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Abstract. We introduce the definition of q-Stancu operator and investigate its approx-

imation and shape-preserving property. With the help of the sign changes of f (x) and

Ln = f ( f ,q;x) the shape-preserving property of q-Stancu operator is obtained.
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1 Introduction

Suppose q > 0. For k = 0,1,2, · · · , the q-integer [k] and q-factorial [k]! are defined as

[k] =











1−qk

1−q
,q 6= 1,

k, q = 1;

[k]! =











[k][k−1] . . . [1],k ≥ 1,

1, k = 0.

For integers n,k,n ≥ k ≥ 0, q-binomial coeffcients are defined naturally as

[

n

k

]

=
[n]!

[k]![n− k]!

We present the definition of q-Stancu operator as follows.
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Definition 1. Suppose s is an integer and 0 ≤ s < -. f racn2,q > 0,n > 0. For f ∈C[0,1],

the operator

Ln( f ,q;x) =
n

∑
k=0

f

(

[k]

[n]

)

bn,k,s(q;x), (1.1)

is called q-Stancu operator, where

bn,k,s(q;x) =























(1−qn−k−sx)pn−s,k(q;x), 0 ≤ k < s,

(1−qn−k−sx)pn−s,k(q;x)+ qn−kxpn−s,k−s(q;x), s < k ≤ n− s,

qn−kxpn−s,k−s(q;x), n− s < k ≤ n,

pn−s,k(q;x), pn−s,k−s(q;x) are the basis functions of q-Bernstein operator,

pn,k(q;x) =
[n

k

]

xk
n−k−1

∏
l=0

(1−qlx)

It is not difficult to notice that on one hand for s = 0 or s = 1, q-Stancu operator is just

the q-Bernstein operator which was introduced first by G.M. Phillips in 1997, on the other hand

for q = 1, q-Stancu operator recoveres the Stancu operator. The q-Berstein operator possesses

many remarkable properties which have made it an intensive area, seen [1-8]. While the study

of Stancu operator is also a focus of many authors since 1981, after D.D. Stancu has defined this

operator, see [9-12]. Both q-Bernstein operator and Stancu operator are some generalizations of

the classical Bernstein operator which are specific cases of q-Bernstein operator when q = 1 or

Stancu operator when s = 0,s = 1.

It is worth mentioning that the q-Stancu operator we defined here difier essentially from that

in [13]. The q-Stancu operator in [13] just generalizes the control points of the Stancu operator

based on the q-integers leaving alone the basis functions.While in our definition of q-Stancu

operator both the control points and the basis functions are the q-analogue of those in Stancu

operators. As a result, it is not a strange thing that these two q-Stancu operators behave quite

difierent property, especially in the approximation problem.

By means of direct computations, we can get the following representation of q-Stancu oper-

ator:

Ln( f ,q;x) =
n−s

∑
k=0

{

(1−qn−k−sx) f

(

[k]

[n]

)

+ qn−k−sx f

(

[k + s]

[n]

)}

pn−s,k(q;x). (1.2)

To process our study we need to give some essential properties of q-Stancu operator.

Proposition 1. q-Stancu operator is a positive linear operator for 0 < q < 1, while not for

q > 1.
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Proposition 2. Ln(1,q;x) = 1,Ln(t,q;x) = x,

Ln(t
2
,q;x) = x2 +

(

[1]

[n]
+

qn−s[s]2 −qn−s[s]

[n]2

)

x(1− x).

Proposition 3. For f (x) ∈C[0,1], Ln( f ,q;0) = f (0), Ln( f ,q;1) = f (1).

In the following the shape-preserving properties as well as the approximation properties of

q-Stancu operators are considered when 0 < q < 1.

By some elaborate computation, we get another vital representation of q-Stancu operator.

The corresponding representation of Stancu operator has been ignored all the time, but one can

see the efiect of this representation clearly.

