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Abstract. The purpose of this paper is to introduce and discuss the concept of topical func-

tions on upward sets. We give characterizations of topical functions in terms of upward

sets.
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1 Introduction

If X is a partially ordered vector space X , then the set X+ = {x ∈ X : x ≥ 0} is called the

positive cone of X , and its members are called positive elements of X .

A partially ordered vector space X is called a vector lattice if for every pair of points x,y in X

both sup{x,y} and inf{x,y} exist. As usual, sup{x,y} is denoted by x∨ y and inf{x,y} by x∧ y.

That is, sup{x,y} = x∨ y and inf{x,y} = x∧ y. In a vector lattice, the positive part, the negative
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part and the absolute value of an element x are defined by

x+ = x∨0, x− = (−x)∨0, and |x| = x∨ (−x),

respectively. Also we have

x = x+ − x−, |x| = x+ + x−, and |x+ − y+| ≤ |x− y|.

A norm ‖.‖ on a vector lattice X is said to be a lattice norm, whenever |x| ≤ |y| in X implies

‖x‖ ≤ ‖y‖. A normed vector lattice is a vector lattice equipped with a lattice norm. If a normed

vector lattice X is complete, then X is referred to a Banach lattice.

Recall that an element 1 ∈ X is called a strong unit if for each x ∈ X there exists 0 < λ ∈ R

such that x ≤ λ1. Using a strong unit 1 we can prove that

‖x‖ = inf{λ > 0 : |x| ≤ λ1}, ∀x ∈ X

is a norm lattice on X . We have also

|x| ≤ ‖x‖1, ∀x ∈ X .

Well-know examples of the Banach lattice with strong units are the lattice of all bounded func-

tions defined on a set X and the lattice L∞(S,Σ,μ) of all essentially bounded functions on a space

S with a σ -algebra of measurable sets Σ and a measure μ .

A function f : X →R = [−∞, +∞] is called topical if it is increasing (x≤ y =⇒ f (x)≤ f (y))

and plus-homogeneous if f (x+λ1) = f (x)+λ for all x ∈ X and all λ ∈ R, and they are studied

in [4-5]. The reader may find many applications in applied mathematics (see [3]).

Recall (see [3]) that a subset U of X is said to be upward, if u ∈ U and x ∈ X with u ≤ x,

then x ∈U .

For any subset U of X , we shall denote by intU , clU , and bdU the interior, the closure and

the boundary of U , respectively. We have

N(x,r) := {y ∈ X : ‖x− y‖ ≤ r} = {y ∈ X : x− r1 ≤ y ≤ x+ r1}.

At first we stste the following lemma which is needed in the proof of the main results.

Lemma 1.1[4]. Let f : X −→ R̄ be a topical function. Then the following statements are

true:

(a) If x ∈ X and f (x) = +∞ then f ≡ +∞.

(b) If x ∈ X and f (x) = −∞ then f ≡−∞.
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2 Upward Sets

Note that if U ⊆ X , then U is an upward set if and only if for all u ∈ U and all x ∈ X ,

max{x,u} ∈U .

Example 2.1. Suppose x ∈ X and U = {y ∈ X : x ≤ y}. Then U is an upward set of X .

Definition 2.2. Suppose f : X → R is an arbitrary function. Set for λ ∈ R,

Bλ ( f ) = {x ∈ X : f (x) ≥ λ},

then Bλ ( f ) is called upper level set.

Corollary 2.3. The function f : X −→ R is increasing if and only if for every λ ∈ R, Bλ ( f )

is upward.

Theorem 2.4.

(a) The collection τu of upward sets is a topology in X.

(b) If U ∈ τu, then Ū ∈ τu.

(c) If U ∈ τu, and x ∈U then for every ε > 0, x+ ε1 ∈ int U .

(d) If U ∈ τu, then int U = {x ∈ X : x− ε1 ∈ int U f or some ε}.

Proof. The part (a) is trivial.

(b) Suppose U ∈ τu and x ∈ Ū , if x ≤ y, we show that y ∈ Ū . Consider the sequence {xα}α≥1

such that ‖xα − x‖ → 0. Put εα = ‖xα − x‖. Then for every α ≥ 1, xα ≤ εα 1+ x. Therefore for

every α ≥ 1, εα 1 + x ∈U . For every α ≥ 1, put yα = εα1 + y then yα ∈U , also εα → 0 hence

y ∈ Ū .

(c) Suppose U ∈ τu, x ∈U and ε > 0. Consider the neighborhood of (x+ ε1).

V = {y ∈ X : ‖y− (x+ ε1)‖ < ε}.

Then V = {y ∈ X : x < y < x+2ε1}. Since U is upward and x ∈ X , V ⊆U . Therefore x+ ε1 ∈
int U. (d) Suppose U ∈ τu and for some ε > 0, x− ε1 ∈U . Then by (c) we have x = (x− ε1)+

ε1 ∈ int U . If x ∈ int U The there exists a neighborhood N(x, ε) of x such that N(x, ε) ⊆ U .

