DOI: 10.4208/ata.2015.v31.n1.1

The Strong Approximation of Functions by Fourier-Vilenkin Series in Uniform and Hölder Metrics

T. V. Iofina and S. S. Volosivets*

Saratov State University, Faculty of Mathematics and Mechanics, Astrakhanskaya str., 83, 410012, Saratov, Russia

Received 15 May 2012; Accepted (in revised version) 15 January 2015

Abstract. We will study the strong approximation by Fourier-Vilenkin series using matrices with some general monotone condition. The strong Vallee-Poussin, which means of Fourier-Vilenkin series are also investigated.

Key Words: Vilenkin systems, strong approximation, generalized monotonicity.

AMS Subject Classifications: 40F05, 42C10, 43A55, 43A75

1 Introduction

Let $\mathbf{P} = \{p_n\}_{n=1}^{\infty}$ be a sequence of natural numbers such that $2 \le p_i \le N$, $i \in \mathbb{N} = \{1, 2, \dots\}$. By definition $\mathbb{Z}(p_j) = \{0, 1, \dots, p_j - 1\}$, $m_0 = 1$, $m_n = p_1 p_2 \cdots p_n$ for $n \in \mathbb{N}$. Then every $x \in [0, 1)$ has an expansion

$$x = \sum_{n=1}^{\infty} \frac{x_n}{m_n}, \quad x_n \in \mathbb{Z}(p_n), \quad n \in \mathbb{N}.$$
(1.1)

For $x = k/m_l$, $0 < k < m_l$, $k, l \in \mathbb{N}$, we take the expansion with a finite number of $x_n \neq 0$. Let $G(\mathbf{P})$ be the Abel group of sequences $\mathbf{x} = (x_1, x_2, \cdots)$, $x_n \in \mathbb{Z}(p_n)$, with addition $\mathbf{x} \oplus \mathbf{y} = \mathbf{z} = (z_1, z_2, \cdots)$, where $z_n \in \mathbb{Z}(p_n)$ and $z_n = x_n + y_n \pmod{p_n}$, $n \in \mathbb{N}$. We define maps $g : [0,1) \to G(\mathbf{P})$ and $\lambda : G(\mathbf{P}) \to [0,1)$ by formulas $g(x) = (x_1, x_2, \cdots)$, where x is in the form (1.1) and $\lambda(\mathbf{x}) = \sum_{i=1}^{\infty} x_i/m_i$, where $\mathbf{x} \in G(\mathbf{P})$. Then for $x, y \in [0,1)$, we can introduce $x \oplus y := \lambda(g(x) \oplus g(y))$, if $\mathbf{z} = g(x) \oplus g(y)$ does not satisfy equality $z_i = p_i - 1$ for all $i \ge i_0$. In a similar way, we introduce $x \oplus y$ and for all $x, y \in [0,1)$ generalized distance

^{*}Corresponding author. *Email addresses:* IofinaT@mail.ru (T. V. Iofina), VolosivetsSS@mail.ru (S. S. Volosivets)

 $\rho(x,y) = \lambda(g(x) \ominus g(y))$. Every $k \in \mathbb{Z}_+ = \{0,1,2,\cdots\}$ can be expressed uniquely in the form of

$$k = \sum_{n=1}^{\infty} k_n m_{n-1}, \quad k_n \in \mathbb{Z}_n, \quad n \in \mathbb{N}.$$
(1.2)

For a given $x \in [0,1)$ with expansion (1.1) and $k \in \mathbb{Z}_+$ with expansion (1.2), we set $\chi_k(x) = \exp(2\pi i \sum_{j=1}^{\infty} x_j k_j / p_j)$. The system $\{\chi_k\}_{k=0}^{\infty}$ is called a multiplicative or Vilenkin system. It is orthonormal and complete in L[0,1) and we have

$$\chi_k(x\oplus y) = \chi_k(x)\chi_k(y), \quad \chi_k(x\ominus y) = \chi_k(x)\overline{\chi_k(y)},$$

for a.e. *y*, whenever $x \in [0,1)$ is fixed (see [8, Section 1.5]).

