APPROXIMATION PROPERTIES OF rth ORDER GENERALIZED BERNSTEIN POLYNOMIALS BASED ON q-CALCULUS

Honey Sharma
(Dr. B. R. Ambedkar National Institute of Technology, India)

Received Feb. 22, 2010
© Editorial Board of Analysis in Theory \& Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract

In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by using the Modulus of continuity and Lipschitz class, the statistical rate of convergence is established. We also gives the rate of A-statistical convergence by means of Peetre's type K-functional. At last, approximation properties of a rth order generalization of these operators is discussed.

Key words: q-integers, q-Bernstein polynomials, A-statistical convergence, modulus of continuity, Lipschitz class, Peetre's type $K-f u n c t i o n a l$

AMS (2010) subject classification: 41A25, 41A35

1 Introduction

Phillips ${ }^{[7]}$ in 1997 proposed q-Bernstein polynomials based on q calculus as

$$
B_{n, q}(f ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}(1-x)_{q}^{n-k-1}
$$

Very recently Heping ${ }^{[12]}$ obtained Voronovaskaya type asymptotic formula for q-Bernstein operator. In 2002 Ostrovska S. ${ }^{[9]}$, studied the convergence of generalized Bernstein Polynomials. Study of A-statistical approximation by positive linear operators is attempted by O.Duman, C.Orhan in [8].

First, we recall the concept of A-statistical convergence.

Let $A=\left(a_{j n}\right)_{j, n}$ be a non-negative infinite summability matrix. For a sequence $x:=\left(x_{n}\right)_{n}$, A-transform of the sequence x , denoted by $A x:=(A x)_{j}$, is given by

$$
(A x)_{j}:=\sum_{n=1}^{\infty} a_{j n} x_{n}
$$

provided that the series on the right hand side converges for each j. We say that A is regular (see [8]) if $\lim A x=L$ whenever $\lim x=L$. Let A be a non-negative summability matrix. The sequence $x:=\left(x_{n}\right)_{n}$ is said to be A-statistically convergent to a number L, if for any given $\varepsilon>0$,

$$
\lim _{j} \sum_{n:\left|x_{n}-L\right| \geq \varepsilon} a_{j n}=0,
$$

and we denote this limit by $s t_{A}-\lim _{n} x_{n}=L$.
We also know that

1. (see [1],[4]) For $A:=C_{1}$, the Cesàro matrix of order one defined as

$$
c_{j n}:= \begin{cases}\frac{1}{j}, & 1 \leq n \leq j, \\ 0, & n>j,\end{cases}
$$

then A-statistical convergence coincides with statistical convergence.
2. Taking A as the identity matrix, A-statistical convergence coincides with ordinary convergence, i.e.

$$
s t_{A}-\lim _{n} x_{n}=\lim x_{n}=L .
$$

2 Construction of Operator

Here we introduce a general family of q-Bernstein polynomials and compute the rate of convergence with help of modulus of continuity and Lipschitz class. Before introducing the operators, we mention certain definitions based on q-integers, for the DETAILS, see [10] and [11]. For each nonnegative integer k, the q-integer [k] and the q-factorial [$k]$! are respectively defined by

$$
[k]:=\left\{\begin{array}{ll}
\left(1-q^{k}\right) /(1-q), & q \neq 1, \\
k, & q=1
\end{array} .\right.
$$

and

$$
[k]!:= \begin{cases}{[k][k-1] \cdots[1],} & k \geq 1 \\ 1, & k=0\end{cases}
$$

For the integers n, k satisfying $n \geq k \geq 0$, the q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!} .
$$

We use the following notations:

$$
\begin{gather*}
(a+b)_{q}^{n}:=\prod_{s=0}^{n-1}\left(a+q^{s} b\right), \quad n \in \mathbf{N}, \quad a, b \in \mathbf{R} \tag{2.1}\\
(1+a)_{q}^{\infty}:=\prod_{s=0}^{\infty}\left(1+q^{s} a\right), \quad a \in \mathbf{R} \tag{2.2}\\
(1+a)_{q}^{t}:=\frac{(1+a)_{q}^{\infty}}{\left(1+q^{t} a\right)_{q}^{\infty}}, \quad a, t \in \mathbf{R} . \tag{2.3}
\end{gather*}
$$

