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Abstract. In this paper, we obtain the boundedness of the parabolic singular integral oper-
ator T with kernel in L(log L)'/?($"~!) on Triebel-Lizorkin spaces. Moreover, we prove the

boundedness of a class of Marcinkiewicz integrals to 4(f) from || f]] .04 ®") into L”(R").
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1 Introduction

Let §*~! denote the unit sphere on the n-dimension Euclidean space R" and f3, > f, 1 >

.-+ > By > 1 be fixed real numbers. For each fixed x = (xj,--- ,x,) € R", the function

nx2

F(xvp - i
) ;pzﬁi

is strictly decreasing of p > 0. Therefore, there exists a unique p = p(x) such that F(x,p) = 1.
Define p(x) =7 and p(0) = 0. It is proved in [10] that p is a metric on R” and (R",p) is called
the mixed homogeneity space related to {B;}7_,. For any x = (x1,x2,--- ,x,) € R", let

X = pﬁ1 COS (1...COS Q,_2COS Pp_1,
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Xy = p/32 COS (1...COS (o, o Sin Q,,_1,

Xp_1 = pPr=Tcos @y sin s,

x, = pPrsin ;.

n

Then dx = pP~1J(x¥)dpdc, where B = Zﬁi,x’ € 5" !, and pP~1J(x') is the Jacobian of the
i=1

above transform. In [10] Fabes and Riviere pointed out that J(x') is a C* function on §"~!, and

1 <J(xX) <M. For A >0, let B; = diag[AP!,- .- 1P] be a diagonal matrix. We say a real valued
measurable function Q(x) is homogeneous of degree zero with respect to B if for any A > 0
and x € R"

Q(Byx) = Q(x). (1.1)

Moreover, we assume that Q(x) satisfies the condition

[ e)I()do () =o. (1.2)

Let o > 0 and
Liogly* (") = {@: [ 100)lIog" (2 +190/))do(y) <=}
It is well known that the following relations hold:
LY(S" N(g>1)CLlog"L(S" Y CcH'(s" ) cL(s" ),
L(logL)P(5"~1) C L(logL)*(S"~"),0 < a < B,
L(logL)*(s" Yy CcHY(s" ™), a>1,
where H'(S"~!) is the Hardy space on the unit sphere. While
LogL)*(s" Y g H' (" 1)  L(logL)*(s" 1), 0<a<l.

For y > 1, let Ay(R™) be the set of all measurable functions 4 on R satisfying the condition

R 1/y
sup (Rl / \h(z)]Ydt> < o,
R>0 0

and A.,(RT) = L”(R™). Also, define H,(R™) to be the set of all measurable functions 4 on R*

satisfying the condition

d[ 1/7
HhHLY(Rﬁ%) = (/R+ |h(l‘)|77) <1,
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dr
and define H.(R") = L*(R™, 7) It is easy to verify that Hy(R") C A,(R") and H.(R") =
Ao(R") when 1 < ¥ < oo. The parabolic singular integral operators are defined by

Tf(x) :p-V-/Rn %f(x—y)dy- (1.3)
Tf(x) :p.v./n %f(x—y)dy. (1.4)
Notice that if ; = B, =--- = B, = 1, then p(x) = |x| and (R",p) = (R",|-|). In this case, the

operator T is the classical singular integral operator of convolution type and whose boundedness
in various function spaces has been well-studied by many authors, see [3,6,8,11,13,15,18]. Nagel
and Riviere proved in [10] that if Q € C'(5"~!) and h = 1, then the parabolic singular integral
operator 7 is bounded on L?(R"). Later in [14], Nagel and Riviere further improved their result
by assuming a weaker condition Q € Llog™ L(S"~!). Recently, Hung Viet Le showed in [12]
that 7' defined in (1.4) is bounded on the homogeneous Triebel-Lizorkin spaces F,f‘ 4(R") if
Q€ L(logL)* (8"~ 1) and h € Az(R™T). The following theorem was proved in [12].

Theorem A. Let § = max{2,q'} and h € Az(R"). Suppose Q € L(logL)™*(S""') with
conditions (1.1) and (1.2). Then

HTfHFPOCq(Rn) S CHf||FpU¢=Q(Rn), for o S R,l < pP,q < oo,

The aim of this paper is to give the boundedness on F, ?(R") for the parabolic singular
integral operator 7 under an other weaker condition. Our main results can be stated as follows.