Lemma 1. Suppose 0 < q ≤ 1 and s is an integer such that 0 < s <
n

2
. For f ∈C[0,1], we

have

Ln( f ,q;x) =
n−s+1

∑
k=0

{

[n− s+ 1− k]

[n− s+ 1]
f

(

[k]

[n]

)

+
qn−s+1−k[k]

[n− s+ 1]
f

(

[s−1+ k]

[n]

)}

pn−s+1,k(q;x).

(1.3)

Note: the representation is disabled when s = 0.

2 Approximation Theorem

For 0 < q < 1, similar to the q-Bernstein operator Bn(·,q), the q-Stancu operator Ln(·,q)

for continuous functions is convergent uniformly to the function itself and to certain limit, under

some necessary condition for s ∈ N. The limit function is defined as:

Definition 2. For any nonnegative integer n, and f (x) ∈C[0,1],

B∞( f ,q;x) =











∞

∑
k=0

f (1−qk)p∞,k(q;x), 0 ≤ x < 1,

f (1), x = 1,

(2.1)

here p∞,k(q;x) =
xk

(1−q)k[k]!

∞

∏
s=0

(1−qsx).

In detail, we have the following theorem.

Theorem 1. Let f (x) ∈C[0,1] and s is an integer such that 0 ≤ s <
n

2
, then we have

‖Ln( f ,q,x)−B∞( f ,q;x)‖C ≤ (4−
4ln(1−q)

q(1−q)
)ω( f ,qn−s+1). (2.2)

It can be seen from this theorem that for fixed integer s or s = s(n),n − s(n) → ∞, then

lim
n→∞

‖Ln( f ,q;x) −B∞( f ,q;x)‖C = 0 holds for all 0 < q < 1. This result[9] has some slightly

difierence from corresponding result of Stancu operator
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For Stancu operator, the index s = s(n) should satisfy s = o(n) as n → ∞ in order to index

quarantce the convergence of the relevant Stancu polynomials. While for q-Stancu operator it

only needs n− s(n)→ ∞. Hereby for s = s(n) =
n−1

2
,

n

3
,
n

4
, · · · , we still have lim

n→∞
‖Ln( f ,q;x)−

B∞( f ,q;x)‖C = 0, but for Stancu operator it is not right.

Proof. Based on Proposition 2 and the linear property of the limit B∞(·,q) (see[3]), we can

assume f (0) = f (1) = 0 without loss of generality.

Then we have for all x ∈ [0,1],

∣

∣Ln( f ,q,x)−B∞( f ,q;x)
∣

∣

=
∣

∣

∣

n−s+1

∑
k=0

{

[n−s+1−k]
[n−s+1] f

(

[k]
[n]

)

+ qn−s+1−k[k]
[n−s+1] f

(

[s−1+k]
[n]

)}

pn−s+1,k(q;x)−
∞

∑
k=0

f (1−qk)p∞,k(q;x)
∣

∣

∣

≤
∣

∣

∣

n−s+1

∑
k=0

{ [n−s+1−k]
[n−s+1] ( f

(

[k]
[n]

)

− f (1−qk))+ qn−s+1−k[k]
[n−s+1] ( f

(

[s−1+k]
[n]

)

− f (1−qk))
}

pn−s+1(q;x)
∣

∣

∣
+

∣

∣

∣

∣

n−s+1

∑
k=0

( f (1−qk)− f (1))(pn−s+1,k(q;x)− p∞,k(q;x))
∣

∣

∣

+
∣

∣

∣

∞

∑
k=n−s+2

( f (1−qk)− f (1))p∞,k(q;x)
∣

∣

∣
:= I1 + I2 + I3

From the proof of Theorem 1 in [4], we know

I2 ≤
−4ln(1−q)

q(1−q)
ω( f ,qn−s+1), I3 ≤ ω( f ,qn−s+1).