Note that the infinite product (2.2) is convergent if $q \in(0,1)$ and

$$
(t ; q)_{0}:=1,(t ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-q^{j} t\right),(t ; q)_{\infty}:=\prod_{j=0}^{\infty}\left(1-q^{j} t\right)
$$

Also it can be seen that

$$
(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}}
$$

Let $a_{n}(t)$ be a sequence of functions defined on the interval $[0,1]$ s.t. $a_{n}(t) \in(0,1]$ for all $n \in \mathbf{N}$ and $t \in[0,1]$.

For $f \in C[0,1]$ and $q \in(0,1]$, we define the q-Bernstein polynomial with help of $a_{n}(t)$ as:

$$
\begin{equation*}
\Psi_{n, q}(f ; x)=\sum_{k=0}^{n} f\left(\frac{a_{n}(q)[k]}{[n]}\right) p_{n, k}(q ; x) \tag{2.4}
\end{equation*}
$$

here

$$
p_{n, k}(q ; x)=\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}(1-x)_{q}^{n-k-1} .
$$

Obviously for $a_{n}(q)=1$ in (2.4), we get the classic q-Bernstein polynomial introduced by Phillips ${ }^{[7]}$. M.A. Ozarslan, O. Duman ${ }^{[6]}$ also introduced similar type of generalization for MeyerKonig Zeller type operators.

Lemma 1. For all $x \in[0,1], n \in \mathbf{N}$ and $q \in(0,1)$, we have

$$
\begin{gather*}
\Psi_{n, q}\left(e_{0} ; x\right)=1, \tag{2.5}\\
\Psi_{n, q}\left(e_{1} ; x\right)=x a_{n}(q), \tag{2.6}
\end{gather*}
$$

$$
\begin{equation*}
\Psi_{n, q}\left(e_{2} ; x\right)=a_{n}^{2}(q)\left(x^{2}-\frac{x^{2}}{[n]}+\frac{x}{[n]}\right) . \tag{2.7}
\end{equation*}
$$

Proof. Clearly (2.5) exists. A direct calculation yields that

$$
\begin{aligned}
\Psi_{n, q}\left(e_{1} ; x\right) & =a_{n}(q) \sum_{k=1}^{n} \frac{[n-1]!}{[k-1]![n-k]!} x^{k}(1-x)_{q}^{n-k} \\
& =a_{n}(q) x \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] x^{k}(1-x)_{q}^{(n-1)-k} \\
& =a_{n}(q) x .
\end{aligned}
$$

Also

$$
\begin{aligned}
\Psi_{n, q}\left(e_{2} ; x\right)= & a_{n}^{2}(q) \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{[k]^{2}}{[n]^{2}} x^{k}(1-x)_{q}^{n-k} \\
= & a_{n}^{2}(q) \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \frac{(q[k]+1)}{[n]} x^{k+1}(1-x)_{q}^{n-k-1} \\
= & a_{n}^{2}(q)\left(q \sum_{k=0}^{n-2} \frac{[n-1]}{[n]}\left[\begin{array}{c}
n-2 \\
k
\end{array}\right] x^{k+2}(1-x)_{q}^{n-k-2}\right. \\
& \left.+\sum_{k=0}^{n-1} \frac{1}{[n]}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] x^{k+1}(1-x)_{q}^{n-k-1}\right) \\
= & a_{n}^{2}(q)\left(\frac{[n-1] q}{[n]} x^{2}+\frac{x}{[n]}\right) \\
= & a_{n}^{2}(q)\left(x^{2}-\frac{x^{2}}{[n]}+\frac{x}{[n]}\right) .
\end{aligned}
$$