Theorem 1.1. Leth € Hy(R") and T be defined as in (1.4). Suppose Q € L(logL)'/7(s"1)
with conditions (1.1) and (1.2). Then

1) If1 <y<2, then

IT fll ey < ClIR og y/rsn1) | fllgza gy, for @ €R 1< p<ooy<g<y.
In particular, if Yy =2, then
HTprPal(Rn) < CHQHL(logL)W(sH)Hprgl(Rn)v fora € R,1 < p <o
(i) If 2 <y < oo, then
I7 Aoy < CIRogy sl gy Tor & R < p<eny <g <7,

Remark 1. Tt is not hard to verify Hy(R") Z Ay(R") as 2 < y < oo, therefore our result

is new in the case 2 < ¥ < co. It must be pointed out that some ideas for proving Theorem 1.1
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follow from [12]. However, the reader will find that some techniques and estimates in our proof
are different from those in [12].
Finally, we also obtain the boundedness for a class of Marcinkiewicz functions Lo 4(f)

under a much weaker condition on Q, where (g ,(f) is defined by

oo 1/q
Ho g (f)(x) = (/0 |Fg(x,l‘)|q%> , (1.5)

and

_ [ D)
Fa(sr) = [ S )y

Moreover, we know if ¢ =2 and h =1 then uqo(f) = o 4(f) is the classical Marcinkiewicz
integral which is first defined by Stein in [17] and the boundedness of pq(f) has been well-
studied by many authors in various function spaces in the literature, see [2,4,9,19]. We have the
following result.

Theorem 1.2. Let o € Rand g ,(f) be defined as in (1.5). Suppose Q € L(logL)"/7(s"~1)
and satisfies conditions (1.1) with (By = ... = B, = 1) and (1.2) with(J(x') = 1). Then

() If1 <y<2andhe Ay(RY), we have

(Pl < CN ogryais e for 1 < p <oy < g <7.
In particular, if y =2 and h € Ay(R"), we have
102 (N)ly < ClIQI Lpogy2(sm-1) 11l 5 for 1 < p <ee.
(ii) If2 < y < .o and h € Hy(R™"), we have
0Pl < CI g5 ) ooy or 1< p <o/ < g <.

Remark2. Ash=1and y=2, our results is consistent with the results in [2].
Throughout this paper, C denotes a positive constant that is independent of the main pa-
rameters involved but whose value may differ from line to line. For 1 < y < oo, ¥ denotes the

conjugate index of y,i.e., 1/y+1/yY = 1.

2  Proofs of Theorems

Before proving the theorems, we recall the definition of the Triebel-Lizorkin space. Fix a
radial Schwartz function ¢ (&) € S(R”) such that supp ¢ C {£ e R": 1/2 < |E| <2}, (&) >0,
$(&) > c>0if3/5 <|&| <5/3. Denote ¢, (&) = ¢(t&).t € R, so that ¢ (x) =1 "¢(%),x € R".
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For & € R,0 < p < o0, and 1 < g < oo, the homogeneous Triebel-Lizorkin spaces F, /(R") is

defined by
Sl dr
g = | ([ o0 s )

with the usual modification if g = co. It is well known that Fpa’q(R”) is a unified setting of

1/q

, (1.7)
LP(R")

many well-known function spaces including Lebesgue spaces L”(R"), Hardy spaces H”(R"),
and Sobolev spaces L5 (R"). Thus considering the boundedness of the operators on Triebel-
Lizorkin space is of great meaningful.

Proof of Theorem 1.1. Let Q € L(logL)'/7(s"~"). Following the idea in [1], we proceed
as follows. For m € N, let Eg = {x¥' € "' : |Q(¥)| < 2}, E,, = {¥ € S" 1 : 2" < |Q(¥)| <
21, and Q,,(¥) = Q(X)xg, (x'). Denote Ao = 1, Ay, = [|Qull1, I= {m € N: A, > 272"},
and 6 = [g-1J()')do(y'). Define the sequence of functions {Q, } e (0} by

W)= T w0y B ([ fiiow) )

me{0}J(N-I) me{0}J(N-I

Qmu’):(xmrl(fzm(x’) Jow1 Q)N A0 s ))formel.

