BOUNDEDNESS OF PARABOLIC SINGULAR INTEGRALS AND MARCINKIEWICZ INTEGRALS ON TRIEBEL-LIZORKIN SPACES

Yaoming Niu

(Baotou teachers College, China)

Shuangping Tao

(Northwest Normal University, China)

Received Mar 29, 2010

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in $L(\log L)^{1/\gamma}(S^{n-1})$ on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals $\mu_{\Omega,q}(f)$ from $\|f\|_{\dot{F}^{0,q}_{\sigma}(\mathbf{R}^n)}$ into $L^p(\mathbf{R}^n)$.

Key words: parabolic singular integral, Triebel-Lizorkin space, Marcinkiewica integral, rough kernel

AMS (2010) subject classification: 42B25, 42B35

1 Introduction

Let S^{n-1} denote the unit sphere on the n-dimension Euclidean space \mathbf{R}^n and $\beta_n \geq \beta_{n-1} \geq \cdots \geq \beta_1 \geq 1$ be fixed real numbers. For each fixed $x = (x_1, \dots, x_n) \in \mathbf{R}^n$, the function

$$F(x,\rho) = \sum_{i=1}^{n} \frac{x_i^2}{\rho^{2\beta_i}}$$

is strictly decreasing of $\rho > 0$. Therefore, there exists a unique $\rho = \rho(x)$ such that $F(x,\rho) = 1$. Define $\rho(x) = t$ and $\rho(0) = 0$. It is proved in [10] that ρ is a metric on \mathbf{R}^n and (\mathbf{R}^n, ρ) is called the mixed homogeneity space related to $\{\beta_i\}_{i=1}^n$. For any $x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$, let $x_1 = \rho^{\beta_1} \cos \varphi_1 \dots \cos \varphi_{n-2} \cos \varphi_{n-1}$,

Supported in part by National Natural Foundation of China (Grant No. 11071250).

$$x_2 = \rho^{\beta_2} \cos \varphi_1 ... \cos \varphi_{n-2} \sin \varphi_{n-1},$$

$$.....$$

$$x_{n-1} = \rho^{\beta_n - 1} \cos \varphi_1 \sin \varphi_2,$$

$$x_n = \rho^{\beta_n} \sin \varphi_1.$$

Then $dx = \rho^{\beta-1}J(x')d\rho d\sigma$, where $\beta = \sum_{i=1}^n \beta_i, x' \in S^{n-1}$, and $\rho^{\beta-1}J(x')$ is the Jacobian of the above transform. In [10] Fabes and Rivière pointed out that J(x') is a C^{∞} function on S^{n-1} , and $1 \leq J(x') \leq M$. For $\lambda > 0$, let $B_{\lambda} = \operatorname{diag}[\lambda^{\beta_1}, \cdots, \lambda^{\beta_n}]$ be a diagonal matrix. We say a real valued measurable function $\Omega(x)$ is homogeneous of degree zero with respect to B_{λ} if for any $\lambda > 0$ and $x \in \mathbb{R}^n$

$$\Omega(B_{\lambda}x) = \Omega(x). \tag{1.1}$$

Moreover, we assume that $\Omega(x)$ satisfies the condition

$$\int_{S^{n-1}} \Omega(x')J(x')d\sigma(x') = 0.$$
(1.2)

Let $\alpha > 0$ and

$$L(\log L)^{\alpha}(S^{n-1}) = \left\{\Omega: \int_{S^{n-1}} |\Omega(y')| \log^{\alpha}(2 + |\Omega(y')|) d\sigma(y') < \infty\right\}.$$

It is well known that the following relations hold:

$$\begin{split} L^q(S^{n-1})(q > 1) &\subseteq L \log^+ L(S^{n-1}) \subseteq H^1(S^{n-1}) \subseteq L^1(S^{n-1}), \\ L(\log L)^\beta(S^{n-1}) &\subseteq L(\log L)^\alpha(S^{n-1}), 0 < \alpha < \beta, \\ L(\log L)^\alpha(S^{n-1}) &\subseteq H^1(S^{n-1}), \ \alpha \geq 1, \end{split}$$

where $H^1(S^{n-1})$ is the Hardy space on the unit sphere. While

$$L(\log L)^{\alpha}(S^{n-1}) \not\subseteq H^1(S^{n-1}) \not\subseteq L(\log L)^{\alpha}(S^{n-1}), \qquad 0 < \alpha < 1.$$

For $\gamma \geq 1$, let $\Delta_{\gamma}(\mathbf{R}^+)$ be the set of all measurable functions h on \mathbf{R}^+ satisfying the condition

$$\sup_{R>0} \left(R^{-1} \int_0^R |h(t)|^{\gamma} dt \right)^{1/\gamma} < \infty,$$

and $\Delta_{\infty}(\mathbf{R}^+) = L^{\infty}(\mathbf{R}^+)$. Also, define $H_{\gamma}(\mathbf{R}^+)$ to be the set of all measurable functions h on \mathbf{R}^+ satisfying the condition

$$||h||_{L^{\gamma}(\mathbf{R}^+,\frac{\mathrm{d}t}{t})} = \left(\int_{\mathbf{R}^+} |h(t)|^{\gamma} \frac{\mathrm{d}t}{t}\right)^{1/\gamma} \le 1,$$

and define $H_{\infty}(\mathbf{R}^+) = L^{\infty}(\mathbf{R}^+, \frac{\mathrm{d}t}{t})$. It is easy to verify that $H_{\gamma}(\mathbf{R}^+) \subseteq \Delta_{\gamma}(\mathbf{R}^+)$ and $H_{\infty}(\mathbf{R}^+) = \Delta_{\infty}(\mathbf{R}^+)$ when $1 < \gamma < \infty$. The parabolic singular integral operators are defined by

$$\tilde{T}f(x) = \text{p.v.} \int_{\mathbf{R}^n} \frac{\Omega(y)}{\rho(y)^{\beta}} f(x - y) dy.$$
 (1.3)

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{h(\rho(y))\Omega(y)}{\rho(y)^{\beta}} f(x - y) dy.$$
 (1.4)

Notice that if $\beta_1 = \beta_2 = \cdots = \beta_n = 1$, then $\rho(x) = |x|$ and $(\mathbf{R}^n, \rho) = (\mathbf{R}^n, |\cdot|)$. In this case, the operator \tilde{T} is the classical singular integral operator of convolution type and whose boundedness in various function spaces has been well-studied by many authors, see [3,6,8,11,13,15,18]. Nagel and Rivière proved in [10] that if $\Omega \in C^1(S^{n-1})$ and $h \equiv 1$, then the parabolic singular integral operator T is bounded on $L^p(\mathbf{R}^n)$. Later in [14], Nagel and Rivière further improved their result by assuming a weaker condition $\Omega \in L\log^+ L(S^{n-1})$. Recently, Hung Viet Le showed in [12] that T defined in (1.4) is bounded on the homogeneous Triebel-Lizorkin spaces $\dot{F}_p^{\alpha,q}(\mathbf{R}^n)$ if $\Omega \in L(\log L)^+(S^{n-1})$ and $h \in \Delta_{\tilde{q}}(\mathbf{R}^+)$. The following theorem was proved in [12].

Theorem A. Let $\tilde{q} = \max\{2, q'\}$ and $h \in \Delta_{\tilde{q}}(\mathbf{R}^+)$. Suppose $\Omega \in L(\log L)^+(S^{n-1})$ with conditions (1.1) and (1.2). Then

$$||Tf||_{\dot{F}_{n}^{\alpha,q}(\mathbf{R}^{n})} \leq C||f||_{\dot{F}_{n}^{\alpha,q}(\mathbf{R}^{n})}, \text{ for } \alpha \in \mathbf{R}, 1 < p, q < \infty.$$

The aim of this paper is to give the boundedness on $\dot{F}_p^{\alpha,q}(\mathbf{R}^n)$ for the parabolic singular integral operator T under an other weaker condition. Our main results can be stated as follows.