Since for 0 < δ ≤ η ≤ 1,
ω( f ,η)

η
≤ 2

ω( f ,δ )

δ
(see[14]),we have

I1 ≤
n−s+1

∑
k=0

{

[n−s+1−k]
[n−s+1] ω( f ,

[k]
[n]q

n)+ qn−s+k[k]
[n−s+1] ω( f ,

[s−1]
[n] qk + [k]

[n]q
n)

}

pn−s+1,k(q;x)

≤
n−s+1

∑
k=0

ω( f ,
[k]
[n]q

n)pn−s+1,k(q;x)+
n−s+1

∑
k=0

qn−s+1[k]
[n−s+1]

[s−1]
[n]

ω( f ,
[s−1]
[n]

qk)

[s−1]
[n]

qk
pn−s+1,k(q;x)

≤ ω( f ,qn)+
n−s+1

∑
k=0

qn−s+1[k]
[n−s+1]

[s−1]
[n]

2ω( f ,
[s−1]
[n] qn−s+1)

[s−1]
[n]

qn−s+1
pn−s+1,k(q;x)

≤ ω( f ,qn)+ 2ω( f ,
[s−1]
[n] qn−s+1)

n−s+1

∑
k=0

[k]
[n−s+1] pn−s+1,k(q;x)

≤ ω( f ,qn)+ 2xω( f ,
[s−1]
[n] qn−s+1).

Combining the estimates for I1, I2, I3 we complete the proof of Theorem 1.

More properties of this q-Stancu operator will be investigated in the next section.

3 Shape-preserving Property

The shape-preserving property is important to the study of both q-Bernstein and Stancu

operator. Of course we consider this problem for the q-Stancu operator only.
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The above Lemma 1 suggests that for any convex function on [0,1] the inequality

Ln( f ,q;x) ≥ Bn−s+1( f ,q;x). (3.1)

holds.

As we see the complexity of the derivative of q-Bernstein operator in the study of shape-

preserving property the following theorem plays an important role.

Let v be any finite-dimensional vector. We use S−(v) for its strict sign change, namely,

the times of the sign change from the first component to the last one. Thus for the vector

f = ( f (x0), · · · , f (xm)),

S−( f ) = sup
0≤x0<···<xm≤1;m∈N

S−( f (x0), · · · , f (xm))

means the sign change of f on {x0, · · · ,xm} ⊂ [0,1].

Theorem A[2]. Suppose 0 < q ≤ 1. For f ∈C[0,1], we have

S−(Bn( f ,q)) ≤ S−( f ).

However, the following figure shows clearly that Theorem A can no longer hold for Stancu

and q-Stancu operator.

Fig. 1

Remark 1. In Figure-1, one curve is L5( f ,x) for s = 3, while the other is L5( f ,0.95;x) for

s = 3, here the continuous function f (x) is a linear spline joining up the points (0,1),(0.2,1),

(0.4,14),(0.6,−17),(0.8,−1),(1,−1).

Evidently, S−( f ) = 1 ≤ 3 = S−(L5( f )) = S−(L5( f ,0.95)). However, we still get the shape-

preserving theorem for q-Stancu operator:
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Theorem 2. Let 0 < q≤ 1,s be an integer satisfying 0≤ s <
n
2

and f (x) be a continuous and

increasing (decreasing) function on [0,1], then Ln( f ,q;x) is increasing (decreasing) on [0,1].

Proof. We consider the increasing function f at first. For s = 0, one can know from [2]

that the result of Theorem 1 holds. In the following we consider the case of s > 0. For 0 < q ≤ 1

,

(pn−s+1,0(q;x), pn−s+1,1(q;x), · · · , pn−s+1,n−s+1(q;x))

is totally positive (see[2]). This means for any sequence satisfying 0 ≤ x0,< x1 < · · · < xm ≤ 1,

The corresponding matrix T =
{

pn−s+1, j(xi)|i = 0,1, · · · ,m; j = 0,1, · · · ,n− s+ 1
}

is to-

tally positive.

Then by virtue of Theorem 3.3 in [2] we conclude that

S−(Ln( f ,q;x)) ≤ S−( f (0),an,1 , · · · ,an,n−s, f (1)), (3.2)

where

an,k =
[n− s+ 1− k]

[n− s+ 1]
f

(

[k]

[n]

)

+
qn−s−k+1[k]

[n− s+ 1]
f

(

[s−1+ k]

[n]

)

,k = 1,2, · · · ,n− s.

