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1 Introduction

For an integer r ≥ 0, let Cr(S) denote the set of all r-times continuously differentiable func-

tions on S, where C0(S) = C(S) is the usual set of all continuous functions on S.

Let

w(x) = e−Q(x), x ∈ (−∞,+∞)

be a Freud weight, with the continuous function Q(x) satisfying the following conditions:

(a) Q ∈C2(0,∞) is a positive even function;

(b) lim
x→∞

x
Q
′′
(x)

Q
′
(x)

= γ > 0;
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(c) if γ = 1 or 3, then Q
′′

is nondecreasing. (see [2, Definition 11.3.1, p.184]).

Evidently, we have the following proposition (see [7, Lemma 1]).

Proposition A. Let the continuous function Q(x) satisfying the conditions (a),(b),(c).

Then lim
x→∞

Q
′
(x) = ∞, and there exist t0 > 0 and A > 1 such that























Q
′
(x) > 0,

Q
′′
(x) > 0,

Q
′
(2x) ≤ AQ

′
(x)

hold for x > t0.

For a Freud weight w(x), denote by Cw the space of all f ∈C(R) such that lim
|x|→∞

(w f )(x) = 0

and equipped with the norm ‖w f‖Cw
= sup

x∈R

|(w f )(x)|. We also put

‖w f‖[c,d] = sup
x∈[c,d]

|(w f )(x)|.

For f ∈Cw the weighted modulus of smoothness is

ω2( f , t)w = sup
0<h≤t

‖w∆2
h f‖[−h∗,h∗] + inf

ℓ∈P1

‖w( f − ℓ)‖[t∗,∞)

+ inf
ℓ∈P1

‖w( f − ℓ)‖(−∞,−t∗], (1.1)

where h∗ and t∗ are defined by hQ
′
(h∗) = 1 and tQ

′
(t∗) = 1 respectively (see [2, Definition

11.2.2, p.182]), Pn,n ∈ N, is the set of algebraic polynomials of degree at most n, and

∆r
h f (x) =

r

∑
i=0

(−1)i

(

r

i

)

f

(

x+
rh

2
− ih

)

is the r-th symmetric difference of f (see [2, p. 7]).

Let the sequence of positive real numbers {λn} be monotone increasing and defined by

λnQ
′
(λn) =

√
n, n > n0, (1.2)

with n0 sufficiently large (see [2, p. 7]).It follows from (1.2) that lim
n→∞

λn√
n

= 0.

In the following c,c1,c2 denote positive constants which may assume different values in

different formulas.

For every f ∈Cw let

Bn( f ,x) =
n

∑
k=0

pn,k(x) f (xk) (1.3)
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with

pn,k(x) =
1

2n

(

n

k

)(

1+
x

2λn

)k (

1− x

2λn

)n−k

, xk = xk,n = 2λn

2k−n

n
. (1.4)

In [7], B. D. Vecchia et al. considered the Bernstein-type operator

B∗
n( f ,x) =























Bn( f ,x), if |x| ≤ λn,

Bn( f ,λn)+ B
′
n( f ,λn)(x−λn), if x ≥ λn,

Bn( f ,−λn)+ B
′
n( f ,−λn)(x+ λn), if x ≤−λn.

(1.5)

and obtained the following error estimate.

Theorem VMS. If f ∈Cw, then

‖w[ f −B∗
n( f )]‖ ≤ cω2

(

f ,
λn√

n

)

w

. (1.6)

A function f : R → R is said to be r-monotone if the r-th order divided difference

[x0,x1, · · · ,xr, f ] =
r

∑
i=0

f (xi)
r

∏
j=0, j 6=i

(xi − x j)
≥ 0 (1.7)

for any collection of r +1 distinct points x0,x1, · · · ,xr. It is well-known (see [6, p. 238]) that the

usual monotone non-decreasing and convex functions are 1- and 2-monotone respectively, and

that if f is r-monotone, then f (r−2) exists and is convex and f (r−1) exists almost everywhere. In

particular, if f ∈Cr−1(R) is r-monotone, then f (r−1) is non-decreasing and the divided difference

[x0,x1, · · · ,xr, f ] is a non-decreasing function of each of its arguments.

It is often important for mathematical objects which approximate a given function to pre-

serve some of its properties such as monotonicity, convexity, etc. This direction in Approxima-

tion Theory is called Shape Preserving Approximation (see [3]). In this paper,we consider the

following Bernstein-type operators.