Theorem 1.1. Let $h \in H_{\gamma}(\mathbb{R}^+)$ and T be defined as in (1.4). Suppose $\Omega \in L(\log L)^{1/\gamma}(S^{n-1})$ with conditions (1.1) and (1.2). Then

(i) If
$$1 < \gamma < 2$$
, then

$$\|Tf\|_{\dot{F}^{\alpha,q}_{p}(\mathbf{R}^{n})} \leq C\|\Omega\|_{L(\log L)^{1/\gamma}(S^{n-1})}\|f\|_{\dot{F}^{\alpha,q}_{p}(\mathbf{R}^{n})}, \text{ for } \alpha \in \mathbf{R}, 1$$

In particular, if $\gamma = 2$, then

$$\|Tf\|_{\dot{F}^{\alpha,2}_{p}(\mathbf{R}^{n})} \leq C \|\Omega\|_{L(\log L)^{1/2}(S^{n-1})} \|f\|_{\dot{F}^{\alpha,2}_{p}(\mathbf{R}^{n})}, \text{ for } \alpha \in \mathbf{R}, 1$$

(ii) If
$$2 < \gamma < \infty$$
, then

$$\|Tf\|_{\dot{F}^{\alpha,q}_{p}(\mathbf{R}^{n})} \leq C\|\Omega\|_{L(\log L)^{1/\gamma}(S^{n-1})}\|f\|_{\dot{F}^{\alpha,q}_{p}(\mathbf{R}^{n})}, \text{ for } \alpha \in \mathbf{R}, 1$$

Remark 1. It is not hard to verify $H_{\gamma}(\mathbf{R}^+) \not\subseteq \Delta_2(\mathbf{R}^+)$ as $2 < \gamma < \infty$, therefore our result is new in the case $2 < \gamma < \infty$. It must be pointed out that some ideas for proving Theorem 1.1

follow from [12]. However, the reader will find that some techniques and estimates in our proof are different from those in [12].

Finally, we also obtain the boundedness for a class of Marcinkiewicz functions $\mu_{\Omega,q}(f)$ under a much weaker condition on Ω , where $\mu_{\Omega,q}(f)$ is defined by

$$\mu_{\Omega,q}(f)(x) = \left(\int_0^\infty |F_{\Omega}(x,t)|^q \frac{dt}{t^{q+1}}\right)^{1/q},\tag{1.5}$$

and

$$F_{\Omega}(x,t) = \int_{|y| < t} \frac{h(|y|)\Omega(y)}{|y|^{n-1}} f(x - y) dy.$$

Moreover, we know if q=2 and $h\equiv 1$ then $\mu_{\Omega}(f)\equiv \mu_{\Omega,q}(f)$ is the classical Marcinkiewicz integral which is first defined by Stein in [17] and the boundedness of $\mu_{\Omega}(f)$ has been well-studied by many authors in various function spaces in the literature, see [2,4,9,19]. We have the following result.

Theorem 1.2. Let $\alpha \in \mathbf{R}$ and $\mu_{\Omega,q}(f)$ be defined as in (1.5). Suppose $\Omega \in L(\log L)^{1/\gamma}(S^{n-1})$ and satisfies conditions (1.1) with $(\beta_1 = ... = \beta_n = 1)$ and (1.2) with $(J(x') \equiv 1)$. Then

(i) If
$$1 < \gamma < 2$$
 and $h \in \Delta_{\gamma'}(\mathbf{R}^+)$, we have

$$\|\mu_{\Omega,q}(f)\|_p \le C \|\Omega\|_{L(\log L)^{1/\gamma}(S^{n-1})} \|f\|_{\dot{F}^{0,q}_n(\mathbf{R}^n)}, \text{ for } 1$$

In particular, if $\gamma = 2$ and $h \in \Delta_2(\mathbf{R}^+)$, we have

$$\|\mu_{\Omega,2}(f)\|_p \le C \|\Omega\|_{L(\log L)^{1/2}(S^{n-1})} \|f\|_p$$
, for $1 .$

(ii) If
$$2 < \gamma < \infty$$
 and $h \in H_{\gamma}(\mathbf{R}^+)$, we have

$$\|\mu_{\Omega,q}(f)\|_p \le C \|\Omega\|_{L(\log L)^{1/\gamma}(S^{n-1})} \|f\|_{\dot{F}^{0,q}_n(\mathbf{R}^n)}, \text{ for } 1$$

Remark 2. As $h \equiv 1$ and $\gamma = 2$, our results is consistent with the results in [2].

Throughout this paper, C denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. For $1 \le \gamma \le \infty$, γ' denotes the conjugate index of γ , i.e., $1/\gamma + 1/\gamma' = 1$.

2 Proofs of Theorems

Before proving the theorems, we recall the definition of the Triebel-Lizorkin space. Fix a radial Schwartz function $\phi(\xi) \in S(\mathbf{R}^n)$ such that supp $\hat{\phi} \subset \{\xi \in \mathbf{R}^n : 1/2 \le |\xi| \le 2\}$, $\hat{\phi}(\xi) \ge 0$, $\hat{\phi}(\xi) \ge c > 0$ if $3/5 \le |\xi| \le 5/3$. Denote $\hat{\phi}_t(\xi) = \hat{\phi}(t\xi)$, $t \in \mathbf{R}$, so that $\phi_t(x) = t^{-n}\phi(\frac{x}{t})$, $x \in \mathbf{R}^n$.

For $\alpha \in \mathbf{R}$, $0 \le p < \infty$, and $1 \le q \le \infty$, the homogeneous Triebel-Lizorkin spaces $\dot{F}_p^{\alpha,q}(\mathbf{R}^n)$ is defined by

$$||f||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})} = \left\| \left(\int_{0}^{\infty} |t^{-\alpha}\phi_{t} * f(x)|^{q} \frac{\mathrm{d}t}{t} \right)^{1/q} \right\|_{L^{p}(\mathbf{R}^{n})}, \tag{1.7}$$

with the usual modification if $q = \infty$. It is well known that $\dot{F}_p^{\alpha,q}(\mathbf{R}^n)$ is a unified setting of many well-known function spaces including Lebesgue spaces $L^p(\mathbf{R}^n)$, Hardy spaces $H^p(\mathbf{R}^n)$, and Sobolev spaces $L^p_\alpha(\mathbf{R}^n)$. Thus considering the boundedness of the operators on Triebel-Lizorkin space is of great meaningful.