The Fourier-Vilenkin coefficients and partial Fourier-Vilenkin sums for $f \in L^1[0,1)$ are defined by

$$\hat{f}(k) = \int_0^1 f(x)\overline{\chi_k(x)}dx, \quad k \in \mathbb{Z}_+, \quad S_n(f)(x) = \sum_{k=0}^{n-1} \hat{f}(k)\chi_k(x), \quad n \in \mathbb{N}.$$

If $f,g \in L^1[0,1)$, then $f * g(x) = \int_0^1 f(x \ominus t)g(t)dt = \int_0^1 f(t)g(x \ominus t)dt$. For Dirichlet kernel $D_n(t) = \sum_{k=0}^{n-1} \chi_k(t), n \in \mathbb{N}$, we have an equality $S_n(f)(x) = \int_0^1 f(x \ominus t) D_n(t) dt$. The space $L^p[0,1), 1 \le p < \infty$ consists of all measurable functions f on [0,1) with finite norm $||f||_p = 1$ $(\int_0^1 |f(t)|^p dt)^{1/p}$. If $\omega^*(f,\delta)_\infty := \sup\{|f(x) - f(y)| : x, y \in [0,1), \rho(x,y) < \delta\}, \delta \in [0,1]$, then $C^*[0,1)$ contains all functions f with property $\lim_{h\to 0} \omega^*(f,h)_\infty = 0$ and finite norm $||f||_\infty = 0$. $\sup_{x \in [0,1)} |f(x)|.$

Let us introduce a modulus of continuity $\omega^*(f,\delta)_p = \sup_{0 \le h \le \delta} \|f(x \ominus h) - f(x)\|_p$ in $L^{p}[0,1), 1 \le p < \infty$. If $\mathcal{P}_{n} = \{f \in L^{1}[0,1): \hat{f}(k) = 0, k \ge n\}$, then $E_{n}(f)_{p} = \inf\{\|f - t_{n}\|_{p}, t_{n} \in \mathcal{P}_{n}\}$, $1 \le p \le \infty$. Let $\omega(\delta)$ be a function of modulus of continuity type ($\omega(\delta) \in \Omega$), i.e., $\omega(\delta)$ is continuous and increasing on [0,1) and $\omega(0) = 0$. Then the space $H_{\nu}^{\omega}[0,1)$ consists of $f \in L^p[0,1)$ $(1 \le p < \infty)$ or $f \in C^*[0,1)$ $(p = \infty)$ such that $\omega^*(f,\delta)_p \le C\omega(\delta)$, where C depends only on f. Denote by h_p^{ω} the subspace of H_p^{ω} consisting of all functions f such that $\lim_{h\to 0} \omega^*(f,h)_p / \omega(h) = 0$. The spaces $h_p^{\omega}[0,1)$ and $H_p^{\omega}[0,1), 1 \le p \le \infty$, with the norm $||f||_{p,\omega} = ||f||_p + \sup_{0 \le h \le 1} \omega^*(f,h)_p / \omega(h)$ are Banach ones. In $h_p^{\omega}[0,1)$ we can consider $E_n(f)_{p,\omega} = \inf\{\|f - t_n\|_{p,\omega}, t_n \in \mathcal{P}_n\}, n \in \mathbb{N}.$ Let $A = \{a_{nk}\}_{n,k=1}^{\infty}$ be a lower triangle matrix such that

$$a_{n,k} \ge 0, \quad n,k \in \mathbb{N}, \quad \sum_{k=1}^{n} a_{n,k} = 1.$$
 (1.3)

Using matrix A, we can define a summation method by formula

$$T_n(f)(x) = \sum_{k=1}^n a_{n,k} S_k(f)(x).$$

In the case of trigonometric system and monotone by *k* sequence $\{a_{nk}\}_{n,k=0}^{\infty}$, the estimates of $||f - T_n(f)||_{\infty}$ were obtained by P. Chandra [4] in terms of modulus of continuity. Later L. Leindler [10] generalized these results to the cases

$$\sum_{k=m}^{n-1} |a_{n,k} - a_{n,k+1}| \le Ca_{n,m}, \quad 1 \le m \le n-1, \quad n \in \mathbb{N},$$
(1.4)

and

$$\sum_{k=1}^{m-1} |a_{n,k} - a_{n,k+1}| \le Ca_{n,m}, \quad 1 \le m \le n, \quad n \in \mathbb{N}.$$
(1.5)

