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Abstract. We introduce the definition of g-Stancu operator and investigate its approx-
imation and shape-preserving property. With the help of the sign changes of f(x) and
L, = f(f,q;x) the shape-preserving property of ¢g-Stancu operator is obtained.
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1 Introduction

Suppose g > 0. For k =0,1,2,---, the g-integer [k| and g-factorial [k]! are defined as

1—gk
T(zl’q#lv

ka CI:L

(K] =

a0 K[k —1]...[1),k > 1,
I,  k=0.

For integers n,k,n > k > 0, g-binomial coeffcients are defined naturally as

n|_ [n]!
k [k]![n — k]!

We present the definition of g-Stancu operator as follows.
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Definition 1.  Suppose s is an integer and 0 < s < - fracn2,q > 0,n > 0. For f € C[0,1],

the operator
k]
L0 = X £ (0 st (1)

is called g-Stancu operator, where

(1 - qn_k_sx)])nfs,k(q;x), 0<k< S,
buks(q;x) = (1— q”*kfsx)pn_&k(q;x) + q”’kxpn_&k_s(q;x), s<k<n-s,
qn_kxpnfs,kfs (CI;X), n—s<k<n,

Pn—sk(q:X), Pn—s k—s(q;x) are the basis functions of g-Bernstein operator,

n—k—1

Pui(gix) = mxk [T (1—4'%)

1=0

It is not difficult to notice that on one hand for s =0 or s = 1, g-Stancu operator is just
the g-Bernstein operator which was introduced first by G.M. Phillips in 1997, on the other hand
for g =1, g-Stancu operator recoveres the Stancu operator. The g-Berstein operator possesses
many remarkable properties which have made it an intensive area, seen [1-8]. While the study
of Stancu operator is also a focus of many authors since 1981, after D.D. Stancu has defined this
operator, see [9-12]. Both g-Bernstein operator and Stancu operator are some generalizations of
the classical Bernstein operator which are specific cases of g-Bernstein operator when g = 1 or
Stancu operator when s = 0,s = 1.

It is worth mentioning that the g-Stancu operator we defined here difier essentially from that
in [13]. The g-Stancu operator in [13] just generalizes the control points of the Stancu operator
based on the g-integers leaving alone the basis functions.While in our definition of g-Stancu
operator both the control points and the basis functions are the g-analogue of those in Stancu
operators. As a result, it is not a strange thing that these two g-Stancu operators behave quite
difierent property, especially in the approximation problem.

By means of direct computations, we can get the following representation of g-Stancu oper-
ator:

Lt = {0 r ()« (S5 baten. a2)
k=0 [] [n]
To process our study we need to give some essential properties of g-Stancu operator.
Proposition 1. g-Stancu operator is a positive linear operator for 0 < g < 1, while not for

qg>1.
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Proposition 2.  L,(1,q;x) = 1,L,(t,q;x) = x,

n—s s2_ n=s[¢
L,(t,q;x) = x* + (%—l— ¢l ][n]zq [ ])x(l —X).

Proposition 3.  For f(x) € C[0,1], L,(f,q;0) = f(0), L,(f,q;1) = f(1).

In the following the shape-preserving properties as well as the approximation properties of

g-Stancu operators are considered when 0 < g < 1.

By some elaborate computation, we get another vital representation of g-Stancu operator.
The corresponding representation of Stancu operator has been ignored all the time, but one can
see the efiect of this representation clearly.

Lemma 1. Suppose 0 < g < 1 and s is an integer such that 0 < s < g For f € C[0,1], we

have
L,(f.q:x) = ngl {%J[ (%) + q[:f;kﬁ]f ( s _[111]+ H) }Pn—s-ﬁ-hk(q;x)'

(1.3)

Note: the representation is disabled when s = 0.

2 Approximation Theorem

For 0 < ¢ < 1, similar to the g-Bernstein operator B,(-,q), the g-Stancu operator L,(-,q)
for continuous functions is convergent uniformly to the function itself and to certain limit, under
some necessary condition for s € N. The limit function is defined as:

Definition 2.  For any nonnegative integer n, and f(x) € C[0, 1],

Y F(1 =" par(q:x), 0<x<1,
k=0

Boo(f,q5%) = (2.1)
f(1)7 x=1,
X i
here pe.(q;x) = UT),C[H!SI})U —¢'x).