Proof of Theorem 1.1. Let $\Omega \in L(\log L)^{1/\gamma}(S^{n-1})$. Following the idea in [1], we proceed as follows. For $m \in \mathbb{N}$, let $E_0 = \{x' \in S^{n-1} : |\Omega(x')| < 2\}$, $E_m = \{x' \in S^{n-1} : 2^m \le |\Omega(x')| < 2^{m+1}\}$, and $\tilde{\Omega}_m(x') = \Omega(x')\chi_{E_m}(x')$. Denote $\lambda_0 = 1$, $\lambda_m = \|\tilde{\Omega}_m\|_1$, $\mathbf{I} = \{m \in \mathbb{N} : \lambda_m \ge 2^{-2m}\}$, and $\delta = \int_{S^{n-1}} J(y') d\sigma(y')$. Define the sequence of functions $\{\Omega_m\}_{m \in \mathbb{I} \cup \{0\}}$ by

$$\Omega_0(x') = \sum_{m \in \{0\} \cup (\mathbf{N} - \mathbf{I})} \tilde{\Omega}_m(x') - \frac{1}{\delta} \sum_{m \in \{0\} \cup (\mathbf{N} - \mathbf{I})} \left(\int_{S^{n-1}} \tilde{\Omega}_m(x') J(x') d\sigma(x') \right),$$

$$\Omega_m(x') = (\lambda_m)^{-1} \left(\tilde{\Omega}_m(x') - \frac{\int_{S^{n-1}} \tilde{\Omega}_m(x') J(x') d\sigma(x')}{\delta} \right) \text{ for } m \in \mathbf{I}.$$

Denote $a_m = 2^m$, then it is not hard to verify that

$$\|\Omega_m\|_{L^2(S^{n-1})} \le Ca_m^2, \|\Omega_m\|_{L^1(S^{n-1})} \le C, \int_{S^{n-1}} \Omega_m(x')J(x')d\sigma(x') = 0,$$

$$\Omega(x') = \sum_{m \in I \cup \{0\}} \lambda_m \Omega_m(x'), \tag{2.1}$$

and

$$\sum_{m \in I \cup \{0\}} (m+1)^{1/\gamma} \lambda_m \le C \|\Omega\|_{L(\log L)^{1/\gamma}(S^{n-1})}. \tag{2.2}$$

Therefore, we have

$$Tf(x) = \sum_{m \in I \cup \{0\}} \lambda_m \int_{\mathbf{R}^n} \frac{h(\rho(y))\Omega_m(y')}{\rho(y)^{\beta}} f(x - y) dy := \sum_{m \in I \cup \{0\}} \lambda_m T_m f(x), \tag{2.3}$$

where

$$T_m f(x) = p.v. \int_{\mathbf{R}^n} \frac{h(\rho(y))\Omega_m(y')}{\rho(y)^{\beta}} f(x - y) dy.$$

Now, we choose a real-valued function $\phi(\xi) \in S(\mathbf{R}^n)$ such that $\operatorname{supp} \hat{\phi} \subset \{\xi \in \mathbf{R}^n : 1/2 \le \rho(\xi) \le 2\}$, $0 \le \hat{\phi}(\rho(\xi)) \le 1$, $\hat{\phi}(\rho(\xi)) \ge c > 0$ as $3/5 \le \rho(\xi) \le 5/3$, and $\int_{-\infty}^{\infty} |\hat{\phi}^2(2^t(\rho(\xi)))dt = 1$ for

 $\xi \neq 0$. Define ψ on \mathbb{R}^n by $\hat{\psi}_{2^t}(\xi) = \hat{\phi}(2^t \rho(\xi))$. Denote $S_{2^t} = \psi_{2^t} * f$, then for $f \in S(\mathbb{R}^n)$, $f = m \int_{\mathbb{R}} S_{2^{mt}}(S_{2^{mt}}f) dt$ for any fixed $m \in \mathbb{N}$. Thus for $f \in S(\mathbb{R}^n)$ and each fixed $x \in \mathbb{R}^n$, we have

$$T_{m}f(x) = \int_{\mathbf{R}^{n}} \frac{h(\rho(y))\Omega_{m}(y')}{\rho(y)^{\beta}} f(x-y) dy$$

$$= \int_{\mathbf{R}} \int_{\mathbf{R}^{n}} \frac{h(\rho(y))\Omega_{m}(y')}{\rho(y)^{\beta}} \chi_{2^{mt}}(\rho(y)) f(x-y) dy dt$$

$$:= \int_{\mathbf{R}} \sigma_{2^{mt}} * f(x) dt,$$

where $\sigma_{2^{mt}}(y) = \frac{h(\rho(y))\Omega_m(y')}{\rho(y)^{\beta}}\chi_{2^{mt}}(\rho(y))$ and $\chi_{2^{mt}}(\rho(y))$ is the characteristic function of the set $\{y \in \mathbf{R}^n : 2^{mt} \le \rho(y) < 2^{m(t+1)}\}$. Thus we write

$$T_{m}f(x) = m \int_{\mathbf{R}} \sigma_{2^{mt}} * \left(\int_{\mathbf{R}} S_{2^{m(t+s)}} S_{2^{m(t+s)}} f ds \right) dt$$

$$= m \int_{\mathbf{R}} \int_{\mathbf{R}} S_{2^{m(t+s)}} (\sigma_{2^{mt}} * S_{2^{m(t+s)}} f) dt ds$$

$$:= \int_{\mathbf{R}} T_{m,s} f ds,$$

where

$$T_{m,s}f = m \int_{\mathbf{R}} S_{2^{m(t+s)}}(\sigma_{2^{mt}} * S_{2^{m(t+s)}}f) dt.$$
 (2.4)

We claim that if $m \in \mathbf{I}$, then

$$||T_m(f)||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)} \le Cm^{1/\gamma}||f||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)}.$$
 (2.5)

On the other hand, we can also prove

$$||T_0(f)||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)} \le C||f||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)}.$$
 (2.6)

In fact, the proof of the inequality (2.6) is essentially the same as (2.5) only fixed m = 0 and replace Ω_m by Ω_0 in the proof of (2.5). Therefore we only need to prove (2.5). To do this, we need the following lemmas.

Lemma 2.1^[6]. Suppose $\lambda'_j s$ and $\alpha'_j s$ are fixed numbers and $\Gamma(t) = (\lambda_1 t^{\alpha_1}, ... \lambda_n t^{\alpha_n})$ is a function from \mathbf{R}_+ to \mathbf{R}^n . The maximal function associated to the homogeneous curve Γ is defined by

$$\mathbf{M}_{\Gamma}(f)(x) = \sup_{h>0} \frac{1}{h} \left| \int_0^h f(x - \Gamma(t)) dt \right|.$$

Then, for $1 , there is a constant C independent of <math>\lambda'_j s$, $\alpha'_j s$, and f such that

$$||\mathbf{M}_{\Gamma}(f)||_{L^p} \leq C||f||_{L^p}.$$

Lemma 2.2^[7]. Let $0 \le \delta \le 1$ and L denote the distinct numbers of $\{\beta_i\}$. Then

$$\left| \int_1^2 e^{-i \langle B_{\lambda} x, y \rangle} \frac{\mathrm{d}\lambda}{\lambda} \right| \le C |\langle x, y \rangle|^{-\delta/L}, \text{ for any } x, y \in \mathbf{R}^n,$$

where C > 0 is independent of x and y.

Lemma 2.3. Let
$$\sigma_{2^{mt}}(y) = \frac{h(\rho(y))\Omega_m(y')}{\rho(y)^{\beta}} \chi_{2^{mt}}(\rho(y)), h \in H_{\gamma}(\mathbf{R}^+), 1 < \gamma < \infty$$
. Then

$$|\hat{\sigma}_{2^{mt}}(\xi)| \le Cm^{1/\gamma} \|\Omega_m\|_1 |B_{2^{m(t+1)}}\xi|, \tag{2.7}$$

$$|\hat{\sigma}_{2^{mt}}(\xi)| \le Cm^{1/\gamma} |B_{2^{mt}}\xi|^{-\varepsilon/m},\tag{2.8}$$

where $\varepsilon = 2\delta/\gamma L$ if $2 \le \gamma < \infty$ and $\varepsilon = \delta/L$ if $1 < \gamma < 2$.