Here *C* doesn't depend on *m*, *n*. For Vilenkin system $\{\chi_k\}_{k=0}^{\infty}$ the estimates of $||f - T_n(f)||_p$, $1 \le p \le \infty$, and $||f - T_n(f)||_{p,v}$ for $f \in H_p^{\omega}$, where $v(t) = t^{\beta}$, $\omega(t) = t^{\alpha}$, $\beta < \alpha$, are obtained in [9]. Further we shall consider

$$R_n(f,r)(x) = \left(\sum_{k=1}^n a_{n,k} |S_k(f)(x) - f(x)|^r\right)^{1/r}.$$

The estimates of $||R_n(f,r)||_{\infty}$ for monotone by *k* sequence $\{a_{nk}\}_{n,k=0}^{\infty}$ with additional restrictions on their oscillations were proved by T. Xie and X. Sun in [19]. For matrices satisfying (1.4) and (1.5), similar results are established by B. Szal [16]. In [17], some estimates close to ones of P. Chandra [3] and L. Leindler [8] are obtained.

In the present paper, we study the rate of $||R_n(f,r)||_p$, 1 , where a matrix*A*satisfies one of the following conditions:

$$\sum_{k=m}^{2m-1} |a_{n,k} - a_{n,k+1}| \le K a_{n,m}, \quad 1 \le m \le \frac{(n-1)}{2}, \tag{1.6}$$

or

$$\sum_{k=[m/2]}^{m-1} |a_{n,k} - a_{n,k+1}| \le K a_{n,m}, \quad 2 \le m \le n.$$
(1.7)

In both cases *K* does not depend on *n*,*m*. The class *GM* of real non-negative sequences $\{a_i\}_{i=0}^{\infty}$, satisfying inequality $\sum_{k=m}^{2m-1} |a_k - a_{k+1}| \le Ca_m$, $m \in \mathbb{N}$, was introduced by S. Tikhonov [18]. In particular, in [18] it is established that *GM* contains the class of quasi monotone sequences *QM* (with property $a_n n^{-\tau} \downarrow 0$ for some $\tau \ge 0$ and $n \in \mathbb{N}$). Further, we assume that $\omega(t) \in \Omega$ satisfies Δ_2 -condition, i.e., $\omega(t) \le C\omega(t/2)$, $t \in [0,1)$.

Some results are devoted to the strong Fejer and de la Valle-Poussin means (Lemmas 2.7, 2.8, Theorem 3.5, Corollaries 3.1, 3.2).

2 Auxiliary propositions

Lemma 2.1. For $f \in L^p[0,1)$, $1 , we have <math>||S_n(f)||_p \le C||f||_p$, $n \in \mathbb{N}$, where C does not depend on f and n. As a corollary, we obtain inequality

$$||S_n(f) - f||_p \le (C+1)E_n(f)_p, \quad n \in \mathbb{N}.$$

For arbitrary sequence $\{p_n\}_{n=1}^{\infty}$, Lemma 2.1 is established by W.-S. Young [20], F. Schipp [14] and P. Simon [15].

Let $\mathbf{g} = (g_1, g_2, \dots, g_j, \dots)$, where g_j are measurable on [0,1) functions. Let us define

$$\|\mathbf{g}\|_{L^{p}(l^{r})} = \left\| \left(\sum_{j=1}^{\infty} |g_{j}|^{r} \right)^{1/r} \right\|_{p'}, \quad \|\mathbf{g}\|_{l^{r}(L^{p})} = \left(\sum_{j=1}^{\infty} \|g_{j}\|_{p}^{r} \right)^{1/r}.$$

Lemma 2.2. If $1 \le r \le p < \infty$, then $\|\mathbf{g}\|_{L^p(l^r)} \le \|\mathbf{g}\|_{l^r(L^p)}$.