For an integer r ≥ 2 and f ∈Cw, we define

Bn,r( f ,x) =



























Bn( f ,x), if |x| ≤ λn,

r−1

∑
i=0

B
(i)
n ( f ,λn)

i!
(x−λn)

i, if x ≥ λn,

r−1

∑
i=0

B
(i)
n ( f ,−λn)

i!
(x+ λn)

i, if x ≤−λn.

(1.8)

and

B∗
n,r( f ,x) =

√
n

2λn

∫ x+ λn√
n

x− λn√
n

Bn,r( f , t)dt. (1.9)
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By (1.5) and (1.8), we know that the operator B∗
n is the operator Bn,2.

It is well-known that Bernstein operators preserve r-monotonicity on closed intervals (see

[3]). Thus if f ∈C(R) is r-monotone then B∗
n( f ,x), Bn,r( f ,x) and B∗

n,r( f ,x) are also r-monotone

and B∗
n( f ,x) ∈C1(R), Bn,r( f ,x) ∈Cr−1(R) and B∗

n,r( f ,x) ∈Cr(R) respectively.

Remark 1. Note that Bn,r and B∗
n,r are linear operators, which reproduces linear functions

ℓ, i.e., Bn,r(ℓ,x) ≡ ℓ(x),B∗
n,r(ℓ,x) ≡ ℓ(x).

Our main results are the following.

Theorem 1. Let the integer r ≥ 2. If f ∈Cw is r-monotone, then

‖w[ f −Bn,r( f )]‖ ≤ cω2

(

f ,
λn√

n

)

w

. (1.10)

Theorem 2. Let the integer r ≥ 2. If f ∈ Cw is r-monotone, then B∗
n,r( f ,x) ∈ Cw is r-

monotone, B∗
n,r( f ,x) ∈Cr(R) and

‖w[ f −B∗
n,r( f )]‖ ≤ cω2

(

f ,
λn√

n

)

w

. (1.11)

Remark 2. In [4], O. Maizlish obtained the following result.

Theorem M. Let f ∈ Cwα be r-monotone, with wα = e−|x|α ,α ≥ 1, and r ≥ 1. Then, for

any ε > 0, there exists an r-monotone function g ∈Cr(R) such that ‖w[ f − g]‖ < ε , and g(r) is

identically zero outside some finite interval.

It follows from (1.8) and (1.9) that

B
∗(r)
n,r ( f ,x) ≡ 0, |x| ≥ λn +

λn√
n
. (1.12)

Thus Theorem 2 extends Theorem M in a sense.

2 Auxiliary Lemmas

The proof of Theorem 1 and Theorem 2 is based on several lemmas.

Lemma 1. For f ∈ Cw, let ℓ1(x) be the linear function which realizes the infinite in (1.1)

with respect to f and for t∗ = λn −
λn√

n
or t∗ = −λn +

λn√
n

, i. e.,

inf
ℓ∈P1

‖w( f − ℓ)‖[

λn− λn√
n
,+∞

) = ‖w( f − ℓ1)‖[

λn− λn√
n
,+∞

) (2.1)

or

inf
ℓ∈P1

‖w( f − ℓ)‖(

−∞,−λn+
λn√

n

] = ‖w( f − ℓ1)‖(

−∞,−λn+
λn√

n

]. (2.1
′
)
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Then there exists ξn ∈ In such that

sup
x∈In

|Bn( f − ℓ1,x)| ≤ cω2

(

f ,
λn√

n

)

w

eQ(ξn), (2.2)

where In = [λn −
λn√

n
,λn] or In = [−λn,−λn +

λn√
n
].

Proof. It is sufficient to prove (2.2) in the case In = [λn −
λn√

n
,λn] and t∗ = λn −

λn√
n

.

Let ξn ∈ In be the point such that

|Bn( f − ℓ1,ξn)| = sup
x∈In

|Bn( f − ℓ1,x)|.

By (1.6), we have

|Bn( f − ℓ1,ξn)| ≤ [|Bn( f ,ξn)− f (ξn)|w(ξn)+ | f (ξn)− ℓ1(ξn)|w(ξn)]e
Q(ξn)

≤
[

cω2

(

f ,
λn√

n

)

w

+ inf
ℓ∈P1

‖w[ f − ℓ]‖[

λn− λn√
n
,+∞

)

]

eQ(ξn). (2.3)

It is clear from Proposition A and (1.2) that there exists only one tn ∈
(

0,
1

Q
′
(t0)

)

such that

tnQ
′
(

λn −
λn√

n

)

= 1 (2.4)

and √
n

λn

= Q
′
(λn) ≤ Q

′
[

2

(

λn −
λn√

n

)]

≤ AQ
′
(

λn −
λn√

n

)

