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Abstract. We will show bounds for commutators of multilinear fractional integral opera-

tors with some homogeneous kernels.
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In 1999, C. E. Kenig and E. M. Stein[8] initiated the study of multilinear fractional integral

operators defined as

Iα(~f )(x) =
∫

(Rn)m

1

|(x− y1, · · · ,x− ym)|mn−α

m

∏
k=1

fk(yk)d~y

(See [6] or [10] for more about fractional integral). Recently, K. Moen [11]m X. Chen and Q.

Xue[3] developed the weighted theory for it, which was motivated by related research for multi-

linear singular integral in [7] and [9]. In their work the following of weights the for multilinear

fractional integral was established.

Definition 1[11], [3]. Let 1 6 p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

, and q > 0. Suppose that

~ω = (ω1, · · · ,ωm) and each ωi (i = 1, · · · ,m) is a nonnegative function on Rn. Then ~ω ∈ A(~p,q)
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if it satisfies

sup
Q

(

1

|Q|

∫

Q
ν~ω

q

)
1
q m

∏
i=1

(

1

|Q|

∫

Q
ωi

−p′i

)
1

p′
i
< ∞,

where ν~ω =
m

∏
i=1

ωi. If pi = 1,

(

1

|Q|

∫

Q
ω

−p′i
i

)
1

p′
i

is understood as (inf
Q

ωi)
−1.

Furthermore, a weighted norm inequality for multilinear fractional integral operators as be-

low is proved.

Theorem A([11], [3]). Let 0 < α < mn, 1 < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
. Then ~ω ∈ A(~p,q) if and only if Iα can be extended to a bounded operator

∥

∥Iα(~f )
∥

∥

Lq(ν~ω
q)

6 C
m

∏
i=1

∥

∥ fi

∥

∥

Lpi (ω
pi
i )

. (1)

In [3], besides the above, the authors proved another two results such as Theorem B and C,

by the way of contemplating weighted norm inequalities for multilinear fractional integral with

some homogeneous kernels and Coifman-Rochberg-Weiss commutators of multilinear fractional

integral.

Theorem B[3]. Let 0 < α < mn, 1 6 s′ < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
. Denote ~ωs′ = (ωs′

1 , · · · ,ωs′

m) and
~p
s′

= (
p1

s′
, · · · ,

pm

s′
). Assume ~ωs′ ∈A

( ~p
s′

, q

s′
)

⋂

A
( ~p

s′
,
qε

s′
)

⋂

A
( ~p

s′
,

q−ε
s′

)
,

where
1

qε
=

1

p
−

α + ε

n
and

1

q−ε
=

1

p
−

α − ε

n
. Then, there exists a constant C > 0 independent

of ~f such that
∥

∥IΩ,α(~f )
∥

∥

Lq(ν~ω
q)

6 C
m

∏
i=1

∥

∥ fi

∥

∥

Lpi (ω
pi
i )

, (2)

where

IΩ,α
~f (x) =

∫

(Rn)m

∏m
i=1 Ωi(x− yi) fi(yi)

|(x− y1, · · · ,x− ym)|mn−α d~y

and each Ωi(x) ∈ Ls(Sn−1) (i = 1, · · · ,m) for some s > 1 is a homogeneous function with degree

zero on Rn, i.e. for any λ > 0 and x ∈ Rn, Ωi(λx) = Ωi(x).

Theorem C[3]. Let 0 < α < mn, 1 < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
.

For r > 1 with 0 < rα < mn, if ~ωr ∈ A
(~p

r
, q

r
)

and ν~ω
q ∈ A∞, then there exists a constant C > 0

independent of~b and ~f such that

∥

∥I~b,α(~f )
∥

∥

Lq(ν~ω
q)

6 C sup
i

‖bi‖BMO

m

∏
i=1

∥

∥ fi

∥

∥

Lpi (ω
pi
i )

, (3)
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where the commutators of Iα is defined as

I~b,α(~f )(x) =
m

∑
i=1

Ii
bi,α

(~f )(x)

and each term of the right-hand side is the commutator of Iα in the i-th entry with bi, that is

Ii
bi,α(~f )(x) = bi(x)Iα ( f1, · · · , fi, · · · , fm)(x)− Iα( f1, · · · ,bi fi, · · · , fm)(x).

Now, what we concern about is studying the commutators of locally integrable function b

and multilinear fractional integral with homogeneous kernels in the j-th entry

[b, IΩ,α ] j(~f )(x) = I
j

b,Ω,α(~f )(x)

=

∫

(Rn)m

b(x)−b(y j)

|(x− y1, · · · ,x− ym)|mn−α

m

∏
k=1

Ωk(x− yk) fk(yk)d~y,

where d~y = dy1 · · ·dym and |(y1, · · · ,ym)| = |y1|+ · · ·+ |ym|.

In 1989, J. O. Strömberg and A. Torchinsky[13] concluded that an appropriate weighted in-

equality for operators could provide an unweighted inequality for its commutators. In 1993, J.

Alvarez, R. J. Bagby, D. S. Kurtz and C. Pérez[1] exploited this idea further to prove the bound-

edness of commutators of general linear operators on weighted Lp spaces by estimates for linear

operators. Additionally, this idea also appeared in [4] [10] for fractional and singular integral

operators with homogeneous kernels, and in [2] for multilinear singular integral operators with

applications to non-smooth kernel. Thus we get the result as below inspired by these works.

Theorem 1. Let 0 < α < mn, 1 < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
.

