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1 Introduction

Let P={pn}∞
n=1 be a sequence of natural numbers such that 2≤ pi ≤N, i∈N={1,2,···}.

By definition Z(pj)={0,1,··· ,pj−1}, m0=1, mn=p1 p2 ··· pn for n∈N. Then every x∈[0,1)
has an expansion

x=
∞

∑
n=1

xn

mn
, xn ∈Z(pn), n∈N. (1.1)

For x= k/ml , 0< k<ml , k,l ∈N, we take the expansion with a finite number of xn 6=
0. Let G(P) be the Abel group of sequences x = (x1,x2,···), xn ∈ Z(pn), with addition
x⊕y = z = (z1,z2,···), where zn ∈ Z(pn) and zn = xn+yn (mod pn), n ∈ N. We define
maps g : [0,1)→ G(P) and λ : G(P)→ [0,1) by formulas g(x) = (x1,x2,···), where x is
in the form (1.1) and λ(x) = ∑

∞
i=1 xi/mi, where x ∈ G(P). Then for x,y ∈ [0,1), we can

introduce x⊕y :=λ(g(x)⊕g(y)), if z= g(x)⊕g(y) does not satisfy equality zi = pi−1 for
all i≥ i0. In a similar way, we introduce x⊖y and for all x,y∈ [0,1) generalized distance
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ρ(x,y)=λ(g(x)⊖g(y)). Every k∈Z+={0,1,2,···} can be expressed uniquely in the form
of

k=
∞

∑
n=1

knmn−1, kn ∈Zn, n∈N. (1.2)

For a given x ∈ [0,1) with expansion (1.1) and k ∈ Z+ with expansion (1.2), we set
χk(x)= exp(2πi∑∞

j=1 xjkj/pj). The system {χk}
∞
k=0 is called a multiplicative or Vilenkin

system. It is orthonormal and complete in L[0,1) and we have

χk(x⊕y)=χk(x)χk(y), χk(x⊖y)=χk(x)χk(y),

for a.e. y, whenever x∈ [0,1) is fixed (see [8, Section 1.5]).
The Fourier-Vilenkin coefficients and partial Fourier-Vilenkin sums for f ∈L1[0,1) are

defined by

f̂ (k)=
∫ 1

0
f (x)χk(x)dx, k∈Z+ , Sn( f )(x)=

n−1

∑
k=0

f̂ (k)χk(x), n∈N.

If f ,g ∈ L1[0,1), then f ∗g(x) =
∫ 1

0 f (x⊖t)g(t)dt =
∫ 1

0 f (t)g(x⊖t)dt. For Dirichlet kernel

Dn(t)=∑
n−1
k=0 χk(t), n∈N, we have an equality Sn( f )(x)=

∫ 1
0

f (x⊖t)Dn(t)dt. The space
Lp[0,1), 1≤ p<∞ consists of all measurable functions f on [0,1) with finite norm ‖ f‖p =

(
∫ 1

0 | f (t)|
pdt)1/p. If ω∗( f ,δ)∞ := sup{| f (x)− f (y)| : x,y∈ [0,1), ρ(x,y)< δ}, δ∈ [0,1], then

C∗[0,1) contains all functions f with property limh→0ω∗( f ,h)∞=0 and finite norm ‖ f‖∞=
supx∈[0,1) | f (x)|.

Let us introduce a modulus of continuity ω∗( f ,δ)p = sup0<h<δ‖ f (x⊖h)− f (x)‖p in

Lp[0,1), 1≤p<∞. If Pn={ f ∈L1[0,1) : f̂ (k)=0,k≥n}, then En( f )p=inf{‖ f−tn‖p,tn∈Pn},
1 ≤ p ≤ ∞. Let ω(δ) be a function of modulus of continuity type (ω(δ)∈ Ω), i.e., ω(δ)
is continuous and increasing on [0,1) and ω(0) = 0. Then the space Hω

p [0,1) consists
of f ∈ Lp[0,1) (1 ≤ p < ∞) or f ∈ C∗[0,1) (p = ∞) such that ω∗( f ,δ)p ≤ Cω(δ), where C
depends only on f . Denote by hω

p the subspace of Hω
p consioting of all functions f such

that limh→0ω∗( f ,h)p/ω(h)=0. The spaces hω
p [0,1) and Hω

p [0,1), 1≤ p≤∞, with the norm
‖ f‖p,ω = ‖ f‖p+sup0<h<1ω∗( f ,h)p/ω(h) are Banach ones. In hω

p [0,1) we can consider
En( f )p,ω = inf{‖ f −tn‖p,ω,tn ∈Pn}, n∈N.