=
A

tn
. (2.5)

For the K-functional

K2( f , t2)w = inf
g
′∈ACloc

[‖w( f −g)‖+ t2‖wg′′‖], (2.6)

We have the following equivalence relation:

c1ω2( f , t)w ≤ K2( f , t2)w ≤ c2ω2( f , t)w (2.7)

(cf. Theorem 11.2.3 in [2, p. 182]). Using (2.4)-(2.7),we have

inf
ℓ∈P1

‖w( f − ℓ)‖
[λn− λn√

n
,+∞)

≤ ω2( f , tn)w

≤ cω2

(

f ,
λn√

n

)

w

. (2.8)

Combining this with (2.3), we obtain (2.2).



244 L. Y. Zhu et al : Weighted Approximation of r-Monotone Function by Bernstein Operator

Lemma 2. For an integer r ≥ 3, let f ∈ Cw be r-monotone. Then there exists ηn ∈
[

λn − λn√
n
,λn + 2λn√

n

]

such that

|B(r−1)
n ( f ,x)| ≤ c

(√
n

λn

)r−1

ω2

(

f ,
λn√

n

)

w

eQ(ηn) (2.9)

holds true for |x| ∈
[

λn,λn +
λn√

n

]

.

Proof. It is sufficient to prove (2.9) in the case x ∈ [λn,λn +
λn√

n
]. Let ℓ1(x) and ℓ2(x) be

the linear functions respectively, such that

inf
ℓ∈P1

‖w( f − ℓ)‖[

λn− λn√
n
,+∞

) = ‖w( f − ℓ1)‖[

λn− λn√
n
,+∞

),

inf
ℓ∈P1

‖w( f − ℓ)‖[λn,+∞) = ‖w( f − ℓ2)‖[λn ,+∞).

Noting that

B
(r−1)
n ( f ,x) = B

(r−1)
n ( f − ℓ1,x) = B

(r−1)
n ( f − ℓ2,x)

holds true for x ∈
[

λn,λn +
λn√

n

]

and r ≥ 3.

For x ∈ [λn,λn +
λn√

n
], if B

(r−1)
n ( f ,x) ≥ 0, then using Petrov’s result (see [5, Theorem 3.1]),

we have

|B(r−1)
n ( f ,x)| = |B(r−1)

n ( f − ℓ2,x)|

≤ (r−1)!22r−3

(

λn +
2λn√

n
− x

)1−r

‖Bn( f − ℓ2)‖[

x,λn+ 2λn√
n

]

≤ c

(√
n

λn

)r−1

‖Bn( f − ℓ2)‖[

λn,λn+
2λn√

n

]

= c

(√
n

λn

)r−1

|Bn( f − ℓ2,ηn)|

with suitable ηn ∈
[

λn,λn +
2λn√

n

]

.

Using the proof of Theorem VMS (see [7]), we have

|Bn( f − ℓ2,ηn)| ≤ [|Bn( f ,ηn)− f (ηn)|w(ηn)+ | f (ηn)− ℓ2(ηn)|w(ηn)]e
Q(ηn)

≤ cω2

(

f ,
λn√

n

)

w

eQ(ηn). (2.10)

If B
(r−1)
n ( f ,x)≤ 0, then B

(r−1)
n ( f −ℓ1,x)≤ 0. Using Petrov’s result again and the fact B

(r−1)
n ( f −
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ℓ1,x) is non-decreasing, we obtain

|B(r−1)
n ( f ,x)| = |B(r−1)

n ( f − ℓ1,x)|

≤ |B(r−1)
n ( f − ℓ1,λn)|

≤ (r−1)!22r−3

(√
n

λn

)r−1

‖Bn( f − ℓ1)‖In
.

Thus Lemma 1 gives

|B(r−1)
n ( f ,x)| ≤ c

(√
n

λn

)r−1

ω2

(

f ,
λn√

n

)

w

eQ(ηn) (2.11)

with suitable ηn ∈ In =

[

λn −
λn√

n
,λn

]

.

The inequality (2.9) follows immediately from (2.10) and (2.11).

Lemma 3. For an integer r ≥ 2, let f ∈Cw be r-monotone. Then

w(x)|Bn,r( f ,x)− f (x)| ≤ cω2

(

f ,
λn√

n

)

w

(2.12)

holds for |x| ≥ λn.

Proof. When r = 2, the inequality (2.12) follows immediately from(1.6).

When r ≥ 3, let ℓ(x) be the linear function such that

inf
ℓ∈P1

‖w( f − ℓ)‖[λn,∞) = ‖w( f − ℓ)‖[λn,∞).