In detail, we have the following theorem.

Theorem 1. Let f(x) € C|0,1] and s is an integer such that 0 < s < g , then we have
41n(1 —q)
q(1—q)
It can be seen from this theorem that for fixed integer s or s = s(n),n — s(n) — oo, then

lim || L, (f,¢:x) — Beo(f,q:x)||c = 0 holds for all 0 < ¢ < 1. This result®) has some slightly
n—o0

ILn(f,q,%) = Boo(f-q:x) || c < (4— o(f,q" ). (2.2)

difierence from corresponding result of Stancu operator
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For Stancu operator, the index s = s(n) should satisfy s = o(n) as n — e in order to index
quarantce the convergence of the relevant Stancu polynomials. While for g-Stancu operator it
n—1nn . .
—, =, —, -, westill have lim ||L,(f,q;x) —
2 '3'4 n—oo
Bo(f,q;x)|lc = 0, but for Stancu operator it is not right.

only needs n — s(n) — oo. Hereby for s = s(n) =

Proof. Based on Proposition 2 and the linear property of the limit B..(-,q) (see[3]), we can
assume f(0) = f(1) = 0 without loss of generality.
Then we have for all x € [0, 1],

‘Ln(quv'x)_B‘x’(qu;x)‘
n—s+1 n—s+1—k &
[1=s+1-K (K q K ¢ ([s=1+4 . k .
)T n—s sA) T 1— oo, >
k):ol{ s +1] f([n]) =] f( o )}P +1.4(g3%) kgof( q")pi(q x)‘
R P s k postl—kfg s—1+k
et (f) -0 =)+ Tt ()
n—s+1
L (7 =q") = F())(Pn-ss14(q:%) _pozk(q;x))‘

| T (U= = fO)peslgo)| =D+t
k=n—s+2

- f(l —q") }pn—s+1(q;x)‘ +

From the proof of Theorem 1 in [4], we know

L< %w(ﬁ ¢, L<o(f.q").
Since for0 <6 <n <1, (0(]1’7,17) <2 w(J;’é) (see[14]),we have
L < nki?{["[n%lk] (.7 Bgm + nl[f] o(f, L= ” q* {ﬂq )}Pnfs+1,k(q;x)
<’ flw(f, ") Pn—st14(q:x )+ )S:+1 [Z S;l[lk]] [S[,,f] w(['[:][]’i]qk)pn—ﬁnk(q;@
< oG+ i 2“’%§fjﬂ)pn_w<q;x>

0
x 1] n sl n—s+1 [k]
< o(f,q") +20(f, ] ) kZ mpn—s+l,k(q§x)

< o(f,q") +2xo(f, Slg ).

Combining the estimates for I, 15,13 we complete the proof of Theorem 1.

More properties of this g-Stancu operator will be investigated in the next section.

3 Shape-preserving Property

The shape-preserving property is important to the study of both g-Bernstein and Stancu

operator. Of course we consider this problem for the g-Stancu operator only.



Anal. Theory Appl., Vol. 27, No.3 (2011) 205

The above Lemma 1 suggests that for any convex function on [0,1] the inequality

Lo(f,q:%) > By—si1(f,q:%). (3.1)

holds.

As we see the complexity of the derivative of g-Bernstein operator in the study of shape-
preserving property the following theorem plays an important role.

Let v be any finite-dimensional vector. We use S~ (v) for its strict sign change, namely,

the times of the sign change from the first component to the last one. Thus for the vector

f= (f(XO)v" ’ 7f(xm))’

§(f) = sup S (f(x0)y--- f (xm))

0<xp<-<xp<l;meN
means the sign change of f on {xo,--- ,x,} C [0, 1].

Theorem A%, Suppose 0 < q < 1. For f € C[0,1], we have

§”(Ba(frq)) <S5 (f)-

However, the following figure shows clearly that Theorem A can no longer hold for Stancu

and g-Stancu operator.