The proof of Lemma 2.2 is similar to the case r = 2, studied by S. Fridli [5].

Lemma 2.3. Let $\{a_n\}_{n=1}^{\infty} \in \mathbb{C}$. Then for $q \in (1,\infty)$ a Sidon-type inequality

$$\left\|\sum_{k=1}^{n} a_k D_k\right\|_1 \le C(q) n^{1-1/q} \left(\sum_{k=1}^{n} |a_k|^q\right)^{1/q}$$
(2.1)

holds. For $q = \infty$, we also have

$$\left\|\sum_{k=1}^n a_k D_k\right\|_1 \leq Cn \sup_{1\leq k\leq n} |a_k|.$$

In an implicit form, inequality (2.1) is proved in [3] for bounded sequences $\{p_n\}_{n=1}^{\infty}$. M. Avdispahic and M. Pepic [2] obtained its analog in a more general case.

The following Lemma is due to A. V. Efimov (see [8, Section 10.5]).

Lemma 2.4. Let $f \in L^p[0,1)$, $1 \le p < \infty$, or $f \in C^*[0,1)$. Then

$$2^{-1}\omega^*(f,1/m_n)_p \le E_{m_n}(f)_p \le ||f-S_{m_n}(f)||_p \le \omega^*(f,1/m_n)_p, \quad n \in \mathbb{N}.$$

Lemma 2.5. If $\omega(t) \in \Omega$ satisfies the Δ_2 -condition, then from $f \in H_p^{\omega}$ it follows that $E_n(f)_p \leq C\omega(1/n), n \in \mathbb{N}$.

Proof. Let $||f||_{p,\omega} = C_1$, $\omega(t) \le C_2 \omega(t/2)$, $t \in [0,1)$, and $n \in [m_k, m_{k+1})$, $k \in \mathbb{Z}_+$. Then by Lemma 2.4

$$E_n(f)_p \le E_{m_k}(f)_p \le \omega^*(f, 1/m_k)_p \le C_1 \omega(1/m_k) \le C_1 C_2^{[\log_2 N]+1} \omega(1/m_{k+1}) \le C_3 \omega(1/n).$$

Thus, Lemma 2.5 is proved.

Lemma 2.6. (*i*) Let a matrix A satisfies conditions (1.3) and (1.6). Then $a_{n,i} \leq (K+1)a_{n,m}$ for $m \leq i \leq 2m \leq n$, where K is the constant from (1.6).

(ii) Let a matrix A satisfies conditions (1.3) and (1.7). Then $a_{n,i} \leq (K+1)a_{n,m}$ for $[m/2] \leq i \leq m$, where K is the constant from (1.7).

Proof. Part (i) may be found in [18]. In order to establish (ii), we find for $[m/2] \le i < m$ that

$$Ka_{n,m} \ge \sum_{k=\lfloor m/2 \rfloor}^{m-1} |a_{n,k} - a_{n,k+1}| \ge \Big| \sum_{k=i}^{m-1} (a_{n,k} - a_{n,k+1}) \Big| \ge a_{n,i} - a_{n,m},$$

whence $(K+1)a_{n,m} \ge a_{n,i}$. In the case i = m, the statement (ii) is evident. Thus, Lemma 2.6 is proved.

The trigonometric counterpart of Lemma 2.7 is due to L. Leindler [11].

Lemma 2.7. *Let* $f \in C^*[0,1)$, $1 \le r < \infty$. *Then*

$$\|\sigma_n(f,r)\|_{\infty} := \left\| \left(n^{-1} \sum_{k=1}^n |S_k(f)(\cdot)|^r \right)^{1/r} \right\|_{\infty} \le M \|f\|_{\infty}, \quad n \in \mathbb{N},$$
(2.2)

where *M* does not depend on $n \in \mathbb{N}$ and *f*.