Also x− ε1 ∈ N(x, ε), therefore x− ε1 ∈U.

Corollary 2.5. Let U ∈ τu be closed and u ∈ U. Then u ∈ bd U if and only if for every

λ > 0, u−λ1 /∈U.

Let X be a normed linear space and U a nonempty subset of X . Then a point g0 ∈U is said

to be a best approximation for x ∈ X , if

‖x−g0‖ = d(x,U) = inf{‖x−g‖ : g ∈U}.
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If each x ∈ X has at least one best approximation in U, then U is called a proximinal subset of

X . Let U be a subset of a normed linear space X , then for x ∈ X we put

PU(x) = {g0 ∈U : ‖x−g0‖ = d(x,U)},

the set of all best approximations for x ∈ X .

Theorem 2.6. Let U ∈ τu be closed in X. Then U is proximinal.

Proof. Suppose x0 ∈ X\U and r = d(x0,U) = infu∈U ‖x0−u‖. Since U is closed, for ε > 0,

there exists uε ∈U such that ‖x0 −uε‖ < r + ε . Therefore

−(r + ε)1 ≤ uε − x0 ≤ (r + ε)1.

Put u0 = x0 + r1. Then we can clearly prove that u0 ∈ PU(x0).

Corollary 2.7. Let U ∈ τu is closed of X. Then for x0 ∈ X\U, u0 = x0 +r1 ∈ PU(x0), where

r = d(x0,U).

Definition 2.8. Suppose U ∈ τu. Define the function ρU : X → R̄ for x ∈ X

ρU(x) = sup {λ ∈ R : x ∈ λ1+U}.

Note that if U = X then for every x ∈ X , we have

{λ ∈ R : x ∈ λ1+U}= R.

Also if U = /0 and λ ∈ R, then for every x ∈ X , we have

{λ ∈ R : x ∈ λ1+U}= /0.

Lemma 2.9. Let U be a nonempty upward subset of X. Then for every x ∈ X

{λ ∈ R : x ∈ λ1+U} = /0.

and the set {λ ∈ R : x ∈ λ1+U} is an interval to form (−∞,r) or (−∞,r].

Proof. Consider u ∈U and x ∈ X , if λ =− inf{λ ∈ R : u−x ≤ λ1} then u ≤ x−λ1. Since

U is upward, x−λ1 ∈U . Therefore

{λ ∈ R : x ∈ λ1+U} = /0,
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If r0 ∈ R and x ∈ r01+U . If r ≤ r0 put η = r0 − r, since U is upward then

x− r1 = (x− r01)+ η1 ∈U.

Theorem 2.10. Let U ∈ τu, then

(a) ρU is topical.

(b) ρU ≡−∞ if and only if U = /0.

(c) ρU ≡ +∞ if and only if U = X.

(d) ρU is finite if and only if /0 = U ⊂ X.

(e) If U ∈ τu is a closed upward subset of X and u∈U, then ρU(u) = 0 if and only if u∈ bd U.

(f) If U ∈ τu is a closed upward subset of X, then

bd u = {u ∈ X : ρU(u) = 0}.

Proof. (a) Since U is upward, ρU is increasing. Suppose x ∈ X and α ∈ R, then

ρU(x+ α1) = sup {λ ∈ R : x+ α1 ∈ λ1+U}
= sup {λ ∈ R : x ∈ (λ −α)1+U}
= sup {(β + α) ∈ R : x ∈ β1+U}
= sup {β ∈ R : x ∈ β1+U}+ α

= ρU(x)+ α .

That is ρU is plus-homogeneous and topical.

(b), (c) and (d) are trivial.

(e) Suppose ρU = 0 and u /∈ bd U , then by Corollary 2.5, for some λ > 0, u− λ1 ∈ U , it

follows that ρU ≥ λ > 0. This is a contradiction.

Conversely, suppose u ∈ bd U . Therefore by Corollary 2.5, for every λ > 0, u /∈ λ1 +U .

Since U is closed and u ∈U = 01+U , we have ρU = 0.

(f) is a consequence of (e).

Theorem 2.11. Let U be an upward subset of X. Then

(a) {x ∈ X : ρU(x) > 0} = int U ⊆U.

(b) X\intU = {x ∈ X : ρU(x) ≤ 0}.
Proof. (a) Suppose x ∈ {x ∈ X : ρU(x) > 0}. Then there exists λ > 0 such that x∈ λ1+U .

From Theorem 2.4 (c), x = (x−λ1)+ λ1 ∈ int U . That is {x ∈ X : ρU(x) > 0} ⊆ int U .
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Now if x∈U , then ρU(x)≥ 0. Therefore U ⊆{x∈X : ρU(x) > 0} and Ū = {x∈X : ρU(x) >

0}. From Theorem 2.10 (f) and the relation Ū = int U
⋃

bd U . We have int U = {x∈X : ρU(x) >

0}.