Since Bn,r( f ,x) reproduces linear functions, for x ≥ λn, we have

w(x)|Bn,r( f ,x)− f (x)|

= w(x)|Bn,r( f − ℓ,x)− [ f (x)− ℓ(x)]|

≤ w(x)
r−1

∑
i=0

|B(i)
n ( f − l,λn)|

i!
(x−λn)

i + ω2

(

f ,
λn√

n

)

w

. (2.13)

It is clear from (1.6) that

w(x)|Bn( f − ℓ,λn)|

≤ [w(λn)|Bn( f ,λn)− f (λn)|+ w(λn)| f (λn)− ℓ(λn)|]eQ(λn)−Q(x)

≤ cω2

(

f ,
λn√

n

)

w

. (2.14)

We now use for 0 < i < r−1 the inequality

|B(i)
n ( f − ℓ,λn)| ≤ c

[

(√
n

λn

)i

‖Bn( f − ℓ)‖[

λn,λn+
λn√

n

] +

(

λn√
n

)r−1−i

‖B
(r−1)
n ( f − ℓ)‖[

λn,λn+
λn√

n

]

]
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(see [1, p. 38 Theorem 5.6]) to obtain

w(x)
r−2

∑
i=1

|B(i)
n ( f − l,λn)|

i!
(x−λn)

i

≤ c

{

r−2

∑
i=1

1

i!

(√
n

λn

)i

w(x)(x−λn)
i‖Bn( f − ℓ)‖[

λn,λn+
λn√

n

]

+
r−2

∑
i=1

1

i!

(

λn√
n

)r−1−i

w(x)(x−λn)
i‖B

(r−1)
n ( f − ℓ)‖[

λn,λn+
λn√

n

]

}

. (2.15)

Using Proposition A, (1.6) and Lemma 2, we obtain

w(x)(x−λn)
i‖Bn( f − ℓ)‖[

λn,λn+
λn√

n

] ≤ c

(

λn√
n

)i

i!ω2

(

f ,
λn√

n

)

w

, i = 1,2, · · · ,r−2. (2.16)

and

w(x)(x−λn)
i‖B

(r−1)
n ( f − ℓ)‖[

λn,λn+
λn√

n

] ≤ c

(√
n

λn

)r−1−i

i!ω2

(

f ,
λn√

n

)

w

, i = 1,2, · · · ,r−1.

(2.17)

The above estimates together with (2.13) yield

w(x)|Bn,r( f ,x)− f (x)| ≤ cω2

(

f ,
λn√

n

)

w

.

The case x ≤−λn is analogous. This completes the proof of Lemma 3.

3 Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. By Theorem VMS, for |x| ≤ λn, we have

w(x)|Bn,r( f ,x)− f (x)| ≤ cω2

(

f ,
λn√

n

)

w

. (3.1)

For |x| ≥ λn, by Lemma 3, we have

w(x)|Bn,r( f ,x)− f (x)| ≤ cω2

(

f ,
λn√

n

)

w

. (3.2)

Thus the proof of (1.10) is straightforward from (3.1) and (3.2).

Proof of Theorem 2. For |x| ≤ λn, we have

B∗
n,r( f ,x)− f (x) =

√
n

2λn

∫ λn√
n

0
[Bn,r( f ,x+ t)− f (x+ t)]dt

+

√
n

2λn

∫ λn√
n

0
[Bn,r( f ,x− t)− f (x− t)]dt +

√
n

2λn

∫ λn√
n

0
∆2

t f (x)dt.
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Thus

w(x)|B∗
n,r( f ,x)− f (x)| ≤

√
n

2λn

∫ λn√
n

0
w(x+ t)|Bn,r( f ,x+ t)− f (x+ t)|eQ(x+t)−Q(x)dt

+

√
n

2λn

∫ λn√
n

0
w(x− t)|Bn,r( f ,x− t)− f (x− t)|eQ(x−t)−Q(x)dt

+

√
n

2λn

∫ λn√
n

0
‖w∆2

t f‖[−t∗,t∗]dt

= I1 + I2 + I3 (3.3)

Using Proposition A, for |x| ≥ t0, we have

Q(x+ t)−Q(x) = Q(|x+ t|)−Q(|x|)

= Q
′
(ξ )(|x+ t|− |x|)

≤ Q
′
(2λn)t ≤ A, (3.4)

and

Q(x− t)−Q(x) = Q(|x− t|)−Q(|x|)

= Q
′
(η)(|x− t|− |x|)

≤ Q
′
(2λn)t ≤ A, (3.5)

where ξ is between |x+ t| and |x|, and η is between |x− t| and |x|.
And for |x| ≤ t0, it is clear that

Q(x+ t)−Q(x) ≤ c

Q(x− t)−Q(x)≤ c.