Let A={ank}
∞
n,k=1 be a lower triangle matrix such that

an,k ≥0, n,k∈N,
n

∑
k=1

an,k =1. (1.3)

Using matrix A, we can define a summation method by formula

Tn( f )(x)=
n

∑
k=1

an,kSk( f )(x).
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In the case of trigonometric system and monotone by k sequence {ank}
∞
n,k=0, the estimates

of ‖ f −Tn( f )‖∞ were obtained by P. Chandra [4] in terms of modulus of continuity. Later
L. Leindler [10] generalized these results to the cases

n−1

∑
k=m

|an,k−an,k+1|≤Can,m, 1≤m≤n−1, n∈N, (1.4)

and

m−1

∑
k=1

|an,k−an,k+1|≤Can,m, 1≤m≤n, n∈N. (1.5)

Here C doesn’t depend on m, n. For Vilenkin system {χk}
∞
k=0 the estimates of ‖ f −

Tn( f )‖p, 1≤ p≤∞, and ‖ f −Tn( f )‖p,v for f ∈ Hω
p , where v(t) = tβ , ω(t) = tα, β< α, are

obtained in [9]. Further we shall consider

Rn( f ,r)(x)=
( n

∑
k=1

an,k|Sk( f )(x)− f (x)|r
)1/r

.

The estimates of ‖Rn( f ,r)‖∞ for monotone by k sequence {ank}
∞
n,k=0 with additional re-

strictions on their oscillations were proved by T. Xie and X. Sun in [19]. For matrices
satisfying (1.4) and (1.5), similar results are established by B. Szal [16]. In [17], some
estimates close to ones of P. Chandra [3] and L. Leindler [8] are obtained.

In the present paper, we study the rate of ‖Rn( f ,r)‖p, 1< p ≤∞, where a matrix A
satisfies one of the following conditions:

2m−1

∑
k=m

|an,k−an,k+1|≤Kan,m, 1≤m≤
(n−1)

2
, (1.6)

or

m−1

∑
k=[m/2]

|an,k−an,k+1|≤Kan,m, 2≤m≤n. (1.7)

In both cases K does not depend on n,m. The class GM of real non-negative se-
quences {ai}

∞
i=0, satisfying inequality ∑

2m−1
k=m |ak−ak+1|≤Cam, m∈N, was introduced by

S. Tikhonov [18]. In particular, in [18] it is established that GM contains the class of quasi
monotone sequences QM (with property ann−τ↓0 for some τ≥0 and n∈N). Further, we
assume that ω(t)∈Ω satisfies ∆2-condition, i.e., ω(t)≤Cω(t/2), t∈ [0,1).

Some results are devoted to the strong Fejer and de la Valle-Poussin means (Lemmas
2.7, 2.8, Theorem 3.5, Corollaries 3.1, 3.2).
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2 Auxiliary propositions

Lemma 2.1. For f ∈ Lp[0,1), 1< p<∞, we have ‖Sn( f )‖p ≤C‖ f‖p, n∈N, where C does not
depend on f and n. As a corollary, we obtain inequality

‖Sn( f )− f‖p ≤ (C+1)En( f )p, n∈N.

For arbitrary sequence {pn}∞
n=1, Lemma 2.1 is established by W.-S. Young [20], F.

Schipp [14] and P. Simon [15].
Let g=(g1,g2,··· ,gj,···), where gj are measurable on [0,1) functions. Let us define

‖g‖Lp(lr)=
∥

∥

∥

( ∞

∑
j=1

|gj|
r
)1/r∥

∥

∥

p
, ‖g‖lr(Lp)=

( ∞

∑
j=1

‖gj‖
r
p

)1/r
.

Lemma 2.2. If 1≤ r≤ p<∞, then ‖g‖Lp(lr)≤‖g‖lr(Lp).

The proof of Lemma 2.2 is similar to the case r=2, studied by S. Fridli [5].