Proof. Let us consider $i \in \mathbb{N}$ such that $n \in [m_{i-1}, m_i)$. Then

$$n^{-1}\sum_{k=1}^{n}|S_{k}(f)(x)|^{r} \leq Nm_{i}^{-1}\sum_{k=1}^{n}|S_{k}(f)(x)|^{r} = N||h||_{r},$$

where h(t) equals to $S_k(f)(x)$ on $I_k^i = [k/m_i, (k+1)/m_i), 1 \le k \le n$, and h(t) = 0 on other I_k^i . It is clear that $||h||_r = \sup \int_0^1 h(t)g(t)dt$, where \sup is taken over constant on I_k^i functions g(t) with the property $||g||_{r'} \le 1, 1/r+1/r'=1$. In other words, if $g(t)=a_k$ for $t \in I_k^i, 1 \le k \le n$, then

$$\left(\sum_{k=1}^{n} |a_k|^{r'}\right)^{1/r'} \le m_i^{1/r'} \quad \left(\sup_{1 \le k \le n} |a_k| \le 1 \text{ for } r = 1\right).$$
(2.3)

We have

$$\int_0^1 h(t)g(t)dt = m_i^{-1} \sum_{k=1}^n a_k S_k(f)(x) = m_i^{-1} \int_0^1 \sum_{k=1}^n a_k D_k(t) f(x \ominus t) dt$$
$$\leq m_i^{-1} \|f\|_{\infty} \|\sum_{k=1}^n a_k D_k\|_1.$$

Using (2.1) and (2.3), we find that

$$\|\sigma_n(f,r)\|_{\infty} \leq C_1 m_i^{-1} \|f\|_{\infty} m_i^{1/r} \Big(\sum_{k=1}^n |a_k|^{r'}\Big)^{1/r'} = C_1 \|f\|_{\infty}.$$

So, Lemma 2.7 is proved.

The inequality (2.5) of Lemma 2.8 in the case $m = \lfloor n/2 \rfloor$ is stated without proof by S. Fridli and F. Schipp [6] for some general systems. In [6] also one can find the idea of application of (2.1) to problems of strong approximation (see also [7]).

Lemma 2.8. Let $f \in C^*[0,1)$, $1 \le r < \infty$, $\nu n \le m < n$, where $\nu \in (0,1)$. Then

$$\|U_{n,m}(f,r)\|_{\infty} := \left\| \left((m+1)^{-1} \sum_{k=n-m}^{n} |S_k(f)(\cdot)|^r \right)^{1/r} \right\|_{\infty} \le M(\nu) \|f\|_{\infty}$$
(2.4)

and

$$\|V_{n,m}(f,r)\|_{\infty} := \left\| \left((m+1)^{-1} \sum_{k=n-m}^{n} |S_k(f)(\cdot) - f(\cdot)|^r \right)^{1/r} \right\|_{\infty} \le (M(\nu) + 1) E_{n-m}(f)_{\infty},$$
(2.5)

where M(v) does not depend on $n, m \in \mathbb{N}$ and f.

Proof. By (2.2) we have

$$(m+1)^{1/r} \|U_{n,m}(f,r)\|_{\infty} = \left\| \left(\sum_{k=n-m}^{n} |S_{k}(f)(\cdot)|^{r} \right)^{1/r} \right\|_{\infty}$$

$$\leq \left\| \left(\sum_{k=1}^{n} |S_{k}(f)(\cdot)|^{r} \right)^{1/r} \right\|_{\infty} + \left\| \left(\sum_{k=1}^{n-m-1} |S_{k}(f)(\cdot)|^{r} \right)^{1/r} \right\|_{\infty}$$

$$\leq C_{1} (n^{1/r} + (n-m-1)^{1/r}) \|f\|_{\infty},$$

whence (2.4) follows in virtue of inequality $\nu n \leq m$.