Therefore, using Theorem 1 and (1.1), we have

|Ii| ≤ cω2

(

f ,
λn√

n

)

w

, i = 1,2,3

which implies

|w(x)[B∗
n,r( f ,x)− f (x)]| ≤ cω2

(

f ,
λn√

n

)

w

(3.6)

holds true for |x| ≤ λn.

For x > λn +
λn√

n
, let ℓ1(x) be the linear function such that

inf
ℓ∈P1

‖w( f − ℓ)‖[λn,∞) = ‖w( f − ℓ1)‖[λn ,∞).
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Since B∗
n,r reproduces linear functions, we have

w(x)|B∗
n,r( f ,x)− f (x)| ≤

√
n

2λn

∫ x+ λn√
n

x− λn√
n

w(x)|Bn,r( f − ℓ1, t)|dt + ω2

(

f ,
λn√

n

)

w

≤
√

n

2λn

w(x)
r−1

∑
i=0

|B(i)
n ( f − ℓ1,λn)|

i!

∫ x+ λn√
n

x− λn√
n

(t −λn)
idt

+ω2

(

f ,
λn√

n

)

w

. (3.7)

Observing that for x ≥ λn + λn√
n
,

x−λn +
λn√

n
≤ 2(x−λn)

and

x−λn −
λn√

n
≤ x−λn,

we have
∣

∣

∣

∣

∣

∫ x+ λn√
n

x− λn√
n

(t −λn)
idt

∣

∣

∣

∣

∣

≤ 2i+2λn

i+ 1
(x−λn)

i, i = 0,1, · · · ,r−1

which implies

√
n

2λn

w(x)
r−1

∑
i=0

|B(i)
n ( f − ℓ1,λn)|

i!

∫ x+ λn√
n

x− λn√
n

(t −λn)
idt

≤ cw(x)
r−1

∑
i=0

|B(i)
n ( f − ℓ1,λn)|

i!
(x−λn)

i. (3.8)

Following the proof of Lemma 3, we obtain

w(x)
r−1

∑
i=0

|B(i)
n ( f − ℓ1,λn)|

i!
(x−λn)

i ≤ cω2

(

f ,
λn√

n

)

w

. (3.9)

Therefore, it follows from (3.7)-(3.9) that

|w(x)[B∗
n,r( f ,x)− f (x)]| ≤ cω2

(

f ,
λn√

n

)

w

(3.10)

holds true for x > λn +
λn√

n
.

For λn ≤ x ≤ λn +
λn√

n
, let ℓ2(x) be the linear function such that

inf
ℓ∈P1

‖w( f − ℓ)‖[

λn− λn√
n
,+∞

) = ‖w( f − ℓ2)‖[

λn− λn√
n
,+∞

).
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We now write

w(x)|B∗
n,r( f ,x)− f (x)| ≤

√
n

2λn

w(x)
∫ λn√

n

0
|Bn,r( f ,x+ t)− f (x+ t)|dt

+

√
n

2λn

w(x)

∫ λn√
n

0
|Bn,r( f ,x− t)− f (x− t)|dt

+

√
n

2λn

w(x)

∫ λn√
n

0
|∆2

t ( f − ℓ)(x)|dt

= I1 + I2 + I3

Using (3.5), (3.6) and Theorem 1, we can easily get

|Ii| ≤ cω2

(

f ,
λn√

n

)

w

, i = 1,2. (3.11)

To estimate I3, we write

I3 ≤
√

n

2λn

∫ λn√
n

0
| f (x+ t)− ℓ2(x+ t)|w(x+ t)eQ(x+t)−Q(x)dt

+

√
n

2λn

∫ λn√
n

0
| f (x− t)− ℓ2(x− t)|w(x− t)eQ(x−t)−Q(x)dt

+w(x)| f (x)− ℓ2(x)|.

Using (3.5), (3.6) and (2.8), we obtain

I3 ≤ cω2

(

f ,
λn√

n

)

w

.

Combining this with (3.12), for λn ≤ x ≤ λn +
λn√

n
, we have

w(x)|B∗
n,r( f ,x)− f (x)| ≤ cω2

(

f ,
λn√

n

)

w

. (3.12)

Similar estimate yields

w(x)|B∗
n,r( f ,x)− f (x)| ≤ cω2

(

f ,
λn√

n

)

w

, x ≤−λn. (3.13)

This completes the proof of Theorem 2.
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