(b) By (a) we have

X\int U = {x ∈ X : ρU(x) ≤ 0}.

Theorem 2.12. Let U be a subset of X. Then the following statements are equivalent:

(a) ρU is topical and U = B0(ρU).

(b) U is upward and for any real sequence {λk} with x + λk1 ∈ U and λk −→ λ , one has

x+ λ1 ∈U.

Proof. (a)⇒ (b). Suppose g1 ∈U = B0(ρU) and g2 ∈ X where g2 ≥ g1. Since ρU is topical

g2 ∈ B0(ρU ). Therefore U is upward. Now suppose x ∈ X , λ ,λk ∈ R and λk −→ λ . Since for

any k, x+ λk1 ∈U , it follows that ρU(x+ λk1) ≥ 0 and since ρU is topical

ρU(x+ λk1) = ρU(x)+ λk −→ ρU(x)+ λ = ρU(x+ λ1).

Hence

ρU(x+ λ1) ≥ 0.

It follows that x+ λ1 ∈U .

(b)⇒ (a). From Theorem 2.10, ρU is topical. Suppose x∈X and x∈B0(ρU). Choose λk > 0

where λk −→ 0, since ρU is topical ρU(x+λk1) = ρU(x)+λk ≥ λk > 0. Therefore x+λk1 ∈U ,

since λk −→ 0 it follows that x ∈ U and B0(ρU) ⊆ U . Also we know from Theorem 2.11, that

U ⊆ B0(ρU ), hence U = B0(ρU).

In the following we give a necessary and sufficient condition for topical function.

Theorem 2.13. Let f : X → R̄ be a function. Then the following statements are equivalent:

(a) f is topical.

(b) The set B0( f ) ∈ τu and f = ρB0( f ).

Proof. (b) ⇒ (a). If B0( f ) ∈ τu, by Theorem 2.10, f = ρB0( f ) is topical.

(a)⇒ (b). Suppose f is topical. If f ≡ −∞ then B0( f ) = /0; therefore by Theorem 2.10,

ρB0( f ) = −∞.

Suppose there exists x ∈ X such that f (x) = λ > −∞. Then f (x− λ1) = 0, and x− λ1 ∈
B0( f ). Hence B0( f ) = /0. If g1 ∈ B0( f ), g2 ∈ X and g2 ≥ g1. Since f is increasing, g2 ∈ B0( f ),
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so that B0( f ) is upward. If x ∈ X then

ρB0( f )(x) = sup {λ ∈ R : x−λ1 ∈ B0( f )}
= sup{λ ∈ R : f (x−λ1) ≥ 0}
= sup {λ ∈ R : f (x)−λ ≥ 0}
= sup {λ ∈ R : f (x) ≥ λ}
= f (x).

Theorem 2.14. Let U is a closed upward subset of X and x ∈ X. Put

V = {x+ λ1 : λ ∈ R},

W = {x+ λ1 : λ > 0} and P = {x+ λ1 : λ ≤ 0}. Then the following ststments are ture:

(a) card (V
⋂

bd U) = 1,

(b) card (W
⋂

bd U) ≤ 1 and card (P
⋂

bd U) ≤ 1,

(c) If x /∈U, then card (P
⋂

bd U) = 0 and card (W
⋂

bd U) = 1,

(d) If x ∈U, then card (P
⋂

bd U) = 1 and card (W
⋂

bd U) = 0.

(Cardinal number of a finite set A is the number of elements in that set A and denote by

card A).

Proof. If V
⋂

bd U = /0, then by Theorem 2.108 (f), for every λ ∈R, ρU(x+λ1) = 0. Since

ρU is topical, for every λ ∈ R, ρU(x) = −λ . Therefore ρU(x) is not finite and ρU is not finite.

From Theorem 2.10 (d) U = /0 or U = X . It follows that card (V
⋂

bd U) > 0. If for every i = 1,2

there exists λi such that x+λi1∈V
⋂

bd U . From Theorem 2.10 (e), for every i, ρU(x+λi1) = 0.

Since ρU is topical, it follows that λ1 = λ2. Thus card (V
⋂

bd U) ≤ 1.

(b) It is similar to (a).

(c) Suppose x /∈U , then ρU(x) < 0. Therefore for every λ ≤ 0, ρU(x)+ λ < λ . Since ρU is

topical, then for every λ ≤ 0, ρU(x+ λ1) < 0. It follows that card (P
⋂

bd U) = 0.

Also if put λ = −ρU(x), we have ρU(x+ λ1) = 0. Hence card (W
⋂

bd U) = 1.

(d) Suppose x ∈U , then ρU(x) ≥ 0. Therefore for every λ > 0, ρU(x)+ λ ≥ λ . Since ρU is

topical, for every λ > 0, ρU(x+ λ1) > 0. Hence card (W
⋂

bd U) = 0.

Also if put

λ = −ρU(x)

then ρU(x+ λ1) = 0. It follows that card (P
⋂

bd U) = 1.
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