Denote a,, = 2™, then it is not hard to verify that

HQmHLZ(Snfl) S Ca%’t’ HQmHLI(S”71) S C, /S,l,l Qm(x'),](x’)dd(x') = O,

Q)= Y AQu(x), (2.1)
mel | J{0}
and
(m+ D) 2y < ClIQ 1og 1y 7511 (2.2)

mel J{0}
Therefore, we have

h(p (»)Qm(Y)
Tf(x)= Ao —— L f(x—y)dy:= AT f (), 2.3
o= ¥ Jo TS p () T R e3)

where

Tuf) = po MO )y,

Now, we choose a real-valued function ¢ (&) € S(R") such that supp - {EeR":1/2<p(§) <
21, 0<0(p(€)) < 1.6(p(8)) = c>0as3/5<p(§) <5/3, and 7{0 |22/ (p(&))dr = 1 for
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& # 0. Define w on R” by Wi (&) = ¢(2'p(E)). Denote Sy = iy * f, then for f € S(R"),
f=m [g Som (Sym f)dt for any fixed m € N. Thus for f € S(R") and each fixed x € R", we have

) L“ﬁﬁﬁ”

//n /)XZm’(P(Y))f(X—y)dydt
— Fomeesiom

flx—y)dy

where o (y) = ) x2m (P(y)) and xom (p(y)) is the characteristic function of the

set {y € R": 2™ < p(y) < 2"0+D}. Thus we write

Tmf(x) = m/RGZWt * </RSZm(t+s) SZm(’“) fds) dr

- m/ / S2m(1+s) (szt * S2m(1+s) f) dtds
RJR

= / Ty fds,
R
where
Tysf =m /R Syutren (Gt # Sy £)d1. (2.4)
We claim that if m € 1, then
1Ty < Cn | o e (2.5)

On the other hand, we can also prove

1T () e rey < CILF Il o mey- (2:6)

In fact, the proof of the inequality (2.6) is essentially the same as (2.5) only fixed m = 0 and
replace Q,, by Qg in the proof of (2.5). Therefore we only need to prove (2.5). To do this, we
need the following lemmas.

Lemma 2.1°.  Suppose Ajs and s are fixed numbers and I'(r) = (A1#%,...4,t%) is a
function from R, to R”. The maximal function associated to the homogeneous curve I' is
defined by

Mr(f)(x) = sup ))dt|.

w0 h

Then, for 1 < p < o, there is a constant C independent of 7L]'-s, a js, and f such that

HMT(f)HLP < CHfHLP.
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Lemma 2.27). Let 0 < § < 1 and L denote the distinct numbers of {B:}. Then

2. da
/ e‘<B“’Y>T' <C|<xy>|"%" forany x, y R,
1

where C > 0 is independent of x and y.

/
Lemma2.3. Let G (y) = % 2w (p()), h € Hy(RH), 1 <7< oo. Then
y
|62 (&)] < Cm 7| Q1| By € , (2.7)
(G30(&)] < OV /1By ]I, (28)

where € =26 /yLif2<y<eande=3/Lif 1 <y<2.

Proof. By the vanishing moment of Q,, and J(x') € C7’, we have

e 27 (p (1)) Qi (v

A . B
Gmt —_— d
0@ = | [ ) PO
om(t+1) oni , dp
< [ [ e - nena0) o) ine) £
om(t+1) dp
< CllllBan &l [, 1)
om(t+1) dp 1/'}/ om(t+1) dp 1/'}/
< C|Bywi Q / h V—> (/ —>
< clnlianl ([ mor ) ([
< Cm"7)| Q1 1By €.
Thus (2.7) holds. On the other hand, noticing that
[ e 0,000 d0 ()| < ]2,
we have
m(t+1) dp 1y omlt+1) _ ) Ydp 1/y
ol = ([ melr L) ([ | [ e L)
omt p omt gn—1
2m(t+l) dp 1/’)/
< cldeai( [, 2
mt p
Thus,
6am (E)| < Cm"7. for 1<y < oo, (2.9)
Set
om(t+1) ) , de
Rus®)= [ [ e 00000000 | P
2mt Sn—
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then we have

Rud®) = [ [ 010 (OO ()do )0 (), (210

where
om(t+1)

; / d
@)= [, B D,

Let 0 < 0 <min{1/2,L/4}, we obtain by Lemma 2.2

zmt+j+l
/ o 2Ti<By(y ) &> dp
omt+j p

/2 o 2Mi<Bym+j; (/Y =x').&> %
| A

m—1

i (S)] <

j=0

m—1

IN

j=0
m—1

CY | <Bowii(y —¥),& > |72/t
j=0

m—1
CY (1<(/=x)n" > [|Byss&]) 2"
=0

IN

IN

IN

—1
sz 2_2j6ﬁ'/L|Bth§|_25/L| < (yl _x/)’n/ > |—25/L
=0

< CmlBym& | < (o =)' > [P,

B mt é

where ' = Byl

Therefore, we have by (2.10)