The inequality (2.5) is derived from (2.4) by substitution $f - t_{n-m}$ instead of f, where $t_{n-m} \in \mathcal{P}_{n-m}$ and $||f - t_{n-m}||_{\infty} = E_{n-m}(f)_{\infty}$. Here we use the equality $S_k(t_{n-m}) = t_{n-m}$ for $k \ge n-m$ and Minkowski inequality in l^r as follows:

$$\|V_{n,m}(f,r)\|_{\infty} \leq \left\| \left((m+1)^{-1} \sum_{k=n-m}^{n} |S_{k}(f-t_{n-m})(\cdot)|^{r} \right)^{1/r} \right\|_{\infty} + \left\| \left((m+1)^{-1} \sum_{k=n-m}^{n} |(f-t_{n-m})(\cdot)|^{r} \right)^{1/r} \right\|_{\infty} = \|U_{n,m}(f-t_{n-m},r)\|_{\infty} + E_{n-m}(f)_{\infty} \leq C_{2}E_{n-m}(f)_{\infty}.$$
(2.6)

So, Lemma 2.8 is proved.

Remark 2.1. The counterparts of (2.4) and (2.5) for $\|\cdot\|_p$ and $p \ge r$ are easily follows from Lemma 2.1 and Lemma 2.2 (see the proof of Theorem 3.2).

The following lemma is an analog of Leindler-Meir-Totik theorem [12].

Lemma 2.9. Let $\omega, \mu \in \Omega$ be such that $\lambda(t) = \omega(t) / \mu(t)$ is increasing on (0,1). Then for an operator $A_n(f) = K_n * f$, $K_n \in L^1[0,1)$, and $f \in H_n^{\omega}$ the inequality

$$\|A_n(f) - f\|_{p,\mu} \le C(\|A_n(f) - f\|_p / \mu(n^{-1}) + \lambda(n^{-1})(1 + \|A_n\|_{L^p \to L^p}))$$

holds.

The proof of Lemma 2.9 is similar to one of Theorem 8 in [9].

Lemma 2.10. Let $\omega, \mu \in \Omega$ be such that $\lambda(t) = \omega(t)/\mu(t)$ is increasing on (0,1). If ω satisfies Δ_2 -condition and $f \in H_p^{\omega}$, then $E_n(f)_{p,\mu} \leq C\lambda(1/n)$, $n \in \mathbb{N}$.

Proof. Let $K_n = \sum_{k=n}^{2n-1} D_k/n$ and $A_n(f) = K_n * f$. Then for any $t_n \in \mathcal{P}_n$, we have $K_n * t_n = t_n$. In virtue of Lemma 2.5 and by the standard procedure, we deduce $||A_n(f) - f||_p \le C_1 E_n(f)_p \le C_2 \omega(1/n)$. In addition, $||A_n(f)||_{L^p \to L^p} \le ||K_n||_1 \le C_3$ (see, for example, [9]). By Lemma 2.9, we obtain

$$||A_n(f) - f||_{p,\mu} \le C_4(\omega(n^{-1}) / \mu(n^{-1}) + \lambda(n^{-1})) = 2C_4\lambda(n^{-1}).$$

Thus, $E_{2n}(f)_{p,\mu} \leq 2C_4\lambda(n^{-1})$. Using monotonicity of best approximations and Δ_2 -condition, we get the inequality of Lemma.

Remark 2.2. The condition of increasing of $\omega(t)/\mu(t)$ introduced by J. Prestin and S. Prössdorf [13] is suitable for some applications, for example, the theory of multiplicators of Lipschitz classes (see [1]).

3 Main results

Theorem 3.1. Let a matrix A satisfies conditions (1.3) and (1.7), $f \in C^*[0,1)$, $r \ge 1$. Then

$$||R_n(f,r)||_{\infty} = O\left(\sum_{k=0}^{\lfloor \log_2 n \rfloor - 1} 2^k E_{2^k}^r(f)_{\infty} a_{n,2^{k+1}} + na_{nn} E_{\lfloor (n+1)/2 \rfloor}^r(f)_{\infty}\right)^{1/r}.$$