Hence the result folows.
Remark 1. One can observe that the central moments of $\Psi_{n, q}(f ;$.$) are given by$

$$
\begin{aligned}
& \Psi_{n, q}\left(c_{1} ; x\right)=x\left(a_{n}(q)-1\right), \\
& \Psi_{n, q}\left(c_{2} ; x\right)=x^{2}\left(a_{n}(q)-1\right)^{2}+\frac{a_{n}^{2}(q)}{[n]}\left(x-x^{2}\right),
\end{aligned}
$$

where $c_{1}=t-x$ and $c_{2}=(t-x)^{2}$.
Bohman-Korovkin type theorem [3] may be read as follows:
Theorem A. Let $A=\left(a_{j n}\right)_{j, n}$ be a non-negative regular summability matrix and let $\left(L_{n}\right)_{n}$ be a sequence of positive linear operators from $C[a, b]$ into $C[a, b]$, then for all $f \in C[a, b]$, we
have

$$
s t_{A}-\lim _{n}\left\|L_{n} f-f\right\|=0
$$

if and only if

$$
s t_{A}-\lim _{n}\left\|L_{n} f_{v}-f_{v}\right\|=0, \quad \text { for all } \quad v=0,1,2
$$

where

$$
f_{v}(t)=t^{v} \quad \text { for all } \quad v=0,1,2
$$

Now, in the above definition of the operator (2.4), we replace the fixed q with a sequence $\left(q_{n}\right)_{n \in \mathbf{N}}$, such that $q_{n} \in(0,1]$ and satisfying the conditions

$$
\begin{equation*}
s t_{A}-\lim _{n} a_{n}\left(q_{n}\right)=1 \quad \text { and } \quad s t_{A}-\lim _{n} q_{n}=1 \tag{2.8}
\end{equation*}
$$

Theorem 1. Let $\left(q_{n}\right)_{n \in \mathbf{N}}$ be a sequence satisfying (2.8). Then for all $f \in C[0, a], 0<a<1$, we have

$$
s t_{A}-\lim _{n}\left\|\Psi_{n, q}(f ; \cdot)-f\right\|=0
$$

Proof. It is clear that

$$
\begin{equation*}
s t_{A}-\lim _{n}\left\|\Psi_{n, q}\left(e_{0} ; x\right)-e_{0}\right\|=0 \tag{2.9}
\end{equation*}
$$

Based on the equation (2.6), we get

$$
\begin{equation*}
\left\|\Psi_{n, q_{n}}\left(e_{1}, x\right)-e_{1}(x)\right\|=x\left(a_{n}\left(q_{n}\right)-1\right) \leq a_{n}\left(q_{n}\right)-1 \tag{2.10}
\end{equation*}
$$

For every $\varepsilon>0$, we define two sets as follows:

$$
T_{0}:=\left\{n:\left\|\Psi_{n, q_{n}}\left(e_{1}, x\right)-e_{1}(x)\right\| \geq \varepsilon\right\} \quad \text { and } \quad T_{1}=\left\{n: a_{n}\left(q_{n}\right)-1 \geq \varepsilon\right\}
$$

Then by (2.10), one can observe that $T_{0} \subseteq T_{1}$, hence for all $j \in \mathbf{N}$, we get

$$
0 \leq \sum_{n \in T_{0}} a_{j n} \leq \sum_{n \in T_{1}} a_{j n}
$$

since $s t_{A}-\lim _{n} a_{n}\left(q_{n}\right)=1$, we get

$$
\begin{equation*}
\sum_{n \in T_{0}} a_{j n}=0 \tag{2.11}
\end{equation*}
$$

Taking the limit $j \rightarrow \infty$ gives

$$
\begin{equation*}
s t_{A}-\lim _{n}\left\|\Psi_{n, q}\left(e_{0} ; x\right)-e_{0}\right\|=0 \tag{2.12}
\end{equation*}
$$

By the equation (2.7), we have

$$
\begin{equation*}
\left\|\Psi_{n, q_{n}}\left(e_{2}, x\right)-e_{2}(x)\right\| \leq\left(a_{n}^{2}\left(q_{n}\right)-1\right)+\frac{1}{[n]} \tag{2.13}
\end{equation*}
$$