1/2
Ruc®) < ([ [ 0BT Ro o 0))

) (/Sn| gt s (S) |2d6(x’)d6(y/)>

12
CrlnlBlBae ([ [ 1<t > o)

< Cm||Qu3|Ban& |,

12

IN

It follows
(R (E))V/? < Cm'/22%™||Bym & |O/E (2.11)
Thus,
om(t+1) d ]/)/ om(t+1) . , yd 1/}’
@l < ([ wel ) (L] [ e aiow) )
om(t+1) 1 ) , 'J/dp I/Y
< Wteals( [ i e e 0a0ae 0| 2 )
o | T Jor b
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If 2 < ¥ < oo, noticing that

<1

— )

1 o
‘m /SH e 2mEEY QL (V) (Y )do ()
L m

Then we have

om(t+1) 1 i B zdp 1/7
2@ = Wlelioalh ([ | iy o, 0000 | )
) m
om(t+1) ) , 2d 1/’)/
< CHQmHZ/Y( /2m /SHe*Z”“f'BPyQm(y’)J(y’)do(y') f)
< Cm'T QBB | .
Thus,

|Gy (E)| < Cm' /724 | By €| 723/1E for 2 <y < oo, (2.12)

If 1 < y<2, we get by Holder’s inequality and (2.11)

om(t+1) 5 éB , , , , 'J/dp I/Y
om@ < ([ ][ e on0re00| L)
om(t+1) d ]/}’—1/2 om(t+1) ) , Zd 1/2
<o)y (L ][ eEmanmiew| )
omt p omt gn—1 p
S le/y71/2m1/222m|B2mt§ |76/L.
Thus, we have
|62m (E)| < Cm" /722" | By E|7%/F for 1 <y <2. (2.13)

Therefore, (2.8) follows immediately from (2.12), (2.13), and (2.9) respectively. This finishes
the proof of Lemma 2.3.

Lemma24. Letac€R, 1< p,g<co. Then

1/q
s ()l o ey <Cm' ( / 1270 G s S fyqdz> (2.14)
R Lp(Rn)
Proof. Noticing that
] 1/q
gy = ([ 125 0 ) , (215)
R LP(R")
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Therefore, for any g € FpTa’q (R") with || gHF/;a‘q, &' S 1, we have

| < Tm,s(f)’g > | =

m AnASQM(t+S)(Gth *Szm(t+s)f)(x)g(x)dtdx'

IN

m . /R (Gom * Symie+s) f) (x)S'Z,n(,H) g(x)dt

l/q
mH </R |2—m(t+s)oc62m *52m<t+s>f|qdf>
/q
(/ ’2m<t+s>a§2m(t+s)g‘th>
R Lp’ (Rn)

l/q
</R|2—m(t+s)oc62m *52,,1<H>f|th)

where Szmum is the dual operator of S+, i.€.,

dx

IN

Lr(R7)

< ml/quHF[;a.q(Rn)

)

Lr(R7)

52»1(1+S) g(x) = Szm(t+s) (g) (x)

and g(x) = g(—x). Thus, we have

HTm,s(f)HFf'q(Rn) < le/q

1/q
(/R \2_m(z+s)0602m, * Sz'n<f+~">f’th>

Next, we estimate the norm ||7,, ;(f)|| f2 (rey- BY taking p = g =2 in (2.14), we have
) 2

LP(R")

The proof of Lemma 2.4 is completed.

[Ts (g2 < Cm / [ 127 () 2708 F(E) P
=m [ [ e (£) (27 p (€))7 (E) P
—om [ [ [ e (BB @7 p)(BoE )PP (o dpar,

where D,y = {E € R?: 1/2 < 2MH9)p(E) <2} and E, g = {p € RT : 1/2 < 2m+5)p < 2},
Therefore, we have by (2.7) as s > 1,

15 (f

IN

1/2
o2 < Cm'/ yHQmHﬂm(“)ﬁlml/z( /R ) /R 27y f(x)]zdtdx>

1 —m(s—1
Cm! Y| Qu 127" VP f]] o g (2.16)

IN

Similar to (2.16), we have by (2.8)

HTmJ(f)HFZO‘vz(Rn) < le/stﬁlerH a2 (R")’ for s < 1. (217)
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Lemma 2.5. Let1 <7y, p<ooand

L@ = [ B0 g (ot vay.