Proof. Let $n \in \mathbb{N}$ and $j = j(n) \in \mathbb{Z}_+$ be defined by inequality $2^j \le n < 2^{j+1}$, i.e., $j = [\log_2 n]$. Then we have

$$|R_n(f,r)(x)|^r = \sum_{k=1}^j \sum_{i=2^{k-1}}^{2^k-1} a_{n,i} |S_i(f)(x) - f(x)|^r + \sum_{i=2^j}^n a_{n,i} |S_i(f)(x) - f(x)|^r =: I_1 + I_2.$$

Using Abel's transform (summation by parts), (1.7) and Lemma 2.6, we obtain

$$I_{1} \leq \sum_{k=1}^{j} \left(\sum_{i=2^{k-1}}^{2^{k}-2} |a_{n,i}-a_{n,i+1}| \sum_{l=2^{k-1}}^{i} |S_{l}(f)(x)-f(x)|^{r} + a_{n,2^{k}-1} \sum_{i=2^{k-1}}^{2^{k}-1} |S_{i}(f)(x)-f(x)|^{r} \right)$$

$$\leq C_{1} \sum_{k=1}^{j} a_{n,2^{k}} \sum_{i=2^{k-1}}^{2^{k}-1} |S_{i}(f)(x)-f(x)|^{r}.$$

According to (2.5),

$$I_1 \le C_2 \sum_{k=1}^{j} a_{n,2^k} 2^{k-1} E_{2^{k-1}}^r(f)_{\infty} = C_2 \sum_{k=0}^{j-1} a_{n,2^{k+1}} 2^k E_{2^k}^r(f)_{\infty}.$$
(3.1)

It is clear that (1.7) implies $\sum_{i=[(n+1)/2]}^{n-1} |a_{n,i}-a_{n,i+1}| \le C_3 a_{n,n}$. Since $[(n+1)/2] \le (n+1)/2 \le 2^j$, using of Abel's transform and (2.5) gives

$$I_{2} \leq \sum_{k=[(n+1)/2]}^{n-1} |a_{n,k} - a_{n,k+1}| \sum_{i=[(n+1)/2]}^{k} |S_{i}(f)(x) - f(x)|^{r} + a_{n,n} \sum_{i=[(n+1)/2]}^{n} |S_{i}(f)(x) - f(x)|^{r} \\ \leq C_{5} n a_{n,n} E_{[(n+1)/2]}^{r}(f)_{\infty}.$$
(3.2)

From (3.1) and (3.2), the statement of theorem follows.

Theorem 3.2. *Let a matrix A satisfies conditions* (1.3) *and* (1.7), $f \in L^p[0,1)$, $1 , <math>p \ge r \ge 1$. *Then*

$$\|R_n(f,r)\|_p = \mathcal{O}\left(\sum_{k=1}^n a_{n,k} E_k^r(f)_p\right)^{1/r}.$$
(3.3)

Proof. Applying Lemma 2.2, we have

$$\|R_n(f,r)\|_p = \left\| \left(\sum_{k=1}^n a_{n,k} |S_k(f)(\cdot) - f(\cdot)|^r \right)^{1/r} \right\|_p \le \left(\sum_{k=1}^n a_{n,k} \|S_k(f)(\cdot) - f(\cdot)\|_p^r \right)^{1/r}.$$

Therefore by Lemma 2.1, $||R_n(f,r)||_p^r \le C \sum_{k=1}^n a_{n,k} E_k^r(f)_p$, whence the inequality of theorem follows.

Theorem 3.3. Let a matrix A satisfies conditions (1.3) and (1.6), $f \in C^*[0,1)$, $r \ge 1$. Then

$$||R_n(f,r)||_{\infty} = \mathcal{O}\left(\sum_{k=1}^n a_{n,k} E_k^r(f)_{\infty}\right)^{1/r}.$$