Lemma 2.3. Let {an}∞
n=1∈C. Then for q∈ (1,∞) a Sidon-type inequality

∥

∥

∥

n

∑
k=1

akDk

∥

∥

∥

1
≤C(q)n1−1/q

( n

∑
k=1

|ak |
q
)1/q

(2.1)

holds. For q=∞, we also have

∥

∥

∥

n

∑
k=1

akDk

∥

∥

∥

1
≤Cn sup

1≤k≤n

|ak|.

In an implicit form, inequality (2.1) is proved in [3] for bounded sequences {pn}∞
n=1.

M. Avdispahic and M. Pepic [2] obtained its analog in a more general case.
The following Lemma is due to A. V. Efimov (see [8, Section 10.5]).

Lemma 2.4. Let f ∈Lp[0,1), 1≤ p<∞, or f ∈C∗[0,1). Then

2−1ω∗( f ,1/mn)p≤Emn( f )p≤‖ f −Smn( f )‖p ≤ω∗( f ,1/mn)p, n∈N.

Lemma 2.5. If ω(t)∈Ω satisfies the ∆2-condition, then from f ∈ Hω
p it follows that En( f )p ≤

Cω(1/n), n∈N.

Proof. Let ‖ f‖p,ω = C1, ω(t)≤ C2ω(t/2), t ∈ [0,1), and n ∈ [mk,mk+1), k ∈ Z+. Then by
Lemma 2.4

En( f )p ≤Emk
( f )p≤ω∗( f ,1/mk)p≤C1ω(1/mk)≤C1C

[log2 N]+1
2 ω(1/mk+1)≤C3ω(1/n).

Thus, Lemma 2.5 is proved.
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Lemma 2.6. (i) Let a matrix A satisfies conditions (1.3) and (1.6). Then an,i ≤ (K+1)an,m for
m≤ i≤2m≤n, where K is the constant from (1.6).

(ii) Let a matrix A satisfies conditions (1.3) and (1.7). Then an,i≤(K+1)an,m for [m/2]≤ i≤
m, where K is the constant from (1.7).

Proof. Part (i) may be found in [18]. In order to establish (ii), we find for [m/2]≤ i<m
that

Kan,m ≥
m−1

∑
k=[m/2]

|an,k−an,k+1|≥
∣

∣

∣

m−1

∑
k=i

(an,k−an,k+1)
∣

∣

∣
≥ an,i−an,m,

whence (K+1)an,m≥ an,i. In the case i=m, the statement (ii) is evident. Thus, Lemma 2.6
is proved.

The trigonometric counterpart of Lemma 2.7 is due to L. Leindler [11].

Lemma 2.7. Let f ∈C∗[0,1), 1≤ r<∞. Then

‖σn( f ,r)‖∞ :=
∥

∥

∥

(

n−1
n

∑
k=1

|Sk( f )(·)|r
)1/r∥

∥

∥

∞
≤M‖ f‖∞, n∈N, (2.2)

where M does not depend on n∈N and f .

Proof. Let us consider i∈N such that n∈ [mi−1,mi). Then

n−1
n

∑
k=1

|Sk( f )(x)|r ≤Nm−1
i

n

∑
k=1

|Sk( f )(x)|r =N‖h‖r ,

where h(t) equals to Sk( f )(x) on I i
k=[k/mi,(k+1)/mi), 1≤k≤n, and h(t)=0 on other I i

k.

It is clear that ‖h‖r = sup
∫ 1

0 h(t)g(t)dt, where sup is taken over constant on I i
k functions

g(t) with the property ‖g‖r′≤1, 1/r+1/r′=1. In other words, if g(t)=ak for t∈I i
k, 1≤k≤n,

then
( n

∑
k=1

|ak|
r′
)1/r′

≤m1/r′

i

(

sup
1≤k≤n

|ak |≤1 for r=1
)

. (2.3)

We have
∫ 1

0
h(t)g(t)dt=m−1

i

n

∑
k=1

akSk( f )(x)=m−1
i

∫ 1

0

n

∑
k=1

akDk(t) f (x⊖t)dt

≤m−1
i ‖ f‖∞

∥

∥

∥

n

∑
k=1

akDk

∥

∥

∥

1
.

Using (2.1) and (2.3), we find that

‖σn( f ,r)‖∞ ≤C1m−1
i ‖ f‖∞m1/r

i

( n

∑
k=1

|ak|
r′
)1/r′

=C1‖ f‖∞.