Proof. By the vanishing moment of Ω_m and $J(x') \in C_0^{\infty}$, we have

$$\begin{split} |\hat{\sigma}_{2^{mt}}(\xi)| &= \left| \int_{\{y \in \mathbf{R}^{n}: 2^{mt} \leq \rho(y) < 2^{m(t+1)}\}} \frac{e^{-2\pi i \xi \cdot y} h(\rho(y)) \Omega_{m}(y')}{)} \rho(y)^{\beta} \mathrm{d}y \right| \\ &\leq \int_{2^{mt}}^{2^{m(t+1)}} \int_{S^{n-1}} \left| (e^{-2\pi i \xi \cdot B_{\rho} y'} - 1) \Omega_{m}(y') J(y') \right| \mathrm{d}\sigma(y') |h(\rho)| \frac{\mathrm{d}\rho}{\rho} \\ &\leq C \|J\|_{\infty} |B_{2^{m(t+1)}} \xi| \|\Omega_{m}\|_{1} \int_{2^{mt}}^{2^{m(t+1)}} |h(\rho)| \frac{\mathrm{d}\rho}{\rho} \\ &\leq C |B_{2^{m(t+1)}} \xi| \|\Omega_{m}\|_{1} \left(\int_{2^{mt}}^{2^{m(t+1)}} |h(\rho)|^{\gamma'} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma'} \left(\int_{2^{mt}}^{2^{m(t+1)}} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma} \\ &\leq C m^{1/\gamma} \|\Omega_{m}\|_{1} |B_{2^{m(t+1)}} \xi|. \end{split}$$

Thus (2.7) holds. On the other hand, noticing that

$$\left| \left| \int_{\mathbb{S}^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_m(y') J(y') d\sigma(y') \right| \leq \|J\|_{\infty} \|\Omega_m\|_{1},$$

we have

$$\begin{split} |\hat{\sigma}_{2^{mt}}(\xi)| & \leq \left(\int_{2^{mt}}^{2^{m(t+1)}} |h(\rho)|^{\gamma} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma'} \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') \mathrm{d}\sigma(y') \right|^{\gamma} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma} \\ & \leq C \|J\|_{\infty} \|\Omega_{m}\|_{1} \left(\int_{2^{mt}}^{2^{m(t+1)}} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma}. \end{split}$$

Thus,

$$|\hat{\sigma}_{2^{mt}}(\xi)| \le Cm^{1/\gamma}. \text{ for } 1 < \gamma < \infty. \tag{2.9}$$

Set

$$R_{m,t}(\xi) = \int_{2^{mt}}^{2^{m(t+1)}} \left| \int_{S^{n-1}} e^{-2\pi i < B_{
ho} y', \xi >} \Omega_m(y') J(y') \mathrm{d}\sigma(y') \right|^2 \frac{\mathrm{d}
ho}{
ho},$$

then we have

$$R_{m,t}(\xi) = \int \int_{S^{n-1} \times S^{n-1}} \Omega_m(y') \overline{\Omega_m(x')} |I_{m,t}(\xi)| J(y') J(x') d\sigma(y') d\sigma(x'), \qquad (2.10)$$

where

$$I_{m,t}(\xi) = \int_{2^{mt}}^{2^{m(t+1)}} e^{-2\pi i < B_{\rho}(y'-x'), \xi > \frac{\mathrm{d}\rho}{\rho}}.$$

Let $0 < \delta < \min\{1/2, L/4\}$, we obtain by Lemma 2.2

$$\begin{split} |I_{m,t}(\xi)| & \leq \sum_{j=0}^{m-1} \left| \int_{2^{mt+j}}^{2^{mt+j+1}} e^{-2\pi i \langle B_{\rho}(y'-x'), \xi \rangle} \frac{\mathrm{d}\rho}{\rho} \right| \\ & \leq \sum_{j=0}^{m-1} \left| \int_{1}^{2} e^{-2\pi i \langle B_{2^{mt+j}\lambda}(y'-x'), \xi \rangle} \frac{\mathrm{d}\lambda}{\lambda} \right| \\ & \leq C \sum_{j=0}^{m-1} \left| \langle B_{2^{mt+j}}(y'-x'), \xi \rangle \right|^{-2\delta/L} \\ & \leq C \sum_{j=0}^{m-1} (|\langle (y'-x'), \eta' \rangle) ||B_{2^{mt+j}}\xi|)^{-2\delta/L} \\ & \leq C \sum_{j=0}^{m-1} 2^{-2j\delta\beta_1/L} |B_{2^{mt}}\xi|^{-2\delta/L} |\langle (y'-x'), \eta' \rangle|^{-2\delta/L} \\ & \leq C m |B_{2^{mt}}\xi|^{-2\delta/L} |\langle (y'-x'), \eta' \rangle|^{-2\delta/L}, \end{split}$$

where $\eta' = \frac{B_{2^{mt}}\xi}{|B_{2^{mt}}\xi|}$. Therefore, we have by (2.10)

$$\begin{split} R_{m,t}(\xi) & \leq C \|J\|_{\infty}^{2} \left(\int \int_{S^{n-1} \times S^{n-1}} |\Omega_{m}(x') \overline{\Omega_{m}(y')}|^{2} d\sigma(x') d\sigma(y') \right)^{1/2} \\ & \times \left(\int_{S^{n-1} \times S^{n-1}} |I_{m,t}(\xi)|^{2} d\sigma(x') d\sigma(y') \right)^{1/2} \\ & \leq C m \|\Omega_{m}\|_{2}^{2} |B_{2^{mt}} \xi|^{-2\delta/L} \left(\int \int_{S^{n-1} \times S^{n-1}} |\langle (y'-x'), \eta' \rangle|^{-4\delta/L} d\sigma(y') \right)^{1/2} \\ & \leq C m \|\Omega_{m}\|_{2}^{2} |B_{2^{mt}} \xi|^{-2\delta/L}. \end{split}$$

It follows

$$(R_{m,t}(\xi))^{1/2} \le Cm^{1/2} 2^{2m} ||B_{2^{mt}}\xi|^{-\delta/L}. \tag{2.11}$$

Thus,

$$\begin{split} |\hat{\sigma}_{2^{mt}}(\xi)| & \leq \left(\int_{2^{mt}}^{2^{m(t+1)}} |h(\rho)|^{\gamma} \frac{d\rho}{\rho} \right)^{1/\gamma'} \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') \mathrm{d}\sigma(y') \right|^{\gamma} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma'} \\ & \leq \|J\|_{\infty} \|\Omega_{m}\|_{1} \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \frac{1}{\|J\|_{\infty} \|\Omega_{m}\|_{1}} \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') \mathrm{d}\sigma(y') \right|^{\gamma} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma'}. \end{split}$$

If $2 \le \gamma < \infty$, noticing that

$$\left|\frac{1}{\|J\|_{\infty}\|\Omega_m\|_1}\int_{S^{n-1}}e^{-2\pi i\xi\cdot B_\rho y'}\Omega_m(y')J(y')\mathrm{d}\sigma(y')\right|\leq 1,$$

Then we have

$$\begin{split} |\hat{\sigma}_{2^{mt}}(\xi)| & \leq \|J\|_{\infty} \|\Omega_{m}\|_{1} \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \frac{1}{\|J\|_{\infty} \|\Omega_{m}\|_{1}} \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') d\sigma(y') \right|^{2} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma} \\ & \leq C \|\Omega_{m}\|^{-2/\gamma} \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') d\sigma(y') \right|^{2} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma} \\ & \leq C m^{1/\gamma} \|\Omega_{m}\|_{2}^{2} |B_{2^{mt}} \xi|^{-2\delta/\gamma L}. \end{split}$$

Thus,

$$|\hat{\sigma}_{2^{mt}}(\xi)| \le Cm^{1/\gamma} 2^{4m} |B_{2^{mt}}\xi|^{-2\delta/\gamma L}, \text{ for } 2 \le \gamma < \infty.$$
 (2.12)

If $1 < \gamma < 2$, we get by Hölder's inequality and (2.11)

$$\begin{split} |\hat{\sigma}_{2^{mt}}(\xi)| & \leq \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') \mathrm{d}\sigma(y') \right|^{\gamma} \frac{\mathrm{d}\rho}{\rho} \right)^{1/\gamma} \\ & \leq C \left(\int_{2^{mt}}^{2^{m(t+1)}} \frac{d\rho}{\rho} \right)^{1/\gamma - 1/2} \left(\int_{2^{mt}}^{2^{m(t+1)}} \left| \int_{S^{n-1}} e^{-2\pi i \xi \cdot B_{\rho} y'} \Omega_{m}(y') J(y') \mathrm{d}\sigma(y') \right|^{2} \frac{\mathrm{d}\rho}{\rho} \right)^{1/2} \\ & \leq C m^{1/\gamma - 1/2} m^{1/2} 2^{2m} |B_{2^{mt}} \xi|^{-\delta/L}. \end{split}$$

Thus, we have

$$|\hat{\sigma}_{2^{mt}}(\xi)| \le Cm^{1/\gamma} 2^{2m} |B_{2^{mt}}\xi|^{-\delta/L}, \text{ for } 1 < \gamma < 2.$$
 (2.13)

Therefore, (2.8) follows immediately from (2.12), (2.13), and (2.9) respectively. This finishes the proof of Lemma 2.3.

