Lebesgue measure, and B j the set of integers in the interval [4 j−1,4 j).

2 Basic Lemmas

In this section, I am going to prove some basic lemmas required for our purpose.

Lemma 2.1. Let X1,X2, · · · ,XN be independent random variables such that

|X j| ≤ 1 f or each j,1 ≤ j ≤ N,

and write

SN = X1 + X2 + · · ·+ XN.

Then, for any λ > 0,

Pr(|SN −ESN| ≥ λ ) ≤ 4exp(− λ 2

100N
).

For the proof, see [4, p.398].

The idea of the following proof is due to Köner[1]. The statement of the lemma was observed

by Kahane [2] without proof.

Lemma 2.2. Let (rk) be a sequence of independent, zero mean random variables defined

on the interval (0,1)with |rk| ≤ 1 for all k. Let

fn(θ , t) =
n

∑
p=1

rp(t)e
ipθ f or t ∈ (0,1) and θ ∈ [0,2π).

Then for n ≥ 27 and λ ≥ 2×2,

µ({t : sup
θ

| fn(θ , t)| ≥ λ
√

nlogn}) ≤ 4n2− λ2

400 .

Proof. By applying Lemma 2.1, we find that for fixed θ ∈ [0,2π),

µ({t : sup
θ

| fn(θ , t)| ≥ λ
√

nlogn}) ≤ 4n2− λ2

100 .

Let (θk)
n2

k=1 be a uniform partition of the unit circle. For fixed t ∈ (0,1) and θk ∈ [0,2π) and for

all θ with |θ −θk| ≤ 2π/n2, we have

| fn(θ , t)− fn(θk, t)| ≤
n

∑
p=1

|rp(t)||eipθ − eipθk | ≤ 2
n

∑
p=1

2π

n2
p =

2π(n+ 1)

n
.
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Lemma 2.3. There exists a set ⊂ (0,1) of measure 1 such that whenever t ∈ B there exists

an index kt with the property that

sup
θ

|g j(θ , t)| ≥ 60
√

j4− j, ∀ j ≥ kt .

Proof. Let

Mk =
∞
⋃

j=k

A j also M =
∞
⋂

k=1

Mk.

Thus,

µ(M) = µ

(

∞
⋂

k=1

Mk

)

≤ µ(Mk)

for all k ≥ 1, i.e.,

µ(M) ≤ µ(

(

∞
⋃

j=k

A j

)

≤
∞

∑
j=k

µ(A j)

for all k ≥ 1. As

µ(A j) ≤ 8×4− j/4 and ∑4− j/4 < ∞,

hence

µ(M) ≤
∞

∑
j=k

µ(A j) → 0 as k → ∞.

Thus, µ(M) = 0. Putting B = MC, the lemma is proved.

3 Main Result

In this section, we prove the probabilistic version of Hardy’s inequality, which is main con-

tribution in this paper.

Thus, for fixed t and θk and for all θ such that |θ −θk| ≤ 2π/n2, we have

| fn(θ , t)| ≤ 2π(n+ 1)

n
+ | fn(θk, t)|,

and consequently

sup
|θ−θk|≤π/n2

| fn(θ , t)| ≤ 2π(n+ 1)

n
+ | fn(θk, t)|.

But on a set (of t) of measure ≥ 1−4n2− λ2

100 we have for each θk

| fn(θk, t) ≤ λ
√

nlogn.
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Therefore, for any particular θk we have on a set (of t) of measure ≥ 1−4n2− λ2

100 ,

sup
θ−θk|≤2π/n2

| fn(θ , t)| ≤ 2π(n+ 1)

n
+ λ

√

nlogn.

Since the set
{

t : sup
θ

| fn(θ , t)| ≥ 2π(n+ 1)

n
+ λ

√

nlogn

}

is contained in the set

n2
⋃

k=1

{

t : sup
|θ−θk|≤2π/n2

| fn(θ , t)| ≤ 2π(n+ 1)

n
+ λ

√

nlogn

}

,

we must have

µ

({

t : sup
θ

| fn(θ , t)| ≥ 2π(n+ 1)

n
+ λ

√

nlogn

})

≤
n2

∑
p=1

4n−
λ2

100 = 4n2− λ2

100 .

If λ ≥
√

2 and n ≥ 27, we have

2π(n+ 1)

n
≤ λ

√

nlogn,

hence it follows that

µ({t : sup
θ

| fn(θ , t)| ≥ 2λ
√

nlogn}) ≤ 4n2− λ2

100 .

On replacing 2λ by λ

µ({t : sup
θ

| fn(θ , t)| ≤ λ
√

nlogn}) ≤ 4n2− λ2

400 .

whenever λ ≥ 2
√

2 and n ≥ 27.

Thus, by letting

g j(θ , t) = ∑
n∈B j

rn(t)e
inθ ,

where B j denotes the set of integers in the interval [4 j−1,4 j), we see that

µ

({

t : sup
θ

|g j(θ , t)| ≥ 2λ
√

j4− j

})

≤ 4(
3

4
)2− λ2

400 (4(2−λ 2) j
400

for all λ ≥ 2
√

2 and j ≥ 4. By choosing λ = 30, we see that

µ(A j) ≤ 8×4− j/4 for j ≥ 4,
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where

A j =

{

t : sup
θ

|g j(θ , t)| ≥ 60
√

j4− j

}

.

Theorem 3.1. Let (rk) be a sequence of independent, zero mean random variables on the

interval (0,1), with |rk| = 1 for all k. Then there exists a set S ⊂ (0,1) of measure 1 such that

∞

∑
n=1

f̂ (n)|
n

≤ c‖ f‖1

for all functions f ∈ L1([0,2π)) satisfying the condition

f̂ (n)rn(t) ≥ 0, for all n > 0.

Proof. Let t ∈ B be fixed. It suffices to prove the result for all trigonometric polynomials f

with

f̂ (n)rn(t) ≥ 0, for all n > 0.

Thus, let f be a trigonometric polynomials with f̂ (n)rn(t) ≥ 0

F(θ) =
∞

∑
j=1

g j(θ , t).

It is clear from the definition of g j that

F̂(n) =
rn(t)

4 j
, for n > 0,

where j is the unique index such that n ∈ B j. Also, we see that

F̂(n) = 0, for n ≤ 0.

Since t ∈ B, we conclude that

∞

∑
j=1

sup
θ∈[0,2π)

|g j(θ , t)| := K < ∞.

Therefore, F is a bounded function on the circle with ‖F‖∞ ≤ K.

Now, we apply a standard duality argument to obtain

K‖ f‖1 := ‖F‖∞‖ f‖1 ≥
1

2π

∣

∣

∣

∣

∫ 2π

0
f (θ)F(θ)dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
n∈Z

f̂ (n)F̂(n)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f̂ (0)F̂(0)+ ∑
n>0

f̂ (n)F̂(n)

∣

∣

∣

∣

∣

,

K‖ f‖1 =

∣

∣

∣

∣

∣

∑
n>0

f̂ (n)F̂(n)

∣

∣

∣

∣

∣

−| f̂ (0)||F̂(0)|,
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hence,

2‖ f‖1‖F‖∞ ≥
∣

∣

∣

∣

∣

∞

∑
j=1

∑
n∈B j

f̂ (n)F̂(n)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞

∑
j=1

∑
n∈B j

f̂ (n)
rn(t)

4 j

∣

∣

∣

∣

∣

≥ 1

4

∞

∑
j=1

∑
n∈B j

| f̂ (n)|
n

.

Thus we have proven the above theorem for c = 8k.
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