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Abstract. In this paper, we investigate n-dimensional complete and orientable hypersu-
faces M" (n > 3) with constant normalized scalar curvature in a locally symmetric manifold.

Two rigidity theorems are obtained for these hypersurfaces.
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1 Introduction

When the ambient manifolds possess very nice symmetry, for example the unit sphere, there
are many rigidity results for hypersurfaces with constant mean curvature or with constant scalar
curvature in these ambient manifolds, such as [2, 3, 4, 6, 7, 11, 12] and the references therein.
Recently, many researchers studied the minimal hypersurfaces or hypersurfaces with constant
mean curvature in more general Riemmanniam manifolds such as the locally symmetric man-
ifolds and the &-pinched manifolds, and obtained many rigidity results these hypersurfaces,
such as [5, 10, 13, 14] and the references therein. It is natural and very important to study n-
dimensional complete and orientable hypersurfaces with constant scalar curvature in a locally
symmetric manifold. In the paper, we will discuss complete hypersurfaces in this direction.

In order to represent our theorems, we need some notation. Let N"*! be a locally symmetric

manifold and M" be an n-dimensional complete and oriented hypersurface in N"*!. We choose a
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local orthonormal frame e, - - , ey, e .1 in N"*! such that e, - - - , e, are tangent to M" and e, |

is normal to M”. We assume that N"*! satisfies the following conditions:
Kit1int1i = co, (1)

1
5 < 0 <Ky<l, (2)
where ¢(, & are constants and Ky denotes the sectional curvature of N**!. When N"*! satisfies
the above conditions (1), (2), it is said simply for N1 to satisfy the condition ().
Remark 1.1. If N"*! is a unit sphere $""!(1), then it satisfies the condition (x), where
cp=0=1.
It is easy to know that the scalar curvature R of locally symmetric manifold is constant.
On the other hand, if we denote Rcp as the components of the Ricci curvature tensor of N

satisfying the condition (%), then the scalar curvature R of N"*! is
R=2) Kuiitrie+ Y Kijij = 2nco+ Y _Kijij, (3)
k ij ij

hence, ZK" jij 1s constant. This fact together with the formula (12) suggests us to define a
ij
constant P by

n(n—l)P:n(n—l)R—ZKij,'j:nsz—S. 4)
ij

Using (4), we finally establish our main results:

Theorem 1.2. Let M" (n > 3) be an n-dimensional complete and orientable hypersurface
with constant normalized scalar curvature R in a locally symmetric manifold N"*! satisfying the
condition (x). If P > 0, in the case where P = 0, assume further that the mean curvature function
H does not change sign, then

(i) either sup |®|*> = 0 and M is a totally umbilical hypersurface.

(i1) or

n(n—1)(P+c)?

sup’@’z > D(l’l,P) = (n— 2)(nP+2C)

> 0. 5)

Moreover; if P> 0 the equality sup |®|> = D(n, P) holds and this suppremum is attained at some
point of M, then M" has two distinct constant principal curvatures, one of them being simple,

where ¢ =26 — co > 0 and P determined by (4).
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In particular, let N**! = §"*1(1) in Theorem 1.2, then ¢ = co = 8 = 1, s0o P = R — | from (4).
If P> 0,i.e., R > I the equality sup|®|?> = D(n, P) holds and this suppremum is attained at some
point of M, following from Theorem 1.2, we know that M" has two distinct principal curvatures;
in fact M" is the H(r)-torus S'(v/1—r2) x §"~'(r) € §"*1(1), with 0 < r < \/(n—2)/nR. In
this case, Theorem 1.2 generalizes the result in [2],[3] to more general situations.

Theorem 1.3. Let M" (n > 3) be an n-dimensional complete and orientable hypersurface
with constant normalized scalar curvature R in a locally symmetric manifold N'*' satisfying
the condition (). Assume P> 0. If S < 2v/n— lc, then M" is totally umbilical hypersurface,
or supS = 2v/n— le. Moreover, the equality supS = 2v/n— lc¢ holds and this suppremum is
attained at some point of M, then M" has two distinct constant principal curvatures, one of them

being simple, where ¢ =20 — ¢y > 0.

2 Preliminaries

Let N"*! be a locally symmetric manifold and M” be an n-dimensional complete and ori-
ented hypersurface in N**!. We choose a local orthonormal frame e ,-- - ,e,,e,+1 in N"*! such
that ey, --- ,e, are tangent to M" and e, is normal to M". Let @, - - - , @, be the dual coframe.