Lemma 2.4. Let $\alpha \in \mathbb{R}$, $1 < p, q < \infty$. Then

$$||T_{m,s}(f)||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})} \leq Cm^{1/q} \left\| \left(\int_{\mathbf{R}} |2^{-m(t+s)\alpha} \sigma_{2^{mt}} * S_{2^{m(t+s)}} f|^{q} dt \right)^{1/q} \right\|_{L^{p}(\mathbf{R}^{n})}. \tag{2.14}$$

Proof. Noticing that

$$||f||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})} \simeq m^{1/q} \left\| \left(\int_{\mathbf{R}} |2^{-mt\alpha} S_{2^{mt}} f|^{q} dt \right)^{1/q} \right\|_{L^{p}(\mathbf{R}^{n})}, \tag{2.15}$$

Therefore, for any $g \in \dot{F}_{p'}^{-\alpha,q'}(\mathbf{R}^n)$ with $||g||_{\dot{F}_{p'}^{-\alpha,q'}(\mathbf{R}^n)} \le 1$, we have

$$|\langle T_{m,s}(f),g\rangle| = m \left| \int_{\mathbf{R}^{n}} \int_{\mathbf{R}} S_{2^{m(t+s)}}(\sigma_{2^{mt}} * S_{2^{m(t+s)}}f)(x)g(x)dtdx \right|$$

$$\leq m \int_{\mathbf{R}^{n}} \left| \int_{\mathbf{R}} (\sigma_{2^{mt}} * S_{2^{m(t+s)}}f)(x)\tilde{S}_{2^{m(t+s)}}g(x)dt \right| dx$$

$$\leq m \left\| \left(\int_{\mathbf{R}} |2^{-m(t+s)\alpha}\sigma_{2^{mt}} * S_{2^{m(t+s)}}f|^{q}dt \right)^{1/q} \right\|_{L^{p}(\mathbf{R}^{n})}$$

$$\times \left\| \left(\int_{\mathbf{R}} |2^{m(t+s)\alpha}\tilde{S}_{2^{m(t+s)}}g|^{q}dt \right)^{1/q} \right\|_{L^{p'}(\mathbf{R}^{n})}$$

$$\leq m^{1/q} \|g\|_{\dot{F}_{p'}^{-\alpha,q}(\mathbf{R}^{n})} \left\| \left(\int_{\mathbf{R}} |2^{-m(t+s)\alpha}\sigma_{2^{mt}} * S_{2^{m(t+s)}}f|^{q}dt \right)^{1/q} \right\|_{L^{p}(\mathbf{R}^{n})},$$

where $\tilde{S}_{2^{m(t+s)}}$ is the dual operator of $S_{2^{m(t+s)}}$, i.e.,

$$\tilde{S}_{2m(t+s)}g(x) = S_{2m(t+s)}(\tilde{g})(x)$$

and $\tilde{g}(x) = g(-x)$. Thus, we have

$$||T_{m,s}(f)||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)} \leq Cm^{1/q} \left\| \left(\int_{\mathbf{R}} |2^{-m(t+s)\alpha} \sigma_{2^{mt}} * S_{2^{m(t+s)}} f|^q dt \right)^{1/q} \right\|_{L^p(\mathbf{R}^n)}.$$

The proof of Lemma 2.4 is completed.

Next, we estimate the norm $||T_{m,s}(f)||_{\dot{F}_{2}^{\alpha,2}(\mathbf{R}^{n})}$. By taking p=q=2 in (2.14), we have

$$\begin{split} & \|T_{m,s}(f)\|_{\dot{F}_{2}^{\alpha,2}}^{2} \leq Cm \int_{\mathbf{R}} \int_{\mathbf{R}^{n}} |2^{-m(t+s)\alpha} \hat{\sigma}_{2^{mt}}(\xi) \hat{\psi}(2^{m(t+s)}\xi) \hat{f}(\xi)|^{2} d\xi dt \\ & = Cm \int_{\mathbf{R}} \int_{D_{t+s}} |2^{-m(t+s)\alpha} \hat{\sigma}_{2^{mt}}(\xi) \hat{\phi}(2^{m(t+s)}\rho(\xi)) \hat{f}(\xi)|^{2} d\xi dt \\ & = Cm \int_{\mathbf{R}} \int_{S^{n-1}} \int_{E_{t+s}} |2^{-m(t+s)\alpha} \hat{\sigma}_{2^{mt}}(B_{\rho}\xi') \hat{\phi}(2^{m(t+s)}\rho) \hat{f}(B_{\rho}\xi')|^{2} \rho^{\beta-1} J(\xi') d\sigma(\xi') d\rho dt, \end{split}$$

where $D_{t+s} = \{ \xi \in \mathbf{R}^n : 1/2 \le 2^{m(t+s)} \rho(\xi) \le 2 \}$ and $E_{t+s} = \{ \rho \in \mathbf{R}^+ : 1/2 \le 2^{m(t+s)} \rho \le 2 \}$. Therefore, we have by (2.7) as $s \ge 1$,

$$||T_{m,s}(f)||_{\dot{F}_{2}^{\alpha,2}(\mathbf{R}^{n})} \leq Cm^{1/\gamma}||\Omega_{m}||_{1}2^{-m(s-1)\beta_{1}}m^{1/2}\left(\int_{\mathbf{R}^{n}}\int_{\mathbf{R}}|2^{-m(t+s)\alpha}\psi_{2^{m(t+s)}}*f(x)|^{2}dtdx\right)^{1/2}$$

$$\leq Cm^{1/\gamma}||\Omega_{m}||_{1}2^{-m(s-1)\beta_{1}}||f||_{\dot{F}_{2}^{\alpha,2}(\mathbf{R}^{n})}. \tag{2.16}$$

Similar to (2.16), we have by (2.8)

$$||T_{m,s}(f)||_{\dot{E}_{s}^{\alpha,2}(\mathbf{R}^{n})} \le Cm^{1/\gamma} 2^{s\beta_{1}\varepsilon} ||f||_{\dot{E}_{s}^{\alpha,2}(\mathbf{R}^{n})}, \text{ for } s < 1.$$
 (2.17)

Lemma 2.5. Let $1 < \gamma$, $p < \infty$ and

$$L_t(f)(x) = \int_{\mathbf{R}^n} \frac{\Omega_m(y')}{\rho(y)^{\beta}} \chi_{2^{mt}}(\rho(y)) f(x-y) dy.$$