So, Lemma 2.7 is proved.
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The inequality (2.5) of Lemma 2.8 in the case m= [n/2] is stated without proof by S.
Fridli and F. Schipp [6] for some general systems. In [6] also one can find the idea of
application of (2.1) to problems of strong approximation (see also [7]).

Lemma 2.8. Let f ∈C∗[0,1), 1≤ r<∞, νn≤m<n, where ν∈ (0,1). Then

‖Un,m( f ,r)‖∞ :=
∥

∥

∥

(

(m+1)−1
n

∑
k=n−m

|Sk( f )(·)|r
)1/r∥

∥

∥

∞
≤M(ν)‖ f‖∞ (2.4)

and

‖Vn,m( f ,r)‖∞ :=
∥

∥

∥

(

(m+1)−1
n

∑
k=n−m

|Sk( f )(·)− f (·)|r
)1/r∥

∥

∥

∞
≤ (M(ν)+1)En−m( f )∞, (2.5)

where M(ν) does not depend on n,m∈N and f .

Proof. By (2.2) we have

(m+1)1/r‖Un,m( f ,r)‖∞ =
∥

∥

∥

( n

∑
k=n−m

|Sk( f )(·)|r
)1/r∥

∥

∥

∞

≤
∥

∥

∥

( n

∑
k=1

|Sk( f )(·)|r
)1/r∥

∥

∥

∞
+
∥

∥

∥

(n−m−1

∑
k=1

|Sk( f )(·)|r
)1/r∥

∥

∥

∞

≤C1(n
1/r+(n−m−1)1/r)‖ f‖∞ ,

whence (2.4) follows in virtue of inequality νn≤m.

The inequality (2.5) is derived from (2.4) by substitution f −tn−m instead of f , where
tn−m ∈Pn−m and ‖ f −tn−m‖∞ =En−m( f )∞. Here we use the equality Sk(tn−m)= tn−m for
k≥n−m and Minkowski inequality in lr as follows:

‖Vn,m( f ,r)‖∞ ≤
∥

∥

∥

(

(m+1)−1
n

∑
k=n−m

|Sk( f −tn−m)(·)|
r
)1/r∥

∥

∥

∞

+
∥

∥

∥

(

(m+1)−1
n

∑
k=n−m

|( f −tn−m)(·)|
r
)1/r∥

∥

∥

∞

=‖Un,m( f −tn−m,r)‖∞+En−m( f )∞ ≤C2En−m( f )∞. (2.6)

So, Lemma 2.8 is proved.

Remark 2.1. The counterparts of (2.4) and (2.5) for ‖·‖p and p≥r are easily follows from
Lemma 2.1 and Lemma 2.2 (see the proof of Theorem 3.2).

The following lemma is an analog of Leindler-Meir-Totik theorem [12].
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Lemma 2.9. Let ω,µ∈ Ω be such that λ(t) = ω(t)/µ(t) is increasing on (0,1). Then for an
operator An( f )=Kn∗ f , Kn∈L1[0,1), and f ∈Hω

p the inequality

‖An( f )− f‖p,µ ≤C(‖An( f )− f‖p/µ(n−1)+λ(n−1)(1+‖An‖Lp→Lp))

holds.

The proof of Lemma 2.9 is similar to one of Theorem 8 in [9].

Lemma 2.10. Let ω,µ∈Ω be such that λ(t)=ω(t)/µ(t) is increasing on (0,1). If ω satisfies
∆2-condition and f ∈Hω

p , then En( f )p,µ ≤Cλ(1/n), n∈N.

Proof. Let Kn =∑
2n−1
k=n Dk/n and An( f ) = Kn∗ f . Then for any tn ∈Pn, we have Kn∗tn =

tn. In virtue of Lemma 2.5 and by the standard procedure, we deduce ‖An( f )− f‖p ≤
C1En( f )p≤C2ω(1/n). In addition, ‖An( f )‖Lp→Lp ≤‖Kn‖1≤C3 (see, for example, [9]). By
Lemma 2.9, we obtain

‖An( f )− f‖p,µ ≤C4(ω(n−1)/µ(n−1)+λ(n−1))=2C4λ(n−1).

Thus, E2n( f )p,µ ≤ 2C4λ(n−1). Using monotonicity of best approximations and ∆2-
condition, we get the inequality of Lemma.