L5(fx),s=3
0.5

L5(f,0.95x),s% 3

-0.5

-1

Fig. 1

Remark 1. In Figure-1, one curve is Ls(f,x) for s = 3, while the other is Ls(f,0.95;x) for
s = 3, here the continuous function f(x) is a linear spline joining up the points (0,1), (0.2, 1),
(0.4,14),(0.6,—17), (0.8, — 1), (1,—1).

Evidently, S™(f) =1 <3 =8 (Ls(f)) =S (Ls(f,0.95)). However, we still get the shape-

preserving theorem for g-Stancu operator:
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Theorem 2. Let0 < g <1,s be an integer satisfying 0 < s < 5 and f(x) be a continuous and
increasing (decreasing) function on [0,1], then L,(f,q;x) is increasing (decreasing) on [0,1].
Proof. 'We consider the increasing function f at first. For s = 0, one can know from [2]

that the result of Theorem 1 holds. In the following we consider the case of s > 0. For0 < ¢ <1

(pnferl,O(q;x)apnferl,l (CI;X), s Pn—s+ln—s+1 (q;x))
is totally positive (see[2]). This means for any sequence satisfying 0 < xp, < x} < --- < x,, < 1,
The corresponding matrix 7 = {pn,s+17j(xi)|i =0,1,---,m;j=0,1,--- ,n—s+ l}is to-
tally positive.

Then by virtue of Theorem 3.3 in [2] we conclude that

S_(Ln(qu;x)) S S_(f(o)vamlv' o 7an,n—S7f(1))7 (32)

where

a, = w E qn7S7k+1[k] [s—]_|_k] _ o
T s+ 1] f([n])+ [n_s+1]f( A ),k 1,2,--- ,n—s.
(k] [n—1+4]

By the continuity of f(x) , we see for k = 1,--- ,n— s there exist &, € ([n] 0 ), such

that i = f(émk) .
This together with the monotony of f(x), implies

n—s—kK (N . ¢~ (K @t (5= 14K
ik [n—s+1]f([n]>*[n—s+1]f([n]>+1—qns+1f( ] >
sk (1N @] (AN L R (s K
n—st1 ]f< ] )*[n—sﬂ]f( ] )* [n—s+11f< ] >
= Apk+1
Therefore &, < & ps1, fork=1,--- . n—s—1.

Consequently we have

S_(Ln(faq;x)) S S_(f(o)aan,la’ o ,an,nfSaf(l))
:Si(f(o)vf(éml)’ 7f(€n7n—s)7f(1)) < Si(f)

(3.3)
Since f(x) is increasing on [0, 1],for any constant ¢,we have S~ (f —c) < 1 .Otherwise, there
exist a constant cp and 0 < 1 < 12 < M3 < 1 ,such that

f(m) <co, f(M2) > co, f(113) < co,

which are paradoxical with the increasing property of f(x) .
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Therefore, for any constant ¢, the following holds

S (La(frq) —c) =S (La(f —¢,q)) <S™(f—¢) < 1. (3.4)

Suppose L,(f,q) is not increasing on [0, 1], then with the help of Proposition 3, we get
L,(f,q;0) = f(0) < f(1) = L,(f,q;1) . So we can assume without loss of generality that there
exist {1, $, G5 satisfying 0 < {; < § < {3 < 1 ,such that

Ln(faq;CI) < Ln(f’CIa CZ) and Ln(faq,CZ) > Ln(f’CIa C3)

Thus for any constant ¢ such that max{L,(f,q;83),L.(f,q;:81)} < ¢ < L,(f,q;82) , the

relation
S (Lu(frq) —c) =S (Lu(f —c,q)) 2 2 (3:5)

holds, which is in contradiction with (3.4). Therefore L,(f,q;x) is increasing on [0, 1].
For the decreasing case we can prove the theorem in the same way. Theorem 1 is proved.
For the convex-preserving property, we now can only prove the result in the case 0 < < 2.
However, we believe the following theorem seems also to be true based on the Figure-2.
Theorem 3. Ler 0 < g < 1,0 <s<2, f(x) is a continuous and convex (concave) function
on [0,1], then L,(f,q) is also convex(concave) and L,(f,q;x) < f(x)(L,(f,q;x) > f(x)).
Proof.  For s =0,1 Theorem 3 holds, which is similar to the case of g-Bernstein operator.
So we only focus on the case s = 2. Since f is convex , for any linear function /(x), S~ (f —1) <2.