 \tilde{L}_t denotes the dual operator of L_t , i.e., $\tilde{L}_t(f)(x) = L_t(\tilde{f})(-x)$, where $\tilde{f}(x) = f(-x)$. Then

$$\begin{aligned} |\sigma_{2^{mt}} * S_{2^{m(t+s)}}(f)(x)| &\leq C \|\Omega_m\|_1^{1/\gamma} (L_t(|S_{2^{m(t+s)}}f|^{\gamma})(x))^{1/\gamma}, \\ \|\sigma_{2^{mt}} * S_{2^{m(t+s)}}(f)(x)\|_{L^{\gamma}(\mathbf{R}^n)} &\leq C \|\Omega_m\|_1 \|S_{2^{m(t+s)}}f\|_{L^{\gamma}(\mathbf{R}^n)}, \\ \|\sup_{t \in \mathbf{R}} L_t(|f|)\|_{L^p(\mathbf{R}^n)} &\leq C m \|\Omega_m\|_1 \|f\|_{L^p(\mathbf{R}^n)}. \end{aligned}$$

Proof. Noticing that

$$\begin{aligned} |\sigma_{2^{mt}} * S_{2^{m(t+s)}}(f)(x)| &\leq \left| \int_{\mathbf{R}^n} \frac{h(\rho(y))\Omega_m(y')}{\rho(y)^{\beta}} \chi_{2^{mt}}(\rho(y)) S_{2^{m(t+s)}} f(x-y) \mathrm{d}y \right| \\ &\leq \left(\int_{\mathbf{R}^n} \frac{|h(\rho(y))|^{\gamma'} \Omega_m(y')}{\rho(y)^{\beta}} \chi_{2^{mt}}(\rho(y)) \mathrm{d}y \right)^{1/\gamma'} \\ &\times \left(\int_{\mathbf{R}^n} \frac{|\Omega_m(y')|}{\rho(y)^{\beta}} |S_{2^{m(t+s)}} f(x-y)|^{\gamma} \chi_{2^{mt}}(\rho(y)) \mathrm{d}y \right)^{1/\gamma} \\ &\leq \|\Omega_m\|_1^{\gamma'} (L_t(|S_{2^{m(t+s)}} f|^{\gamma})(x))^{1/\gamma}, \end{aligned}$$

Then we have

$$\|\sigma_{2^{mt}} * S_{2^{m(t+s)}}(f)(x)\|_{L^{\gamma}(\mathbf{R}^n)} \le C \|\Omega_m\|_1^{\gamma} \|S_{2^{m(t+s)}}f\|_{L^{\gamma}(\mathbf{R}^n)}.$$

Since

$$L_t(|f|) = \int_{S^{n-1}} |\Omega_m(y')| J(y') \left(\int_{2^{mt}}^{2^{m(t+1)}} |f(x - B_{\rho}y')| \frac{\mathrm{d}\rho}{\rho} \right) \mathrm{d}\sigma(y')$$

and

$$\int_{2^{mt}}^{2^{m(t+1)}} |f(x-B_{\rho}y')| \frac{d\rho}{\rho} = \sum_{j=1}^{m} \int_{2^{mt+j-1}}^{2^{mt+j}} |f(x-B_{\rho}y')| \frac{d\rho}{\rho} \\
\leq 2m \frac{1}{2^{mt+j}} \int_{2^{mt+j-1}}^{2^{mt+j}} |f(x-B_{\rho}y')| d\rho \\
\leq 2m \sup_{h>0} \left\{ \frac{1}{h} \int_{0}^{h} |f(x-B_{\rho}y')| d\rho \right\} \\
:= 2m M_{\Gamma}(f)(x),$$

we get by Minkowski's inequality and Lemma 2.3

$$\|\sup_{t\in\mathbf{R}}L_t(|f|)\|_{L^p(\mathbf{R}^n)}\leq Cm\|\Omega_m\|_1\|f\|_{L^p(\mathbf{R}^n)}.$$

This completes the proof of Lemma 2.5.

Now, we turn to give the proof of (2.5). By taking $q = \gamma$ in (2.14), there exists a non-negative function $g(x) \in L^{r'}(\mathbb{R}^n)$ with $\|g\|_{L^r(\mathbb{R}^n)} \le 1$, where $r = p/\gamma$, such that

$$\begin{split} \|T_{m,s}(f)\|_{\dot{F}_{p}^{\alpha,\gamma}(\mathbf{R}^{n})}^{\gamma} & \leq Cm \int_{\mathbf{R}} \int_{\mathbf{R}^{n}} |2^{-m(t+s)\alpha} \sigma_{2^{mt}} * S_{2^{m(t+s)}} f|^{\gamma} g(x) \mathrm{d}x \mathrm{d}t \\ & \leq Cm \int_{\mathbf{R}} \int_{\mathbf{R}^{n}} 2^{-m(t+s)\alpha\gamma} L_{t}(|S_{2^{m(t+s)}} f|^{\gamma})(x) g(x) \mathrm{d}x \mathrm{d}t \\ & \leq Cm \int_{\mathbf{R}} \int_{\mathbf{R}^{n}} |2^{-m(t+s)\alpha} S_{2^{m(t+s)}} f(x)|^{\gamma} \tilde{L}_{t} g(x) \mathrm{d}x \mathrm{d}t \\ & \leq Cm \int_{\mathbf{R}} \left(\int_{\mathbf{R}^{n}} |2^{-m(t+s)\alpha} S_{2^{m(t+s)}} f(x)|^{\gamma} dt \right) \sup_{t \in \mathbf{R}} \tilde{L}_{t} g(x) \mathrm{d}x \\ & \leq Cm \left(\int_{\mathbf{R}^{n}} (\int_{\mathbf{R}} |2^{-m(t+s)\alpha} S_{2^{m(t+s)}} f|^{\gamma} dt)^{r} dx \right)^{1/r} \left(\int_{\mathbf{R}^{n}} |\sup_{t \in \mathbf{R}} \tilde{L}_{t} g(x)|^{r'} dx \right)^{1/r'} \\ & \leq Cm \|f\|_{\dot{F}_{p}^{\alpha,\gamma}(\mathbf{R}^{n})}^{\gamma} \|g\|_{L^{r'}(\mathbf{R}^{n})}. \end{split}$$

It follows

$$||T_{m,s}(f)||_{\dot{F}_{p}^{\alpha,\gamma}(\mathbf{R}^{n})} \le Cm^{1/\gamma}||f||_{\dot{F}_{p}^{\alpha,\gamma}(\mathbf{R}^{n})}.$$
 (2.18)

Using an interpolation between (2.16), (2.17), and (2.18) respectively (see [5]) and by a standard duality argument, we obtain that there exist θ_1 and θ_2 : $0 < \theta_1$, $\theta_2 \le 1$, such that for all q lying in γ' and γ

$$||T_{m,s}(f)||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})} \le Cm^{1/\gamma}||\Omega_{m}||_{1}2^{-m(s-1)\beta_{1}\theta_{1}}||f||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})}, \text{ for } s \ge 1.$$
(2.19)

$$||T_{m,s}(f)||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})} \le Cm^{1/\gamma} 2^{s\beta_{1}\theta_{2}\varepsilon} ||f||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})}, \text{ for } s < 1.$$
 (2.20)

Thus, we have

$$||T_m(f)||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)} \le \int_{\mathbf{R}} ||T_{m,s}(f)||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)} ds \le Cm^{1/\gamma} ||f||_{\dot{F}_p^{\alpha,q}(\mathbf{R}^n)}.$$

It follows that (2.5) holds. Therefore, for all q lying in between γ' and γ , we have from (2.2), (2.3), (2.5), and (2.6)

$$||T(f)(x)||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})} \leq \sum_{m \in I \cup \{0\}} \lambda_{m} ||T_{m}(f)(x)||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})}$$

$$\leq C \sum_{m \in I \cup \{0\}} \lambda_{m} m^{1/\gamma} ||f||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})}$$

$$\leq C ||\Omega||_{L(\log L)^{1/\gamma}(S^{n-1})} ||f||_{\dot{F}_{p}^{\alpha,q}(\mathbf{R}^{n})}.$$

This finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let $\Omega \in L(\log L)^{1/\gamma}(S^{n-1})$. We decompose Ω as that in the proof of Theorem 1.1, except for a slight modification by taking $J(x') \equiv 1$. Then we get by (2.1) and Minkowski's inequality

$$\|\mu_{\Omega,q}(f)(x)\|_{L^{p}(\mathbf{R}^{n})} \leq \sum_{m \in I \cup \{0\}} \lambda_{m} \|\mu_{\Omega_{m},q}(f)(x)\|_{L^{p}(\mathbf{R}^{n})}, \tag{2.21}$$

where

$$\mu_{\Omega_m,q}(f)(x) = \left(\int_0^\infty |F_{\Omega_m}(x,t)|^q \frac{dt}{t^{q+1}}\right)^{1/q},\tag{2.22}$$

$$F_{\Omega_m}(x,t) = \int_{|y| < t} \frac{h(|y|)\Omega_m(y)}{|y|^{n-1}} f(x - y) dy.$$

For a fixed $m \in \mathbb{N}$, let us define the measures $\{\sigma_{m,t}\}_{t \in \mathbb{R}}$ by setting

$$\sigma_{m,t} * f(x) = 2^{-t} \int_{|y| \le 2^t} \frac{h(|y|)\Omega_m(y)}{|y|^{n-1}} f(x - y) dy.$$

Then

$$\mu_{\Omega_{m,q}} \sim \left(\int_{\mathbf{R}} |\sigma_{m,t} * f(x)|^q dt \right)^{1/q}. \tag{2.23}$$

We choose a real-valued radical function $\phi(\xi) \in S(\mathbf{R}^n)$ such that supp $\hat{\phi} \subset \{\xi \in \mathbf{R}^n : 1/2 \le |\xi| \le 2\}$, $\hat{\phi}(\xi) \ge 0$, $\hat{\phi}(\xi) \ge c > 0$ as $3/5 \le |\xi| \le 5/3$ and $\int_{\mathbf{R}} |\hat{\phi}_{2^t}(\xi)| dt = 1$ for $\xi \ne 0$, where $\hat{\phi}_{2^t}(\xi) = \hat{\phi}(2^t \xi)$. Set $S_{2^t} = \phi_{2^t} * f$. Then we get

$$\sigma_{m,t} * f = \int_{\mathbf{R}} \sigma_{m,t} * S_{2^{(t+s)}} f ds.$$
 (2.24)

According to (2.24) and Minkowski's inequality, we obtain

$$\|\sigma_{m,t} * f\|_{L^q(\mathbf{R})} \le \int_{\mathbf{R}} \|\sigma_{m,t} * S_{2^{m(t+s)}} f\|_{L^q(\mathbf{R})} ds := m^{-1/q} \int_{\mathbf{R}} I_{q,s} f ds, \tag{2.25}$$

where

$$I_{q,s}f(x) = m^{1/q} \left(\int_{\mathbf{R}} |\sigma_{m,t} * S_{2^{m(t+s)}} f|^q dt \right)^{1/q}.$$

First we consider the case $1 < \gamma \le 2$.

Lemma 2.6. Assume that $h \in \Delta_{\gamma}(\mathbf{R}^+)$, $1 < \gamma \le 2$, and $\sigma_{m,t} = \frac{h(|y|)\Omega_m(y)}{2^t|y|^{n-1}}\chi_{\{|y| \le 2^t\}}$, then

$$|\hat{\sigma}_{m,t}(\xi)| \leq C \min\{|2^t \xi|, ||2^t \xi|^{-1/8m}\}.$$

Proof. We have by the vanishing moment of Ω_m

$$\begin{split} |\hat{\sigma}_{m,t}(\xi)| &= \left| \int_{0}^{2^{t}} \int_{S^{n-1}} e^{-2\pi i r \xi \cdot y'} \Omega_{m}(y')) \mathrm{d}\sigma(y') 2^{-t} h(r) \mathrm{d}r \right| \\ &\leq \int_{0}^{2^{t}} \int_{S^{n-1}} \left| (e^{-2\pi i r \xi \cdot y'} - 1) \Omega_{m}(y')) \right| \mathrm{d}\sigma(y') 2^{-t} |h(r)| \mathrm{d}r \\ &\leq C \|\Omega_{m}\|_{1} |2^{t} \xi| 2^{-t} \int_{0}^{2^{t}} |h(r)| \mathrm{d}r \\ &\leq C \|\Omega_{m}\|_{1} |2^{t} \xi| \left(2^{-t} \int_{0}^{2^{t}} |h(r)|^{\gamma} \mathrm{d}r \right)^{1/\gamma'} \left(2^{-t} \int_{0}^{2^{t}} dr \right)^{1/\gamma} \\ &\leq C \|\Omega_{m}\|_{1} |2^{t} \xi|. \end{split}$$

On the other hand,

$$\begin{aligned} |\hat{\sigma}_{m,t}(\xi)| & \leq & \left(2^{-t} \int_{0}^{2^{t}} |h(r)|^{2} \mathrm{d}r\right)^{1/2} \left(2^{-t} \int_{0}^{2^{t}} \left| \int_{S^{n-1}} e^{-2\pi i r \xi \cdot y'} \Omega_{m}(y') \right|^{2} \mathrm{d}\sigma(y') \right|^{2} \mathrm{d}r \right)^{1/2} \\ & \leq & C \left(\int_{0}^{2^{t}} \left| \int_{S^{n-1}} e^{-2\pi i r \xi \cdot y'} \Omega_{m}(y') \right| \mathrm{d}\sigma(y') \right|^{2} \mathrm{d}r \right)^{1/2}. \end{aligned}$$

Denote

$$R_{m,t}(\xi) = 2^{-t} \int_0^{2^t} \left| \int_{S^{n-1}} e^{-2\pi i r \xi \cdot y'} \Omega_m(y')) d\sigma(y') \right|^2 dr.$$

Noticing that

$$\left| \left| \int_{S^{n-1}} e^{-2\pi i \xi \cdot y'} \Omega_m(y') \right) \mathrm{d}\sigma(y') \right| \leq C \|\Omega_m\|_1,$$

then we obtain

$$|R_{m,t}(\xi)| \le C ||\Omega_m||_1^2.$$

It follows that

$$|\hat{\sigma}_{m,t}(\xi)| \le C \|\Omega_m\|_1. \tag{2.26}$$

Rewrite

$$R_{m,t}(\xi) = \int \int_{S^{n-1} \times S^{n-1}} \Omega_m(y') \overline{\Omega_m(x')} |I_{m,t}(\xi)| dr d\sigma(y') d\sigma(x'), \qquad (2.27)$$

where

$$I_{m,t}(\xi) = 2^{-t} \int_0^{2^t} e^{-2\pi i r \xi \cdot (y' - x')} dr.$$

By integrating by parts, we have

$$I_{m,t}(\xi) \le C \min\{1, |2^t \xi|^{-1} (y' - x')\} \le C |2^t \xi|^{-\nu} |\xi' \cdot (y' - x')|^{-\nu}$$

with 0 < v < 1 and 2v < 1. Taking v = 1/4, we get from (2.27)

$$R_{m,t}(\xi) \leq C \left(\int \int_{S^{n-1} \times S^{n-1}} |\Omega_m(x') \overline{\Omega_m(y')}|^2 d\sigma(x') d\sigma(y') \right)^{1/2} \\ \times \left(\int_{S^{n-1} \times S^{n-1}} |I_{m,t}(\xi)|^2 d\sigma(x') d\sigma(y') \right)^{1/2} \\ \leq C \|\Omega_m\|_2^2 |2^t \xi|^{-1/4} \left(\int \int_{S^{n-1} \times S^{n-1}} |\langle (y' - x', \eta' \rangle)|^{-1/8} d\sigma(y') \right)^{1/2} \\ \leq C \|\Omega_m\|_2^2 |2^t \xi|^{-1/4}.$$

It follows that

$$|\hat{\sigma}_{m,t}(\xi)| \le C2^{2m} |2^t \xi|^{-1/8}.$$
 (2.28)

From (2.26) and (2.28), we obtain

$$|\hat{\sigma}_{m,t}(\xi)| \leq C|2^t\xi|^{-1/8m}$$
.