We use the following convention on the range of indices:
1<AB,---<n+1;, 1<ij,---<n.
The structure equations of N"*! are given by
dwy = —;wAB/\wB, WA+ Wpa =0, (6)

1

> Z Kapcpoc N op, (7

dwyp = — Y ac N Ocp+
C ABCD

where Kjpcp are the components of the curvature tensor of N1,

Restricting to M" such that
Onr1 =0, @1 =Y hijoj, hij=hj, 3)
J
The structure equations of M" are

da),-:—Za)ij/\a)j, a),-j+a)j,-:0, )
J
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1
dw;j = _Zwik/\wkj+§ZRijklwk/\wl, (10)
% ol
Rijxi = Kiji + (hixhji — hih i), (11
n(n—1)R=Y Kjij+n*H*—S, (12)
ij
Y hijeo = dhij— Y o — Y hi;, (13)
% 3 x
Y iy = dhie— Y by — Y haxor — Y hijiog, (14)
] ] ] 7

where n(n — 1)R is the scalar curvature, H is the mean curvature and S is the squared of the
second fundamental form of M".

The Laplacian Ah;; of the second fundamental form of M" is defined by Ah;; = Zh,- ikk- By
k

a simple and direct calculation, we have
ANhij = (nH)ij+nHK,f1ing1j — ;Kn+lkn+lkhij + f’lek:hikhkj
—Shij + ;[Kmk ichmi + Knkikhmj + 2K jichion) - (15)
Choose a local frame of orthonormal vectors fields {e;} such that at arbitrary point x of M"
hi; = A, (16)
then at point x we have

1
SO8 = Y nl+ Y hiiAh;

i7k ij
= Y ri+ Y Ai(nH )i+ nH Y. AiKysins1i — S Y Kntint i
ik i i 7
+Z()~i_)vj)zKijij_S2+nHZAi3’ (17)
i

ij
where we use the fact that the Riemannian curvature of locally symmetric manifold is covariant
constant.
Set ® = hj; —nHJ;j, it is easy to check that @ is traceless and |®> = § —nH? > 0, with
equality if and only if M" is totally umbilical. For this reason, @ is also called the total umbilicity

tensor of M".
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(14]

According to Cheng-Yau!!'¥!, we introduce the following operator O acting on any C2-function

f by
O(f) = L(nH8;j — hij) fij. (18)
ij
We also need the following algebraic Lemmas.
Lemma 2.1.08)  Ler py, -+, w, be real numbers such that

Z;ul:() and Z:uizzﬁzv

where B > 0 is constant. Then
3 n—2 3
Ol < ———fB°, 19
!;ul\_ T (19)
and equality holds if and only if at least n — 1 of u/s are equal.

9

Lemma 2.2/ Let M" be an n-dimensional complete Riemannian manifold whose sec-

tional curvature is bounded from below and F : M — R be a smooth function which is bounded
above on M". Then there exists a sequence of points x; € M" such that

]}im F(x) =supF,

]}im |VF (x¢)| =0,

lim sup max{ (V2(F (x))) (X, X) : |X| = 1} <0.

3 Proof of Theorems

First, we give the following Lemma.
Lemma 3.1. With the same assumptions as Theorem 1.2.

(1) we have the following inequality,

1
O(nH) > ——|®*0p(|®]), (20)
where
Op(x) = —(n—2)x> — (n—2)xy/x2 +n(n—1)P+n(n—1)(P+c),
and
c=20—co>0.

(2) If the mean curvature H is bounded, then there is a sequence of points {x;} in M such

that

lim nH (x;) = sup(nH ), ]}im |[V(nH)(x¢)| =0, limsup(0(nH)(xt)) <O. (21)

k—o0 k—o0
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Proof. (1) Putting y; = A; — H and |®[> = )" u? = S — nH>. From (12),(17), we have
i

D(nH) = Z(HH&] —h,-j)(nH),-j = nHA(nH) —Zhij(nH),'j
ij 1y

_ lA[(nH)Z] —n*|VHJ? — Zhij(nH)ij

2

1
= EAS—HZ‘VHIZ—Zh”(I’ZH)U (22)

ij

= Y my—n*|VH>—S*+nHY A}

ijk i

—_—
I 11

+nH Y. AiKstint1i— S Y kntinsti + Y (A — Aj)*Kijij
i i i

i

Firstly, we estimate (I):