Otherwise, there exist a linear function /o(x) and 0 < 11} < 12 < M3 < N4 < 1 such that

S™(f(m) —lo(n1), f(m2) — lo(M2), f(N3) — lo(M3), f(Na) — lo(14)) =3

From the convex property of f(x) , we know f(x) — [p(x) is still a convex function , so

fmi)—Il(m)>0.

Therefore,

kf—lo(n17n2) < kaf—l() (172711'5) > kaf—l()(n37n4) <0 (36)

here we use k¢, (xo,x1 ) to denote the slope of the line between (xo, f(xo) —lo(xo)) and (x1, f(x1) —

Io(x1)) -
The above statement is inconsistent with the convex property of f(x) — [y(x).

On the other hand, since s, &, 4,k =1,--- ,n— s satisfy
0< ‘Sn,l < 511,2 << ‘Sn,nfs < 1’

We see for any continuous function f(x), S™(L,(f,q;x)) < S~ (f).



208 L.Y. Yunetal: Approximation and Shape-preserving Properties of g-Stancu Operator

This together with Proposition 2 implies for any linear function /(x) the relation

S (Ln(fr9) —1) =S (Lu(f—1,q)) =S (f—1) <2 (3.7)

holds.
Suppose L,(f,q;x) is not convex on [0, 1], then from f(x) is convex on [0, 1] we conclude

that for any x € [0, 1],
fx) = (1 =x)f(0) +xf(1)) <0.

This combining with Proposition 1-3 implies for all x € [0, 1],
Ly(f(1) = (1 =0)f(0) +1/(1)), ¢:x)

= Lo (f,q:%) — (1 =x)£(0) +x£(1))
= La(f,q:x) = (1 = %)Ly (f,4;0) +xL,(f,q:1)) <O0. (3.8)

The above result shows f(x) is not concave on [0,1]. Consequently, there exist 0 < {; <

&> < 1 such that there exist 6, < 65 on [}, &] fulfilling
Li,(1.q)(61,82)(62) > Lu(f, 4 62), (3.9)

Ly, (5.9)(C1,8)(63) < Lu(f,q:63) (3.10)

and exist 0 < 0; < {,{, < 64 < 1 (the existence can be insured by the modification of {; and
&> ) satisfying
Li,(1.q)(61,82)(01) < Lu(f,q:61), (3.11)

L, (1.q)(61,82)(04) < Ly(f,q;04). (3.12)

Weuse Ly, (1.4 (C1,82)(x) to denote the linear function joining the two points (&1, L, (f,4;C1))

and (szl‘n(qu; CZ))
Then let lo(x) = Ly, (r,4)(81, 82) (x) we have

ST (La(f,q) —1o) > S (Lu(f,q:61) —1o(61),L,(f,q:62)
—lo(62),La(f,q:03) —1o(63),L(f,q;64) —lo(64)) = 3.

The above inequalities are in contradiction with (3.7). Hence L, (f,q) is convex on [0, 1].
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Using the Jessen inequality of convex function and Proposition 2, we get

Lo(f,q:x) = { q" " x (:D g f<[ [Jr]s])}pns,k(q;X)

> Yy f(( g f( k) " ’”Xf<[k+s]>)pn-s7k(q;X)
[
[

[

1] [n]
> Z{ R bon-catain)
= f()

For the case of concave functions , we can prove the theorem in the same way. The proof of

n kfsx [k + S]
]

Theorem 3 is complete.

Fig. 2

Remark?2. The function f(x) is the linear spline joining the points (0,0), (0.2,0.6), (0.6,0.8),
(0.9,0.7) and (1,0). The others are Lis5(f,0.7;x) for s =3,Ly;(f,0.7;x) for s = 5,L;(f,0.7;x)
for s =3 and Ly(f,0.5;x) for s = 3 from top to bottom.
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