This finishes the proof of Lemma 2.6.

By the similar argument as in the proof of Lemma 2.5, we have

Lemma 2.7. Let

$$N_t(f)(x) = 2^{-t} \int_{|y| < 2^t} \frac{\Omega_m(y)}{|y|^{n-1}} f(x - y) dy.$$

 \tilde{N}_t denotes the dual operator of N_t , i.e., $\tilde{N}_t(f)(x) = N_t(\tilde{f})(-x)$, where $\tilde{f}(x) = f(-x)$. Then

$$\begin{split} |\sigma_{m,t} * S_{2^{m(t+s)}}(f)(x)| &\leq C \|\Omega_m\|_1^{1/\gamma'} (N_t(|S_{2^{m(t+s)}}f|^{\gamma})(x))^{1/\gamma}, \\ \|\sigma_{m,t} * S_{2^{m(t+s)}}(f)(x)\|_{L^{\gamma}(\mathbf{R}^n)} &\leq C \|\Omega_m\|_1 \|S_{2^{m(t+s)}}f\|_{L^{\gamma}(\mathbf{R}^n)}, \\ \|\sup_{t \in \mathbf{R}} N_t(|f|)\|_{L^p(\mathbf{R}^n)} &\leq C \|\Omega_m\|_1 \|f\|_{L^p(\mathbf{R}^n)}. \end{split}$$

Therefore, from Lemmas 2.6 and 2.7, we obtain by applying the similar argument as that in getting (2.16) and (2.17), there exists a positive constant τ such that

$$||I_{q,s}f(x)||_{L^p} \le C2^{-|s|\tau} ||\Omega_m||_1 ||f||_{\dot{\mathcal{E}}^{0,q}(\mathbf{R}^n)}, \ \gamma < q < \gamma'. \tag{2.29}$$

We denote the mixed norm

$$||f||_{L^p(L^q)} = \left\| \left(\int_R |f(x,t)|^q dt \right)^{1/q} \right\|_{L^p(\mathbf{R}^n)}.$$

Then we have by (2.25) and (2.29)

$$\|\sigma_{m,t}*f\|_{L^p(L^q)} \leq m^{1/\gamma} \|\Omega_m\|_1 \int_{\mathbf{R}} \|I_{q,s}f\|_{L^p} ds \leq C m^{1/\gamma} \|f\|_{\dot{F}^{0,q}_p(\mathbf{R}^n)}.$$

$$\|\mu_{\Omega_m,q}f\|_{L^p} \le \|\sigma_{m,t} * f\|_{L^p} \le Cm^{1/\gamma} \|\Omega_m\|_1 \|f\|_{\dot{F}_p^{0,q}(\mathbf{R}^n)}. \tag{2.30}$$

Thus, according to the estimates (2.21), (2.23), and (2.30), we obtain

$$\begin{split} \|\mu_{\Omega,q}(f)(x)\|_{L^{p}(\mathbf{R}^{n})} & \leq & \sum_{m \in I \cup \{0\}} \lambda_{m} \|\mu_{\Omega_{m},q}(f)(x)\|_{L^{p}(\mathbf{R}^{n})} \\ & \leq & C \sum_{m \in I \cup \{0\}} \lambda_{m} m^{1/\gamma} \|f\|_{\dot{F}^{0,q}_{p}(\mathbf{R}^{n})} \\ & \leq & C \|\Omega\|_{L(\log L)^{1/\gamma}(S^{n-1})} \|f\|_{\dot{F}^{0,q}_{p}(\mathbf{R}^{n})}. \end{split}$$

Finally, by the similar argument as that in the proof of Lemma 2.3 and the case $1 < \gamma \le 2$, we can prove Theorem 1.2 in the case $2 < \gamma < \infty$. We omit the details here. So the proof of Theorem 1.2 is finished.

References

- [1] Al-Qassem, H. M., On the Boundedness of Maximal Operators and Singular Operator with Kernel in $L(\log L)^{\alpha}(S^{n-1})$, Ineq. Appl., 2006,1-16.
- [2] Al-Salman, A. H. and Cheng L., L^p Bounds for the Function of Marcinkiewicz, Math. Res. Letter, 9(2002), 697-700.
- [3] Bartl, M. and Fan, D., On Hyper-singular Integral Operators with Variable Kernels, J. Math. Anal. Appl., 328 (2007), 730-742.
- [4] Benedek, A., Calderón, A. P. and Panzone, R., Convolution Operators on Banach Value Functions, Proc. Nat. Acad. Sci., 48(1962), 256-365.
- [5] Bergh, J. and Löfstrom, L., Interpolation Spaces, Springer-Verlag, Berlin, 1976.
- [6] Calderón, A. P. and Zygmund, A., On Singular Integrals, Amer.J. Math., 18(1956), 289-309.
- [7] Chen, Y. P. and Ding, Y., L^p Bounds for the Parabolic Marcinkiewicz Integral with Rough Kernel, Korean Math. Soc., 44(2007), 733-745.
- [8] Chen, J. C. and Fan, D. S., Singular Integral Operators on Function Spaces, Math. Anal. Appl., 276(2002), 691-708.
- [9] Ding, Y., Fan, D. S. and Pan, Y. B., *L*^p Boundeddness of Marcinkiewicz with Hardy Space Function Kernel, Acta. Math. Sinica (English Ser.), 16(2000), 593-600.
- [10] Fabes, E. and Rivière, N., Singular Integrals with Mixed Homogeneity, Studia Math., 27(1966), 19-38.
- [11] Grafakos, L. and Stefanov, A., *L*^p Bounds for Singular Integral and Maximal Singular Integrals with Rough Kernels, Indiana Univ. Math., 31:4(2001), 877-888.
- [12] Le, H. V., Singular Integrals with Mixed Homogeneity Triebel-Lizorkin Spaces, J. Math. Anal. Appl., 345(2008), 903-916.
- [13] Lu, S. Z. and Xu, L. F., Boundedness of Rough Singular Integral Operators on the Homogeneous Morrey-Herz Spaces, Hokkaido Mathematical Journal, 34:2(2005), 299-314.
- [14] Nagel, A. and Rivière, N., On Hilbert Transform Along Curves, II, Amer. J. Math., 98:2(1976), 395-403.

- [15] Palagachev, D. Softova, L., Singular Integral Operators, Morrey Spaces and Fine Regularity of Solution to PDE's, Potential Anal., 20(2004), 237-263.
- [16] Stein, E. M., Maximal Functions: Homogeneous Curves, Proc. Nat. Acad. Sci. U.S.A., 73(1976), 2176-2177.
- [17] Stein, E. M., On the Function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 3(1958), 252-262.
- [18] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- [19] Wash, T., On the Function of Marcinkiewicz, Studia Math., 44(1972),203-217.

Y. M. Niu
Faculty of Mathematics
Baotou Teachers College
Baotou, 014030
P. R. China

E-mail: nymmath@126.com

S. P. Tao
College of Matchmatics and Information Science
Northwest Normal University
Lanzhou, 730070
P. R. China

E-mail: taosp@nwnu.edu.cn