For every $\varepsilon>0$, we define the sets as follows:

$$
\begin{aligned}
S_{0} & =\left\{n:\left\|\Psi_{n, q_{n}}\left(e_{2}, x\right)-e_{2}(x)\right\| \geq \varepsilon\right\} \\
S_{1} & =\left\{n: a_{n}^{2}\left(q_{n}\right)-1 \geq \varepsilon\right\} \\
S_{2} & =\left\{n: \frac{1}{[n]} \geq \varepsilon\right\}
\end{aligned}
$$

Then by (2.13), one can observe that $S_{0} \subseteq S_{1} \subseteq S_{2}$, hence for all $j \in \mathbf{N}$, we get

$$
0 \leq \sum_{n \in S_{0}} a_{j n} \leq \sum_{n \in S_{1}} a_{j n}+\sum_{n \in S_{2}} a_{j n}
$$

Since $s t_{A}-\lim _{n} a_{n}^{2}\left(q_{n}\right)=1, s t_{A}-\lim _{n} \frac{1}{[n]}=0$, consequently

$$
\begin{equation*}
\sum_{n \in S_{0}} a_{j n}=0 \tag{2.14}
\end{equation*}
$$

Taking the limit $j \rightarrow \infty$ gives

$$
\begin{equation*}
s t_{A}-\lim _{n}\left\|\Psi_{n, q}\left(e_{2} ; x\right)-e_{2}\right\|=0 \tag{2.15}
\end{equation*}
$$

Finally, using (2.9), (2.12) and (2.15) the proof follows from theorem A.
Remark 2. By replacing A with Cesàro matrix of order one $\left(C_{1}\right)$, we get the statistical convergence of the operator and replacing A with the identity matrix we get the simple convergence.

Recall the concept of modulus of continuity of $f(x) \in[0, a]$, denoted by $\omega(f, \delta)$, is defined by

$$
\begin{equation*}
\omega(f, \delta)=\sup _{|x-y| \leq \delta, x, y \in[0, a]}|f(x)-f(y)| \tag{2.16}
\end{equation*}
$$

The modulus of continuity possesses the following property (see [5])

$$
\begin{equation*}
\omega(f, \lambda \delta) \leq(1+\lambda) \omega(f, \delta) \tag{2.17}
\end{equation*}
$$

Corollary 2. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (2.8). Then

$$
\begin{equation*}
\left|\Psi_{n, q}(f ; x)-f\right| \leq 2 \omega\left(f, \sqrt{ } \delta_{n}\right) \tag{2.18}
\end{equation*}
$$

for all $f \in C[0,1]$, where

$$
\begin{equation*}
\delta_{n}=\Psi_{n, q}\left((t-x)^{2} ; x\right) \tag{2.19}
\end{equation*}
$$

Proof. By the linearity and monotonicity of $\Psi_{n, q}$, we get

$$
\left|\Psi_{n, q}(f ; x)-f\right| \leq \Psi_{n, q}(|f(t)-f(x)| ; x)
$$

also

$$
|f(t)-f(x)| \leq \omega(f, \delta)\left(1+\frac{1}{\delta}(t-x)^{2}\right)
$$

Therefore, we obtain

$$
\left|\Psi_{n, q}(f ; x)-f\right| \leq \omega(f, \delta)\left(1+\frac{1}{\delta} \Psi_{n, q}\left((t-x)^{2} ; x\right)\right)
$$

By Remark 1, we get

$$
\Psi_{n, q}\left((t-x)^{2} ; x\right) \leq\left(a_{n}\left(q_{n}\right)-1\right)^{2} x^{2}+\frac{\left(a_{n}^{2}\left(q_{n}\right)\right)}{[n]}
$$

Since $a_{n}\left(q_{n}\right)$ satisfies (2.8), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Psi_{n, q}\left((t-x)^{2} ; x\right)=0 \tag{2.20}
\end{equation*}
$$

So, letting $\delta_{n}=\Psi_{n, q}\left((t-x)^{2} ; x\right)$ and taking $\delta=\sqrt{ } \delta_{n}$, we finally get

$$
\left|\Psi_{n, q}(f ; x)-f\right| \leq 2 \omega\left(f, \sqrt{ } \delta_{n}\right)
$$

As usual, a function $f \in \operatorname{Lip}_{M}(\alpha),(M>0$ and $0<\alpha \leq 1)$, if the inequality

$$
\begin{equation*}
|f(t)-f(x)| \leq M|t-x|^{\alpha} \tag{2.21}
\end{equation*}
$$

holds for all $t, x \in[0,1]$.
In the following theorem, we will compute the rate of convergence by mean of Lipschitz class.