By the continuity of f (x) , we see for k = 1, · · · ,n− s there exist ξn,k ∈
(

[k]
[n] ,

[n−1+k]
[n]

)

, such

that an,k = f (ξn,k) .

This together with the monotony of f (x), implies

an,k =
[n− s− k]

[n− s+ 1]
f

(

[k]

[n]

)

+
qn−s−k[1]

[n− s+ 1]
f

(

[k]

[n]

)

+
qn−s−k[k]

1−qn−s+1
f

(

[s−1+ k]

[n]

)

≤
[n− s− k]

[n− s+ 1]
f

(

[k + 1]

[n]

)

+
qn−s−k[1]

[n− s+ 1]
f

(

[s+ k]

[n]

)

+
qn−s−k+1[k]

[n− s+ 1]
f

(

[s+ k]

[n]

)

= an,k+1

Therefore ξn,k ≤ ξn,k+1, for k = 1, · · · ,n− s−1.

Consequently we have

S−(Ln( f ,q;x)) ≤ S−( f (0),an,1, · · · ,an,n−s, f (1))

= S−( f (0), f (ξn,1), · · · , f (ξn,n−s), f (1)) ≤ S−( f )
(3.3)

Since f (x) is increasing on [0,1],for any constant c,we have S−( f −c)≤ 1 .Otherwise, there

exist a constant c0 and 0 < η1 < η2 < η3 < 1 ,such that

f (η1) < c0, f (η2) > c0, f (η3) < c0,

which are paradoxical with the increasing property of f (x) .
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Therefore, for any constant c, the following holds

S−(Ln( f ,q)− c) = S−(Ln( f − c,q)) ≤ S−( f − c) ≤ 1. (3.4)

Suppose Ln( f ,q) is not increasing on [0,1], then with the help of Proposition 3, we get

Ln( f ,q;0) = f (0) ≤ f (1) = Ln( f ,q;1) . So we can assume without loss of generality that there

exist ζ1,ζ2,ζ3 satisfying 0 ≤ ζ1 < ζ2 < ζ3 ≤ 1 ,such that

Ln( f ,q;ζ1) < Ln( f ,q;ζ2) and Ln( f ,q;ζ2) > Ln( f ,q;ζ3).

Thus for any constant c such that max{Ln( f ,q;ζ3),Ln( f ,q;ζ1)} < c < Ln( f ,q;ζ2) , the

relation

S−(Ln( f ,q)− c) = S−(Ln( f − c,q)) ≥ 2 (3.5)

holds, which is in contradiction with (3.4). Therefore Ln( f ,q;x) is increasing on [0,1].

For the decreasing case we can prove the theorem in the same way. Theorem 1 is proved.

For the convex-preserving property, we now can only prove the result in the case 0 ≤ s ≤ 2.

However, we believe the following theorem seems also to be true based on the Figure-2.

Theorem 3. Let 0 < q < 1,0 ≤ s ≤ 2, f (x) is a continuous and convex (concave) function

on [0,1], then Ln( f ,q) is also convex(concave) and Ln( f ,q;x) ≤ f (x)(Ln( f ,q;x) ≥ f (x)).

Proof. For s = 0,1 Theorem 3 holds, which is similar to the case of q-Bernstein operator.

So we only focus on the case s = 2. Since f is convex , for any linear function l(x), S−( f − l)≤ 2.

Otherwise, there exist a linear function l0(x) and 0 < η1 < η2 < η3 < η4 < 1 such that

S−( f (η1)− l0(η1), f (η2)− l0(η2), f (η3)− l0(η3), f (η4)− l0(η4)) = 3

From the convex property of f (x) , we know f (x)− l0(x) is still a convex function , so

f (η1)− l0(η1) > 0 .