R p(y)P

L, denotes the dual operator of L,, i.e., L,(f)(x) = L,(f)(—x), where f(x) = f(—x). Then
S < Cl|@)" (L(s ) ()Y
|G 4 Spmee) (f) ()] < ClI Q)7 (La (1S40 £17) (%)) 7,

([ @2 5 Syt () ()| v (rr) < ClIQn [l 1[|Sqmies) £ llr(rerys

50D LoD oy < Cmll el 1l e

Proof. Noticing that

|szt * Sz;vi(t+s) (f) (x) | S

/n M)&W (P(Y))Szmvmf(x_y)dy‘

p(y)P
Y 1y
< ([ ML) o)
; 1/y
( 2 (<)y>‘|s2m,ﬂ Fx— )Tz (p <>>dy)
< 1Qull? LSy AN,

Then we have

(|G Somiers) (f) () | r(rey < CHQmH%/ [[Somie+) fl|r(re)-

Since
om(t+1) dp /
LD = [, 1O ([ 17— B Jaot)
and
om(t+1) dp omt+j dp
/2 = Bp)l 5 = Z/m” = Boy)|

Qmi+ J

/
o [ = Bp)lap

1 [h .
2m2213{5/0 If(x—pr)Idp}
= 2mMF(f)(x)’

IN

IN

we get by Minkowski’s inequality and Lemma 2.3

9D 2017 s gy < o€l e



70 Y. M. Niu et al: Boundedness of Parabolic Singular Integrals and Marcinkiewicz Integrals

This completes the proof of Lemma 2.5.

Now, we turn to give the proof of (2.5). By taking ¢ = yin (2.14), there exists a non-negative

function g(x) € L” (R") with |[g||z-gs) < 1, where r = p/y, such that

s O e

It follows

IN

IN

IN

IN

IN

cm / |27 G s S f|7 g (x) dxdlt
R JR"

C’"/ 27 MEEOTL (1S £17) (1) 8 (x)dxdl
R JR"

Cm/R - |2_m(f+s)aS2m<t+S)f(x)|thg(x)dxdt

e [ (2 S 7)) sup e

teR
1/r ) 1/r
o2 S aryax) ([ IsupLstor’as)
R" JR R" tcR
3
1Tons ()l 07y < Cm V(1 £l gy (2.18)

Using an interpolation between (2.16), (2.17), and (2.18) respectively (see [5]) and by a

standard duality argument, we obtain that there exist 6; and 6,: 0 < 6;, 6, < 1, such that for all

g lying in ¥ and y

1Tons () s ey < €t/ Y(| Q112707 PO ] s ey, for s> 1. (2.19)

Thus, we have

1Tos ()| oy < Cm'/125P1:2 | 1 fea ey, for s < 1. (2.20)

T ()l o gy < /RHTm.,s(f)HFﬁq(Rn)dS < Cm]/nyHFP"“"(R")'

It follows that (2.5) holds. Therefore, for all ¢ lying in between ¥ and ¥, we have from (2.2),
(2.3), (2.5), and (2.6)

ITN O peamy < X AnllTu(H ) ey

mel J{0}

C Y A f] g
mel | J{0}

< ClQlLogry sy 11 £ea gy

IN

This finishes the proof of Theorem 1.1.
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Proof of Theorem 1.2. Let Q € L(logL)"/7(8"~!). We decompose Q as that in the proof
of Theorem 1.1, except for a slight modification by taking J(x') = 1. Then we get by (2.1) and
Minkowski’s inequality

toq (N @y < Y Anllbo,.q () @) @), (2.21)
mel J{0}
where
oo d 1/q
o160 = ([, oo 2) 022)

Fo, (x,1) = /y|§t Wf(x—y)dy.