Corollary 3. For all $f \in \operatorname{Lip}_{M}(\alpha)$ and $x \in[0,1]$, we have

$$
\begin{equation*}
\left|\Psi_{n, q}(f ; x)-f\right| \leq M \delta_{n}^{\alpha / 2} \tag{2.22}
\end{equation*}
$$

where $\delta_{n}=\Psi_{n, q}\left(|t-x|^{2} ; x\right)$.
Proof. Using inequality (2.13) and Hölder inequality with $p=\frac{2}{\alpha}, q=\frac{2}{2-\alpha}$, we get

$$
\begin{aligned}
\left|\Psi_{n, q}(f ; x)-f\right| & \leq \Psi_{n, q}(|f(t)-f(x)| ; x) \\
& \leq M \Psi_{n, q}\left(|t-x|^{\alpha} ; x\right) \\
& \leq M \Psi_{n, q}\left(|t-x|^{2} ; x\right)^{\alpha / 2}
\end{aligned}
$$

Taking $\delta_{n}=\Psi_{n, q}\left(|t-x|^{2} ; x\right)$, we get

$$
\left|M_{n, q}(f ; x)-f\right| \leq M \delta_{n}^{\alpha / 2}
$$

Remark 3. By Corollary 2 or Corollary 3, we find that $\Psi_{n, q}(f ;$.$) converges to f$ uniformly on $[0,1]$.

Let us recall concept of Peetre's type K-functional (see [2]). Define

$$
C^{2}[0, a]:=\left\{f \in C[0, a]: f^{\prime}, f^{\prime \prime} \in C[0, a]\right\}
$$

then $C^{2}[0, a]$ is a normed linear space with the norm defined as

$$
\|f\|_{C^{2}[0, a]}:=\|f\|+\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\| .
$$

Peetre's type K-functional is defined as (see[9])

$$
K(f, \delta):=\inf _{g \in C^{2}[0, a]}\left\{\|f-g\|+\delta\|g\|_{C^{2}[0, a]}\right\} .
$$

In the following theorem we estimate the rate of A-statistical convergence by means of Peetre's type K-functional.

Theorem 4. Let $\left(q_{n}\right)_{n \in \mathbf{N}}$ be a sequence satisfying (2.8). Then for all $f \in C[0, a], 0<a<1$, we have

$$
s t_{A}-\lim _{n}\left\|\Psi_{n, q}(f ; \cdot)-f\right\| \leq 2 K\left(f ; \delta_{n}\right)
$$

where

$$
\delta_{n}=\frac{1}{2}\left\{\left(a_{n}\left(q_{n}\right)-1\right)+\frac{1}{4}\left\{\left(a_{n}\left(q_{n}\right)-1\right)^{2}+\frac{a_{n}\left(q_{n}\right)^{2}}{[n]}\right\}\right\} .
$$

Proof. Let $g \in C^{2}[0, a]$, then

$$
g(t)-g(x)=g^{\prime}(x)(t-x)+\int_{x}^{t} g^{\prime \prime}(s)(t-s) \mathrm{d} s
$$

Therefore

$$
\left|\Psi_{n, q}(g ; x)-g(x)\right| \leq\left\|g^{\prime}\right\| \Psi_{n, q}\left(c_{1} ; x\right)+\frac{\left\|g^{\prime \prime}\right\|^{2}}{2} \Psi_{n, q}\left(c_{2} ; x\right),
$$

where $\Psi_{n, q}\left(c_{1} ; x\right)$ and $\Psi_{n, q}\left(c_{2} ; x\right)$ are first and second central moments, we get