Besides, the assumption on Ω is the same as in Theorem B. If b ∈BMO, then there exists a

constant C > 0 independent of b and ~f such that

∥

∥[b, IΩ,α ] j(~f )
∥

∥

Lq 6 C
m

∏
i=1

∥

∥ fi

∥

∥

Lpi
.

Proof. Obviously, we can set j = 1 in the proof. Because we can see that g(z) = ez(b(x)−b(y))

with z = x+ iy is analytic on C, and it’s easy to get

b(x)−b(y) = g′(0) =
1

2πi

∫

|z|=1

g(z)

|z|2
dz =

1

2π

∫ 2π

0
eeiθ (b(x)−b(y))e−iθ dθ
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by the Cauchy integral formula. Consequently, it makes sure that

[b, IΩ,α ]1(~f )(x) =
∫

(Rn)m

b(x)−b(y1)

|(x− y1, · · · ,x− ym)|mn−α

m

∏
k=1

Ωk(x− yk) f (yk)dyk

=

∫

(Rn)m

(

1

2π

∫ 2π

0
eeiθ (b(x)−b(y1))e−iθ dθ

)

∏m
k=1 Ωk(x− yk) f (yk)dyk

|(x− y1, · · · ,x− ym)|mn−α

=
1

2π

∫ 2π

0
IΩ,α( f1e−beiθ

, f2, · · · , fm)(x)eb(x)eiθ
e−iθ dθ

≤
1

2π

∫ 2π

0
I|Ω|,α (| f1|e

−bcosθ , | f2|, · · · , | fm|)(x)e
b(x)cos θ dθ .

Next, we prepare two lemmas. The first one due to J. García-Cuerva, J. L. Rubio de Francia[5]

is similar to the classical result on Muckenhoupt’s Ap weights.

Lemma 1[10]. Let 0 < α < n, 1 < p < n/α and 1/q = 1/p−α/n. For λ > 0, then there

exists η > 0 such that if b ∈ BMO and ‖b‖BMO < η , then eλb(x) ∈ A(p,q).

We can generalize Lemma 1 for the weights A(~p,q) to multilinear settings by a remark in [11].

Lemma 2[11]. If pk ≤ qk with 1/q = 1/q1+, · · · ,+1/qm, then
⋃

qk

m

∏
k=1

A(pk,qk) ⊂ A(~p,q).

Therefore, when ‖b‖BMO is assuming sufficient small, by the above two lemmas as above and

Hölder’s inequality, we have (eb(x)cos θ ,1, · · · ,1) ∈ A~p,q which meets the condition of weights in

Theorem B for any θ . Applying the weighted boundedness of Iα ,Ω and Minkowski’s inequality

simply, as a result, we have

∥

∥[b, IΩ,α ]1(~f )
∥

∥

Lq ≤
1

2π

∫ 2π

0

∥

∥

∥
I|Ω|,α (| f1|e

−bcos θ , | f2|, · · · , | fm|)(x)
∥

∥

∥

Lq(eqbcosθ )
dθ

≤
C

2π

∫ 2π

0

∥

∥ f1e−bcosθ
∥

∥

Lp1 (ep1bcosθ )

m

∏
k=2

∥

∥ fk

∥

∥

Lpk
dθ

≤ C
m

∏
k=1

∥

∥ fk

∥

∥

Lpk
.

Moreover, C. Pérez, G. Pradolini, R.H. Torres and R. Trujillo-González [12] studied iterated

commutators T∏b for a multilinear Calderón-Zygmund singular integral operator T defined as

T
∏~b(

~f ) = [b1, [b2, · · · [bm−1, [bm,T ]m]m−1 · · · ]2]1(~f ).

So the iterated commutator of multilinear fractional integral operators with homogeneous ker-

nels Has the following form

I
∏~b,Ω,α(~f )(x) =

∫

(Rn)m

∏m
k=1(bk(x)−bk(yk))Ωk(x− yk) fk(yk)

|(x− y1, · · · ,x− ym)|mn−α d~y.
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Here and now, the bounds for I
∏~b,Ω,α can be concluded by similar methods. In fact, we can see

I
∏~b,Ω,α (~f )(x) =

∫

(Rn)m

m

∏
j=1

(

1

2π

∫ 2π

0
ee

iθ j (b j(x)−b j(y j))e−iθ j dθ j

)

∏m
k=1 Ωk(x− yk) f (yk)dyk

|(x− y1, · · · ,x− ym)|mn−α

=
1

(2π)m

∫

[0,2π]m
IΩ,α( f1e−b1eiθ1

, · · · , fme−bmeiθm
)(x)

m

∏
k=1

ebk(x)e
iθk

e−iθk dθk

≤
1

(2π)m

∫

[0,2π]m
I|Ω|,α(| f1|e

−b1 cosθ1 , · · · , | fm|e
−bm cosθm)(x)

m

∏
k=1

ebk(x)cos θk dθk.

Also note that (e−b1 cosθ1 , · · · ,e−bm cosθm) satisfies the condition of weights in Theorem B for

any ~θ immediately, we get the boundedness of iterated commutators by a similar calculation of

weighted Lp norms and weighted estimates for IΩ,α .

Theorem 2. Let 0 < α < mn, 1 < p1, · · · , pm < ∞,
1

p
=

1

p1

+ · · ·+
1

pm

and
1

q
=

1

p
−

α

n
.

Besides, the assumption on Ω is the same as in Theorem B. If bk ∈ BMO with k = 1,2, · · · ,m,

then there exists a constant C > 0 independent of~b and ~f such that

∥

∥I
∏~b,Ω,α(~f )

∥

∥

Lq
6 C

m

∏
i=1

∥

∥ fi

∥

∥

Lpi
.
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