Remark 2.2. The condition of increasing of ω(t)/µ(t) introduced by J. Prestin and S.
Prössdorf [13] is suitable for some applications, for example, the theory of multiplicators
of Lipschitz classes (see [1]).

3 Main results

Theorem 3.1. Let a matrix A satisfies conditions (1.3) and (1.7), f ∈C∗[0,1), r≥1. Then

‖Rn( f ,r)‖∞ =O

(

[log2 n]−1

∑
k=0

2kEr
2k( f )∞an,2k+1+nannEr

[(n+1)/2]( f )∞

)1/r
.

Proof. Let n∈N and j= j(n)∈Z+ be defined by inequality 2j ≤n<2j+1, i.e., j=[log2n].
Then we have

|Rn( f ,r)(x)|r ==
j

∑
k=1

2k−1

∑
i=2k−1

an,i|Si( f )(x)− f (x)|r+
n

∑
i=2j

an,i|Si( f )(x)− f (x)|r =: I1+ I2.

Using Abel’s transform (summation by parts), (1.7) and Lemma 2.6, we obtain

I1≤
j

∑
k=1

( 2k−2

∑
i=2k−1

|an,i−an,i+1|
i

∑
l=2k−1

|Sl( f )(x)− f (x)|r++an,2k−1

2k−1

∑
i=2k−1

|Si( f )(x)− f (x)|r
)

≤C1

j

∑
k=1

an,2k

2k−1

∑
i=2k−1

|Si( f )(x)− f (x)|r .
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According to (2.5),

I1≤C2

j

∑
k=1

an,2k 2k−1Er
2k−1( f )∞ =C2

j−1

∑
k=0

an,2k+12kEr
2k( f )∞. (3.1)

It is clear that (1.7) implies ∑
n−1
i=[(n+1)/2] |an,i−an,i+1|≤C3an,n. Since [(n+1)/2]≤(n+1)/2≤

2j, using of Abel’s transform and (2.5) gives

I2≤
n−1

∑
k=[(n+1)/2]

|an,k−an,k+1|
k

∑
i=[(n+1)/2]

|Si( f )(x)− f (x)|r+an,n

n

∑
i=[(n+1)/2]

|Si( f )(x)− f (x)|r

≤C5nan,nEr
[(n+1)/2]( f )∞. (3.2)

From (3.1) and (3.2), the statement of theorem follows.

Theorem 3.2. Let a matrix A satisfies conditions (1.3) and (1.7), f∈Lp[0,1), 1<p<∞, p≥r≥1.
Then

‖Rn( f ,r)‖p =O

( n

∑
k=1

an,kEr
k( f )p

)1/r
. (3.3)

Proof. Applying Lemma 2.2, we have

‖Rn( f ,r)‖p =
∥

∥

∥

( n

∑
k=1

an,k|Sk( f )(·)− f (·)|r
)1/r∥

∥

∥

p
≤
( n

∑
k=1

an,k‖Sk( f )(·)− f (·)‖r
p

)1/r
.

Therefore by Lemma 2.1, ‖Rn( f ,r)‖r
p ≤C∑

n
k=1 an,kEr

k( f )p, whence the inequality of theo-
rem follows.

Theorem 3.3. Let a matrix A satisfies conditions (1.3) and (1.6), f ∈C∗[0,1), r≥1. Then

‖Rn( f ,r)‖∞ =O

( n

∑
k=1

an,kEr
k( f )∞

)1/r
.

Proof. We shall use again j= j(n) with property 2j ≤ n< 2j+1, i.e., j= [log2 n]. Applying
Abel’s transform, we obtain

(Rn( f ,r)(x))r

≤
j

∑
k=1

( 2k−2

∑
i=2k−1

|an,i−an,i+1|
i

∑
l=2k−1

|Sl( f )(x)− f (x)|r+an,2k−1

2k−1

∑
i=2k−1

|Si( f )(x)− f (x)|r
)

+
n−1

∑
k=2j

|an,k−an,k+1|
k

∑
l=2j

|Sl( f )(x)− f (x)|r+an,n

n

∑
k=2j

|Sk( f )(x)− f (x)|r .
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By (1.6), Lemma 2.6 and (2.5), we have

(Rn( f ,r)(x))r ≤C1

(
j

∑
k=1

(

2k−1an,2k−1 Er
2k−1( f )∞+2k−1an,2k−1Er

2k−1( f )∞

))

+C2an,2j 2jEr
2j( f )∞ ≤C3

j

∑
k=0

2kan,2k Er
2k( f )∞.