$$
\begin{aligned}
\left|\Psi_{n, q}(g ; x)-g(x)\right| & \leq x\left(a_{n}\left(q_{n}\right)-1\right)\left\|g^{\prime}\right\|+\frac{1}{2}\left\{x^{2}\left(a_{n}\left(q_{n}\right)-1\right)^{2}+\frac{a_{n}\left(q_{n}\right)^{2}}{[n]}\left(x-x^{2}\right)\right\}\left\|g^{\prime \prime}\right\| \\
& \leq\left\{x\left(a_{n}\left(q_{n}\right)-1\right)+\frac{1}{2}\left\{x^{2}\left(a_{n}\left(q_{n}\right)-1\right)^{2}+\frac{a_{n}\left(q_{n}\right)^{2}}{[n]}\left(x-x^{2}\right)\right\}\right\}\|g\|_{C^{2}[0, a]} .
\end{aligned}
$$

As $\left|\Psi_{n, q}(f ; x)\right| \leq\|f(x)\|$, we can write

$$
\begin{aligned}
& \left|\Psi_{n, q}(f ; x)-f(x)\right| \leq\left|\Psi_{n, q}(f-g ; x)-f(x)\right|+\left|\Psi_{n, q}(g ; x)-g(x)\right|+|f(x)-g(x)| \\
& \leq 2\|g-f\|_{C^{2}[0, a]}+\left|\Psi_{n, q}(g ; x)-g(x)\right| \\
& \leq 2\left[\|g-f\|_{C^{2}[0, a]}+\left\{\frac{x}{2}\left(a_{n}\left(q_{n}\right)-1\right)+\frac{1}{4}\left\{x^{2}\left(a_{n}\left(q_{n}\right)-1\right)^{2}+\frac{a_{n}\left(q_{n}\right)^{2}}{[n]}\left(x-x^{2}\right)\right\}\right\}\|g\|_{C^{2}[0, a]}\right] \\
& \leq 2\left[\|g-f\|_{C^{2}[0, a]}+\left\{\frac{1}{2}\left(a_{n}\left(q_{n}\right)-1\right)+\frac{1}{4}\left\{\left(a_{n}\left(q_{n}\right)-1\right)^{2}+\frac{a_{n}\left(q_{n}\right)^{2}}{[n]}\right\}\right\}\|g\|_{C^{2}[0, a]}\right] .
\end{aligned}
$$

By letting δ_{n} as that given in the statement of Theorem and on taking infimum over $g \in C^{2}[0, a]$ on the right hand side of the above inequality we get

$$
\left|\Psi_{n, q}(f ; x)-f(x)\right| \leq 2 K\left(f, \delta_{n}\right)
$$

Remark 4. Since $s t_{A}-\lim _{n} a_{n}^{2}\left(q_{n}\right)=1, s t_{A}-\lim _{n} \frac{1}{[n]}=0$, one can observe that $s t_{A}-\lim _{n} \delta_{n}=$ 0 , the above theorem gives the rate of A-satatistical convergence of $\Psi_{n, q}(f ; x)$ to f.

3 A rth Order Generalization of Operator

In this section, we introduce a generalization of the positive linear operator $\Psi_{n, q}$, by using the method introduced by Popova and Kirov ${ }^{[3]}$. Let us consider the space $C(r, f)[0,1]$ of all continuous functions for which the rth order derivative exists and continuous on $[0,1]$. The rth order generalization of $\Psi_{n, q}$ is as follows:

$$
\begin{equation*}
\Psi_{n, r, q}(f ; x)=\sum_{k=0}^{n} \sum_{i=0}^{r} p_{n, k}(q ; x) f^{(i)}\left(\varphi_{n, k}(q)\right) \frac{\left(x-\varphi_{n, k}(q)\right)^{i}}{i!} \tag{3.1}
\end{equation*}
$$

where $f \in C(r, f)[0,1], x \in[0,1)$ and $\varphi_{n, k}(q)=\frac{a_{n}(q)[k]}{[n]}$. For $x=1$, we define $\Psi_{n, r, q}(f ; x)=f(1)$. Clearly for $r=0, \Psi_{n, r, q}(f ; x)=\Psi_{n, q}(f ; x)$.