For a fixed m € N, let us define the measures {0, };cr by setting

h([y))Qum
O * fx) =27 Mf (x —y)dy.
y|<2! ly|
Then
1/q
Ho, g~ < /R |G # f(x)\th> . (2.23)

We choose a real-valued radical function ¢(&) € S(R") such that supp ¢ € {E € R*: 1/2 <
E1 <2} §(E) 2 0, §(E) = > 0as 3/5 < &] < 5/3 and fy | (&)ldr = 1 for & £ 0, where
Gy (E) = §(2'E). Set Sy = ¢ * f. Then we get

Opmy* [ = /Rcm,t * 8ot fds. (2.24)

According to (2.24) and Minkowski’s inequality, we obtain

|| Om.s *fHLq(R) < /RHGm,z *Szm<r+s>fHL4(R)dS = m_l/q/RIq;de’ (2.25)

where
1/q
Iysf(x) = m'/ (/ | Oz *Szmoﬂ)f‘th) .
R

First we consider the case 1 <y < 2.

h(ly))m (¥)

Lemma 2.6. Assume thath € Ay(RY), 1 <y <2, and 6,,; = 2y
y

X{ly|<2}> then

|6s(8)] < Crin{[2'E], |26 ~1/5".



72 Y. M. Niu et al: Boundedness of Parabolic Singular Integrals and Marcinkiewicz Integrals

Proof.  We have by the vanishing moment of Q,,

2! . ,
& = | [ [ e 0, 0))do (2 hrr
0 Js-
2 L
< [ @ - 00,0/ dot)2  hilar
0 S)l*
21
< QiR [ )
o 1y 2 1y
< clanhel (2 [ wore) (20 [ ar)
0 0
< Cl@ulh[2¢l.
On the other hand,
ot 1/2 ot ' . 2 1/2
6@ < (20 [ mopar) (27 7] [ e o)
0 0 N
o ., 2 N\ 1/2
< c( / / Y0, (/) do(y) dr> .
0 |Jsn-
Denote
v ., 2
Ru(&) =27 [ [ 250, ()do)] ar
Sn=
Noticing that
| e 0,0 do )| <€,
then we obtain
[Rng (&)] < ClQ.
It follows that
611(8)] < Cl1 @l (2.26)
Rewrite
Rus®)= [ [ 000 1s(E)ldrdo(y)do (), (227)
where

2t . ! /
Ins(8) = 2_’/0 e 2mirs (Y =x) qp.

By integrating by parts, we have

Ins (&) < Cminf{1, 28|71 () =)} < CI2'E[7YIE"- (Y =)
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with 0 < v < 1 and 2v < 1. Taking v = 1/4, we get from (2.27)

Ru (&) < C<//Smx5n. |Qm(x,)m|2d6(xl)d6(y/))1/2
([, I@Paeiiow)

1/2
clonRe ([ [ 1<t/ > o)
Clomle .

IN

IN

It follows that
|6me ()] < C2PM21E|71E, (2.28)

From (2.26) and (2.28), we obtain
|Gna(§)] < CP2EITV/Em.

This finishes the proof of Lemma 2.6.
By the similar argument as in the proof of Lemma 2.5, we have

Lemma 2.7. Let

Qu(y)
= f(x—y)dy.
<2 [y[! =)

N; denotes the dual operator of N;, i.e., N,(f)(x) = N,(f)(—x), where f(x) = f(—x). Then

N (f)(x) =27"

(s Sooces (£ ()| < ClI Q117 (N (S £17) ()7,

[ Gms * Somtees) (F) ()| v Ry < Cl|Qunl[1[[Samieo) fl| 7 (rr) s
HSUPNt(|f|)HLp(Rn) < CllQunll1 [1f[]r (re-
teR

Therefore, from Lemmas 2.6 and 2.7, we obtain by applying the similar argument as that in

getting (2.16) and (2.17), there exists a positive constant T such that

s f ) l2r < C27FF Q) 11l ooy, ¥<q <7 (2.29)

We denote the mixed norm

I/l = H (flrecore) "

Then we have by (2.25) and (2.29)

LP(R")

[0 % Sy <m 1@l [ s lrds < Cm )l gy
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g, fllr < NGns * fllr < Con V[ Qul |11 g0 - (2.30)

Thus, according to the estimates (2.21), (2.23), and (2.30), we obtain

oA @y < X Anllte, o(F) @)@
mel | J{0}

C Z lmml/nyHFpO(l(Rn)
mel J{0}

ClI pogryrrres1) 1100 oy -

IN

IN

Finally, by the similar argument as that in the proof of Lemma 2.3 and the case 1 <y <2,

we can prove Theorem 1.2 in the case 2 < y < 0. We omit the details here. So the proof of
Theorem 1.2 is finished.
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