Since

2k−1an,2k ≤C5

2k−1

∑
i=2k−1

an,i

by Lemma 2.6, we find that

(Rn( f ,r)(x))r ≤C6

(

an,1Er
1( f )∞+

j

∑
k=1

2k−1

∑
i=2k−1

aniE
r
i ( f )∞

)

,

whence the inequality of theorem follows.

Similarly to Theorem 3.2, one can prove

Theorem 3.4. If a matrix A satisfies conditions (1.3) and (1.6), f ∈Lp[0,1), 1< p<∞, p≥r≥1,
then (3.3) holds.

Theorems 3.3 and 3.4 imply

Corollary 3.1. Let f ∈Lp[0,1), 1< p<∞, 1≤ r≤ p, or f ∈C∗[0,1) (p=∞), 1≤ r<∞. Then

∥

∥

∥

(

n−1
n

∑
k=1

|Sk( f )− f |r
)1/r∥

∥

∥

p
=O

( n

∑
k=1

Er
k( f )p/n

)1/r
, n∈N.

In particular, for r=1 and f ∈Lip∗(α,p) (i.e., ω∗( f ,h)p =O(hα)) we obtain

∥

∥

∥
n−1

n

∑
k=1

|Sk( f )− f |
∥

∥

∥

p
=







O(n−α), 0<α<1,
O(ln(n+1)/(n+1)), α=1,
O(n−1), α>1.

Remark 3.1. It is well known that for f ∈ hω
p and σn( f ) = ∑

n
k=1 Sk( f )/n, the equality

limn→∞‖ f −σn( f )‖p,ω = 0 holds (see [9] for ω(h)= hα). In particular, for f ∈ hω
p we have

limn→∞ En( f )p,ω =0.

Theorem 3.5 gives an analog of the estimate (2.5) for Hölder metric.

Theorem 3.5. Let f ∈hω
p , 1< p≤∞, p≥r≥1 for p<∞ and 1≤r<∞ for p=∞. If νn≤m<n,

ν∈ (0,1), then we have
‖Vn,m( f ,r)‖p,ω ≤C(ν)En−m( f )p,ω.
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Proof. By Minkowski inequality and commutativity of translation and convolution, we
have

‖Un,m( f ,r)(·⊖h)−Un,m( f ,r)(·)‖p ≤‖Un,m( f (·⊖h)− f (·),r)‖p . (3.4)

Hence, in virtue of (2.4) and Remark 2.1, it follows that

‖Un,m( f ,r)‖p,ω ≤‖Un,m( f ,r)‖p+ sup
0<h<1

‖Un,m( f (·⊖h)− f (·),r)‖p

ω(h)

≤C1

(

‖ f‖p+ sup
0<h<1

‖( f (·⊖h)− f (·)‖p

ω(h)

)

=C1‖ f‖p,ω ,

where in the case p=∞, the constant C1 is equal to M(ν) from Lemma 2.8. Let tn−m∈Pn−m

be such that ‖ f −tn−m‖p,ω=En−m( f )p,ω. Using equality Sk(tn−m)= tn−m for k≥n−m, we
obtain similarly to (2.6)

‖Vn,m( f ,r)‖p ≤‖Un,m( f −tn−m,r)‖p+‖ f −tn−m‖p

≤C1‖ f −tn−m‖p+‖ f −tn−m‖p≤ (C1+1)En−m( f )p,ω. (3.5)

On the other hand, by (3.4) and (3.5) (we use notation ∆h f = f (·⊖h)− f (·))

sup
0<h<1

‖∆hVn,m( f ,r)‖p/ω(h)

≤ sup
0<h<1

‖Vn,m(∆h f ,r)‖p/ω(h)

≤ sup
0<h<1

(

‖Un,m(∆h( f −tn−m,r)‖p+‖∆h( f −tn−m)‖p

)

/ω(h)

≤(C1+1)‖ f −tn−m‖p,ω =(C1+1)En−m( f )p,ω. (3.6)

Combining estimates (3.5) and (3.6), we finish the proof of theorem.