We prove some approximation theorems for $\Psi_{n, r, q}(f ; x)$ as follows.
Theorem 5. For $f \in C(r, f)[0,1]$ s.t. $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$ and for any $n \in \mathbf{N}, x \in[0,1]$ and $r \in \mathbf{N}$, we have

$$
\begin{equation*}
\left|\Psi_{n, r, q}(f ; x)-f(x)\right| \leq \frac{M \alpha B(\alpha, r)}{(r-1)!(\alpha+r)}\left|\Psi_{n, q}(g ; x)\right| \tag{3.2}
\end{equation*}
$$

where $g(y)=|y-x|^{\alpha+r}$ for each $x \in[0,1]$ and $B(\alpha, r)$ denotes the beta function.
Proof. Take $x \in[0,1)$, as for $x=1$ the result is trivial. Consider

$$
f(x)-\Psi_{n, r, q}(f ; x)=\sum_{k=0}^{n} p_{n, k}(q ; x) f(x)-\Psi_{n, r, q}(f ; x)
$$

From the definition of $\Psi_{n, r, q}(f ; x)$ (see (3.1)), we get

$$
\begin{equation*}
f(x)-\Psi_{n, r, q}(f ; x)=\sum_{k=0}^{n} p_{n, k}(q ; x)\left(f(x)-\sum_{i=0}^{r} f^{(i)}\left(\varphi_{n, k}(q)\right) \frac{\left(x-\varphi_{n, k}(q)\right)^{i}}{i!}\right) \tag{3.3}
\end{equation*}
$$

By Taylor's formula, we can write

$$
\begin{align*}
& f(x)-\sum_{i=0}^{r} f^{(i)}\left(\varphi_{n, k}(q)\right) \frac{\left(x-\varphi_{n, k}(q)\right)^{i}}{i!} \tag{3.4}\\
& \quad=\frac{\left(x-\varphi_{n, k}(q)\right)^{r}}{(r-1)!} \int_{0}^{1}(1-t)^{r-1}\left(f^{(r)}\left(\varphi_{n, k}(q)+t\left(x-\varphi_{n, k}(q)\right)\right)-f^{(r)}\left(\varphi_{n, k}(q)\right)\right) \mathrm{d} t .
\end{align*}
$$

As $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$, we obtain

$$
\begin{equation*}
\left|f^{(r)}\left(\varphi_{n, k}(q)+t\left(x-\varphi_{n, k}(q)\right)\right)-f^{(r)}\left(\varphi_{n, k}(q)\right)\right| \leq M t^{\alpha}\left|x-\varphi_{n, k}(q)\right|^{\alpha} \tag{3.5}
\end{equation*}
$$

Using the equations (3.4) and (3.5), we get

$$
\left|f(x)-\sum_{i=0}^{r} f^{(i)}\left(\varphi_{n, k}(q)\right) \frac{\left(x-\varphi_{n, k}(q)\right)^{i}}{i!}\right| \leq \frac{\left|x-\varphi_{n, k}(q)\right|^{\alpha+r}}{(r-1)!} \int_{0}^{1}(1-t)^{r-1} t^{\alpha} \mathrm{d} t
$$

Also

$$
\int_{0}^{1}(1-t)^{r-1} t^{\alpha} \mathrm{d} t=\frac{\alpha B(\alpha, r)}{\alpha+r}
$$

Using the above facts we get

$$
\begin{equation*}
\left|f(x)-\sum_{i=0}^{r} f^{(i)}\left(\varphi_{n, k}(q)\right) \frac{\left(x-\varphi_{n, k}(q)\right)^{i}}{i!}\right| \leq \frac{M \alpha B(\alpha, r)}{(r-1)!(\alpha+r)}\left|x-\varphi_{n, k}(q)\right|^{\alpha+r} \tag{3.6}
\end{equation*}
$$

Finally by the equations (3.3) and (3.6), we get the desired result.
Remark 5. In the above theorem we observe the following:

1. $g \in C[0,1]$ and $g(x)=0$.
2. $g \in \operatorname{Lip}_{1}(\alpha)$ as $|g(y)-g(x)| \leq|y-x|^{\alpha}$ for $x, y \in[0,1]$.