Taking the covariant derivative of the equation (12), we have
2n*HHy =2 hijhij. (23)
ij
Therefore
n'HAVH? = Y (Y hijhin)* < SOY hin).- (24)
ki ijk
Since P > 0, we have n*H? > S, so from (24), we obtain
Y hiy—n*|VH|* > 0. (25)
ijk
Secondly, we estimate (II):
It is easy to know that Zlﬁ = nH> +3H Z ”iz + Z,uf. By applying Lemma 2.1 to real
i i i

numbers Ui, -, U,, we obtain
—S2+nHZ7Ll»3 = —(|d>|2—l—nH2)2+nZH4+3nH2|CI>|2+nHZ’/.Li3
i i

nn—2
> o= D 0 0P, 6)

Vn(n—1)

Finally, we estimate (I1I):

Using curvature condition (), we get

nHZ)LiKn—&-lin—&-li_Szkn-‘rlin-‘rli = nco(nH2 _S) = _nCO‘q)‘z (27)
i i
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and
lzj,(li — A)*Kijij = izj,(#i — 1;)°Kijij > 6 izj,(ui — ))* = 2n8|®[>. (28)
From (27) and (28), we have
11 > n(28 — cp)|®|*. (29)
From (22),(25), (26),(29) and set ¢ =20 — cp, we have
o) > (@10 + 2L |1 @) e+ 1] (30)

Vn(n—1)

From Gauss equation, we have

1
nn—1)

H? = [|®* +n(n—1)P]. (31)

From (30) and (31), we have
1
O(nH) > —|@[*0p(|®)), (32)

where Qp(x) = —(n—2)x*> — (n—2)x\/x2 +n(n—1)P+n(n—1)(P+c).
(2) Since M" is orientable, P > 0 and in the case where P = 0, the mean curvature function H
does not change sign, we can assume that H > 0 (by changing the orientation of M" if necessary).
If H = 0 the result is obvious. Let suppose that H is not identically zero, we may assume

that supH > 0. From
(4)? <S<n’H? ie. |N|<n|H| (33)
Since H is bounded and (33), we know that S is also bounded. From (11), we have
Rjjij > 6 —Aidj > 6 —S. (34)

This shows that the sectional curvatures of M" are bounded from below because S is bounded.
Therefore we may apply Lemma 2.2 to the function nH and obtain a sequence of points {x; } €
M" such that

]}im nH (xy) =nsupH, ]}im |VH (x)| =0, ]}im sup(nH;;i(x)) < 0. (35)

From (33), we have

0 < nH — ‘l,’ < nH—?L,-, (36)
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By applying O(nH) at x;, we have
]lim sup(O(nH)(x¢)) = ]lim Zsup[nH(xk) — Ai(xx) JnHii(xx) < 0. (37)
—00 —0 i

Proof of Theorem 1.2. From the assumptions of Theorem 1.2, we can assume that H > 0
on M". If sup |®|> = +oo, then (ii) of Theorem 1.2 is trivially satisfied and there is nothing to
prove. If sup |®|> = 0, then (i) of Theorem 1.2 holds and there is nothing to prove. Then, let us
assume that 0 < sup |®|?> < +o0. From (31), we know that H is bounded. According to (2) of
Lemma 3.1, there exists a sequence of points {x;} in M" such that

lim nH (x;) = sup(nH ), ]}im |V(nH)(x)| =0, ]}im sup(O(nH)(xx)) < 0. (38)

—00

From (31), we have lim ... |®|?(x;) = sup|®|*>. Evaluating (20) at the point x; of the sequence,
taking the limit and using (38), we obtain that

1
—3 sup |®|>Qp(sup |®]). (39)

0> lim O(nH >
> lim O(nH) () > ~

Since P > 0and ¢ =26 —c¢p > 0, Qp(0) = P+ ¢ > 0 and Qp(x) is strictly decreasing for x > 0,
with Qp(xp) = 0 at

B nn—1)
= \/(n— Dbt 20 L He) >0 o

Therefore (39) implies

n(n—1)(P+c)?
(n—2)(nP+2c)

sup |®|* > =D(n,P). (41)

This proves the inequality in (ii) of Theorem 1.2.
If P > 0, from Gauss equation, we know n?H? > S > A2, so nH — A; > nH — |A;| > 0, i.e.

nH — ;> 0. (42)

From (42), we know the operator O is positive definite, that is, the operator O is elliptic. From

(31), we have

a(er) = " loeiH?)
- 2”;1nHD(nH)+2n_l(nH—l,-)(nH,-)z
> 2n;1nHD(nH)
> 2"l 020 (1®)) = 2(n— 1)H|DROp(D)). (43)

n
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If sup,, |P| = xo, then 0 < |®| < sup,, |P| = xp, so we have

Op(|P|) > 0. (44)
From (43) and (44), we have

0(|®[*) > 0. (45)

If sup |®|*> = D(n, P) and this supremum is attained at some point of M", then by the max-
imum principle |®| must be constant, |®| = x. From (31), we know that H is constant. Thus,

(20) becomes trivially an equality
1
O(nH) = 0 = —|®[*0p(|]). (46)

Therefore, all the inequality in the proof of (1) of Lemma 3.1 must be equalities. So (27)
becomes an equality, i.e. Y, hizjk = n?|VH|?, since H is constant, we know that ¥'; ik hfjk =0,
i.e. hijx =0, fori, j,k € {l1,--- ,n}. From (13), we have 0 = dA; — 2} ; hy. 0 = dA;, hence 2, is
constant.