Corollary 3.2. Let 1 < p ≤ ∞, ω,µ ∈ Ω, where ω(t) satisfies ∆2-condition, while λ(t) =
ω(t)/µ(t) is increasing on (0,1) and limt→0 λ(t) = 0. If f ∈ Hω

p , p ≥ r ≥ 1, and numbers

n,m∈N are such that νn≤m≤n, ν∈(0,1), then ‖Vn,m( f ,r)‖p,µ≤Cλ((n−m)−1), (n−m)∈N.

Proof. In virtue of Theorem 3.5, ‖Vn,m( f ,r)‖p,µ ≤C1(ν)En−m( f )p,µ, while by Lemma 2.10,
we have En−m( f )p,µ ≤C2λ(1/(n−m)). Substituting the second inequality into first one,
we prove the theorem.

Following the idea of Szal [16], we assume in two last theorems that there exists α∈
(0,1), such that ωα(t)/µ(t) is increasing on (0,1). We also require that ω,µ ∈ Ω and ω

satisfies ∆2-condition.

Theorem 3.6. Let a matrix A satisfies conditions (1.3) and (1.7), f ∈Hω
∞[0,1), r≥1. Then

‖Rn( f ,r)‖∞,µ ≤C(1+nan,n)
α/r

(

[log2 n]−1

∑
k=0

2kan,2k+1ωr(2−k)+nan,nωr(n−1)
)(1−α)/r

.
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Proof. In virtue of Theorem 3.1 and Minkowski inequality

sup
0<h<1

‖∆hRn( f ,r)‖∞/µ(h)≤ sup
0<h<1

‖Rn(∆h f ,r)‖∞/µ(h)

≤ sup
0<h<1

C1

(

[log2 n]−1

∑
k=0

2kEr
2k(∆h f )∞an,2k+1+nan,nEr

[(n+1)/2](∆h f )∞

)1/r/

µ(h)

= : sup
0<h<1

C1A1/r
n (h)/µ(h).

By Lemmas 2.4 and 2.5, the estimates

E2k(∆h f )∞ ≤2E2k( f )∞ ≤C2ω(2−k), E[(n+1)/2](∆h f )∞ ≤C3ω((n+1)−1), (3.7)

hold. On the other hand, Ek(∆h f )∞ ≤‖∆h f‖∞ ≤ω(h), k∈N, and as Corollary,

An(h)≤ωr(h)
(

[log2 n]−1

∑
k=0

2kan,2k+1+nan,n

)

≤C4ωr(h)(1+nan,n), (3.8)

since 2kan,2k+1 ≤ C5∑
2k+2−1
i=2k+1 ai by Lemma 2.6 and ∑

n
k=1 ank = 1 by (1.3). Writing An(h) as

An(h)=An(h)α An(h)1−α and applying (3.8) to the first factor and (3.7) to the second one,
we obtain the required estimate for sup0<h<1‖∆hRn( f ,r)‖∞/µ(h). For ‖Rn( f ,r)‖∞ similar
result follows from Theorem 3.1 and second inequality (3.8). The theorem is proved.

Theorem 3.7. Let a matrix A satisfies conditions (1.3) and (1.6), f ∈ Lp[0,1), 1 < p < ∞, or
f ∈C∗[0,1) (for p=∞), p≥ r≥1. If f ∈Hω

p , then

‖Rn( f ,r)‖∞,µ ≤C
( n

∑
k=0

an,kωr(k−1)
)(1−α)/r

.

The proof of Theorem 3.7 is similar to the one of Theorem 3.6, and uses Theorems 3.3
and 3.4 instead of Theorem 3.1.

Remark 3.2. The conterparts of Theorems 3.1 and 3.7, proved in [16], contain the term
ln2nan,n instead of nan,n in the present paper (by authors opinion, it is more correctly to
write 1+ln+nan,n). Such estimates may have a better order of decreasing (for example, if
an,n=1, an,k=0, 1≤k<n). It will be interesting to refine Theorems 3.1 and 3.7 in a similar
manner and to study ‖Rn( f ,r)‖p in the case of p=1.
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Vilenkin series in Hölder and Lp norm, East J. Approx., 15(2) (2009), 143–158.

[10] L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar.,
104 (2004), 105–113.

[11] L. Leindler, On summability of Fourier series, Acta Sci. Math. (Szeged), 29(1-2) (1968), 147–
162.

[12] L. Leindler, A. Meir and V. Totik, On approximation of continuous functions in Lipschitz
norms, Acta Math. Hungar., 45(3-4) (1985), 441–443.
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