Corollary 6. Let $x \in[0,1]$ and $r \in \mathbf{N}$, then for $f \in C(r, f)[0,1]$ s.t. $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$ and for any $n \in \mathbf{N}$, we have

$$
\begin{equation*}
\left|\Psi_{n, r, q}(f ; x)-f(x)\right| \leq \frac{2 M \alpha B(\alpha, r)}{(r-1)!(\alpha+r)} \omega\left(g ; \sqrt{ } \delta_{n}\right) \tag{3.7}
\end{equation*}
$$

Using Remark 5, Theorem 3 and Corollary 2 we get the result immediately.
Corollary 7. Let $x \in[0,1]$ and $r \in \mathbf{N}$, then for $f \in C(r, f)[0,1]$ s.t. $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$ and for any $n \in \mathbf{N}$, we have

$$
\begin{equation*}
\left|\Psi_{n, r, q}(f ; x)-f(x)\right| \leq \frac{M \alpha B(\alpha, r)}{(r-1)!(\alpha+r)} \delta_{n}^{\alpha / 2} \tag{3.8}
\end{equation*}
$$

Again by using Remark 5, Theorem 5 and Corollary 3 we get the results immediately.
Corollary 8. Let $x \in[0,1]$ and $r \in \mathbf{N}$, then for $f \in C(r, f)[0,1]$ s.t. $f^{(r)} \in \operatorname{Lip}_{M}(\alpha)$ and for any $n \in \mathbf{N}$, we have

$$
\begin{equation*}
\left|\Psi_{n, r, q}(f ; x)-f(x)\right| \leq \frac{2 M \alpha B(\alpha, r)}{(r-1)!(\alpha+r)} K\left(g ; \delta_{n}\right) \tag{3.9}
\end{equation*}
$$

Theorem 9. Let q in (3.1) be replaced by the sequence $\left(q_{n}\right)_{n \in \mathbf{N}}$ satisfying (2.8), then $\Psi_{n, r, q_{n}}(f ; \cdot)$ converges to f uniformly on $[0,1]$.

Proof. The result is directly obtained by using Corollary 6 or 7.

References

[1] Fridy, J. A., On Statistical Convergence, Analysis, 5(1985), 301-313.
[2] Bleimann, G., Butzer, P. L. and Hahn, L., A Bernstein-type Operator Approximating Continuous Functions on the Semi Axis, Proc. Netherl. Acad. Sci. A 83, Indag. Math., 42(1980), 255-262.
[3] Kirov, G. and Popova, L., A Generalization of Linear Positive Operators, Math Balkanica, 7:149-62 (1993).
[4] Fast, H., Sur la Convergence Statistique, Colloq. Math., 2 (1951), 241-244.
[5] Lorentz, G. G., Berstein Polynomials, Mathematical Expositions, Vol. 8 University of Toronto Press:Toronto, 1953.
[6] Ozarslan, M. A. and Duman, O., Approximation Theorems by Meyer-Konig and Zeller type Operators, Chaos Solitons and Fractals, in press.
[7] Phillips, Bernstein Polynomials Based on q-integers, Annals of Numerical Mathematics, 4:511-518 (1997).
[8] Duman, O. and Orhan, C., Statistical Approximation by Positve Linear Operators, Studia Math., 161:2(2006), 187-197.
[9] Duman, O. and Ostrovska, S., Convergence of Generalized Bernstein Polynomials, J Approximation Theory, 116:1(2002), 100-112.
[10] Ernst, T., The History of q-calculus and a New Method, U.U.D.M. Report 2000, 16, Uppsala, Departament of Mathematics, Uppsala University (2000).
[11] Kac, V. and Cheung, P., Quantum Calculus, Universitext, Springer-Verlag, NewYork (2002).
[12] Heping, W., Voronovskaya-type Formulas and Saturation of Convergence for q-Bernstein Polynomials for $0<q<1$, J Approximation Theory 145(2007), 182-195.

Dr. B. R. Ambedkar National Institute of Technology
Jalandhar, Punjab
India

E-mail: pro.sharma.h@gmail.com (H.Sharma)