From (26) and Lemma 2.1, we know that M" has two distinct principal curvatures, one of

them being simple, after reenumeration if necessary, we can assume that gy = --- = ,_; > 0,
W, # Wy, where ; = A4, —H,i=1,--- ,n. Thus A; > H >0fori=1,--- ,n—1,wesetA = A, =
= -1 20,.11=7Ln

From the equality of (28), we have };;(A; — lj)z(Kij,-j —06) =0. Since Ky > 8, soif i # J,
then (A; — lj)Z(K,-j,-j —0)=0,s0Kjjij =06 or A; = A for i # j. If 4; # A;, from (13), we have
(Ai—Aj)w;j =0, so @;j = 0. From (10) and w;; = 0, we have

Rijij = O(A; # A;). (47)
From (11), we have
Au+8=0. (48)
On other hand
(n—1)A + 1 = nH = constant. (49)

From (48) and (49), we have

A=

ST JPH 44— 18], = %[nH_ S 4 1))
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So M"™ has two distinct constant principal curvatures, one of them being simple. This proves the
Theorem 1.2.
Proof of Theorem 1.3. From the assumptions of Theorem 1.3, we can assume that H > 0
on M". From (30), we have
n(n—2)
nn—1)

vn—1
(1+vn—1)y+(1—=+vn—1)x)
(=14+vVn—=1y+(1+vn—1)x)

O(nH) > —|®*[|®|* + H|®| —n(c+H?)]. (50)

Consider the quadratic form P(x,y) = —x* —

xy +y2. By the orthogonal transformation

n

-5

n
Px,y) = u* —v?). Take x = |®| and y = /nH; we obtain u* +1v?> =x2+y%, and b
(x,y) 2m( ) |®] and y = \/n y y

(50), we have

n

2vV/n—1

n
2v/n—1
n
2v/n—1
n
2vVn—1
From (12) and S <2+/n — lc, we know that H is bounded. According to (2) of Lemma 3.1, there

exists a sequence of points {x;} in M" such that

O(nH) > |CI>|2(nc+ (uz—vz))

n

2vn—1

Y

|®|*(ne — (u? +?) + 2u?)

Y

| (ne — (u? +?))

> |®(nc— S). (1)

lim nH (x) = sup(nH), lim [V(nH)(xc)| =0, lim sup(O(nH)(x)) < 0. (52)
From (31) we have
]}ii?o\é\z(xk) = sup |®|%. (53)
and
Jim () = lim |®f*(x) + lim (nH) () = sup$. (54)

Evaluating (51) at the points x; of the sequence, taking the limit and using (52), we obtain that

0o > ]}Lr?osup(D(HH)(xk))

2v/n—1

> sup|®|?(nc—

supS) > 0. (55)
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we have sup |®|?> = 0, that is & = 0 or supS = 2v/n — lc. If sup® = 0, then S = nH? and M" is
totally umbilical.
Since P > 0, we know that O is an elliptic operator. From (12) and S < 2+/n — 1¢, we have

O(S) = O(nH?) = 2nHO(nH) + 2(nH — ) (nH;)?

> 2nHO(nH) > 2nH|®|*(nc — %S) >0. (56)

If supS = 2+/n — Ic and this supremum is attained at some point of M", then by the maxi-
mum principle S must be constant, S = 2v/n — lc. From (12), we know that H is constant. Thus,

(51) becomes trivially an equality

n
O(nH) =0 = |®|* (nc — ——=35). 57
(nH) = 0= 9 (ne — 7L —5) 67)
Therefore, all inequalities in proof of (51) must be equalities. From u = 0, we have
vn 1
@] = L =Vl >0. (58)

\/_

By using Lemma 2.1 and (58), we know that M" has two distinct principal curvature, one of

them being simple. Since S and H are constants, it is easy to know that M" has two distinct

constant principal curvatures, one of them being simple. This proves Theorem 1.3.
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