Therefore,

k f−l0(η1,η2) < 0,k f−l0(η2,η3) > 0,k f−l0(η3,η4) < 0 (3.6)

here we use k f−l0(x0,x1) to denote the slope of the line between (x0, f (x0)− l0(x0)) and (x1, f (x1)−

l0(x1)) .

The above statement is inconsistent with the convex property of f (x)− l0(x).

On the other hand, since s, ξn,k,k = 1, · · · ,n− s satisfy

0 < ξn,1 < ξn,2 < · · · < ξn,n−s < 1,

We see for any continuous function f (x), S−(Ln( f ,q;x)) ≤ S−( f ).
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This together with Proposition 2 implies for any linear function l(x) the relation

S−(Ln( f ,q)− l) = S−(Ln( f − l,q)) ≤ S−( f − l) ≤ 2 (3.7)

holds.

Suppose Ln( f ,q;x) is not convex on [0,1], then from f (x) is convex on [0,1] we conclude

that for any x ∈ [0,1],

f (x)− ((1− x) f (0)+ x f (1)) ≤ 0.

This combining with Proposition 1-3 implies for all x ∈ [0,1],

Ln( f (t)− ((1− t) f (0)+ t f (1)),q;x)

= Ln( f ,q;x)− ((1− x) f (0)+ x f (1))

= Ln( f ,q;x)− ((1− x)Ln( f ,q;0)+ xLn( f ,q;1)) ≤ 0. (3.8)

The above result shows f (x) is not concave on [0,1]. Consequently, there exist 0 < ζ1 <

ζ2 < 1 such that there exist θ2 < θ3 on [ζ1,ζ2] fulfilling

LLn( f ,q)(ζ1,ζ2)(θ2) > Ln( f ,q;θ2), (3.9)

LLn( f ,q)(ζ1,ζ2)(θ3) < Ln( f ,q;θ3) (3.10)

and exist 0 < θ1 < ζ1,ζ2 < θ4 < 1 (the existence can be insured by the modification of ζ1 and

ζ2 ) satisfying

LLn( f ,q)(ζ1,ζ2)(θ1) < Ln( f ,q;θ1), (3.11)

LLn( f ,q)(ζ1,ζ2)(θ4) < Ln( f ,q;θ4). (3.12)

We use LLn( f ,q)(ζ1,ζ2)(x) to denote the linear function joining the two points (ζ1,Ln( f ,q;ζ1))

and (ζ2,Ln( f ,q;ζ2)).

Then let l0(x) = LLn( f ,q)(ζ1,ζ2)(x) we have

S−(Ln( f ,q)− l0) ≥ S−(Ln( f ,q;θ1)− l0(θ1),Ln( f ,q;θ2)

−l0(θ2),Ln( f ,q;θ3)− l0(θ3),Ln( f ,q;θ4)− l0(θ4)) = 3.

The above inequalities are in contradiction with (3.7). Hence Ln( f ,q) is convex on [0,1].
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Using the Jessen inequality of convex function and Proposition 2, we get

Ln( f ,q;x) =
n−s

∑
k=0

{

(1−qn−k−sx) f

(

[k]

[n]

)

+ qn−k−sx f

(

[k + s]

[n]

)}

pn−s,k(q;x)

≥
n−s

∑
k=0

f ((1−qn−k−sx) f

(

[k]

[n]

)

+ qn−k−sx f

(

[k + s]

[n]

)

)pn−s,k(q;x)

≥ f (
n−s

∑
k=0

{

(1−qn−k−sx)
[k]

[n]
+ qn−k−sx

[k + s]

[n]

}

pn−s,k(q;x))

= f (x).

For the case of concave functions , we can prove the theorem in the same way. The proof of

Theorem 3 is complete.

Fig. 2

Remark 2. The function f (x) is the linear spline joining the points (0,0),(0.2,0.6),(0.6,0.8),

(0.9,0.7) and (1,0). The others are L15( f ,0.7;x) for s = 3,L11( f ,0.7;x) for s = 5,L7( f ,0.7;x)

for s = 3 and L20( f ,0.5;x) for s = 3 from top to bottom.
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