Proof. We shall use again j = j(n) with property $2^j \le n < 2^{j+1}$, i.e., $j = \lfloor \log_2 n \rfloor$. Applying Abel's transform, we obtain

$$(R_{n}(f,r)(x))^{r} \leq \sum_{k=1}^{j} \left(\sum_{i=2^{k-1}}^{2^{k}-2} |a_{n,i}-a_{n,i+1}| \sum_{l=2^{k-1}}^{i} |S_{l}(f)(x)-f(x)|^{r} + a_{n,2^{k}-1} \sum_{i=2^{k-1}}^{2^{k}-1} |S_{i}(f)(x)-f(x)|^{r} \right) + \sum_{k=2^{j}}^{n-1} |a_{n,k}-a_{n,k+1}| \sum_{l=2^{j}}^{k} |S_{l}(f)(x)-f(x)|^{r} + a_{n,n} \sum_{k=2^{j}}^{n} |S_{k}(f)(x)-f(x)|^{r}.$$

By (1.6), Lemma 2.6 and (2.5), we have

$$(R_{n}(f,r)(x))^{r} \leq C_{1} \left(\sum_{k=1}^{j} \left(2^{k-1} a_{n,2^{k-1}} E_{2^{k-1}}^{r}(f)_{\infty} + 2^{k-1} a_{n,2^{k-1}} E_{2^{k-1}}^{r}(f)_{\infty} \right) \right)$$

+ $C_{2} a_{n,2^{j}} 2^{j} E_{2^{j}}^{r}(f)_{\infty} \leq C_{3} \sum_{k=0}^{j} 2^{k} a_{n,2^{k}} E_{2^{k}}^{r}(f)_{\infty}.$

Since

$$2^{k-1}a_{n,2^k} \le C_5 \sum_{i=2^{k-1}}^{2^k-1} a_{n,i}$$

by Lemma 2.6, we find that

$$(R_n(f,r)(x))^r \le C_6 \Big(a_{n,1} E_1^r(f)_{\infty} + \sum_{k=1}^j \sum_{i=2^{k-1}}^{2^k-1} a_{ni} E_i^r(f)_{\infty} \Big),$$

whence the inequality of theorem follows.

Similarly to Theorem 3.2, one can prove

Theorem 3.4. *If a matrix A satisfies conditions* (1.3) *and* (1.6), $f \in L^p[0,1)$, $1 , <math>p \ge r \ge 1$, *then* (3.3) *holds.*

Theorems 3.3 and 3.4 imply

Corollary 3.1. Let $f \in L^p[0,1)$, $1 , <math>1 \le r \le p$, or $f \in C^*[0,1)$ $(p = \infty)$, $1 \le r < \infty$. Then

$$\left\| \left(n^{-1} \sum_{k=1}^{n} |S_k(f) - f|^r \right)^{1/r} \right\|_p = \mathcal{O} \left(\sum_{k=1}^{n} E_k^r(f)_p / n \right)^{1/r}, \quad n \in \mathbb{N}$$

In particular, for r = 1 and $f \in Lip^*(\alpha, p)$ (i.e., $\omega^*(f, h)_p = O(h^{\alpha})$) we obtain

$$\left\| n^{-1} \sum_{k=1}^{n} |S_k(f) - f| \right\|_p = \begin{cases} 0(n^{-\alpha}), & 0 < \alpha < 1, \\ 0(\ln(n+1)/(n+1)), & \alpha = 1, \\ 0(n^{-1}), & \alpha > 1. \end{cases}$$

Remark 3.1. It is well known that for $f \in h_p^{\omega}$ and $\sigma_n(f) = \sum_{k=1}^n S_k(f)/n$, the equality $\lim_{n\to\infty} ||f - \sigma_n(f)||_{p,\omega} = 0$ holds (see [9] for $\omega(h) = h^{\alpha}$). In particular, for $f \in h_p^{\omega}$ we have $\lim_{n\to\infty} E_n(f)_{p,\omega} = 0$.

Theorem 3.5 gives an analog of the estimate (2.5) for Hölder metric.

Theorem 3.5. Let $f \in h_p^{\omega}$, $1 , <math>p \ge r \ge 1$ for $p < \infty$ and $1 \le r < \infty$ for $p = \infty$. If $vn \le m < n$, $v \in (0,1)$, then we have

$$\|V_{n,m}(f,r)\|_{p,\omega} \leq C(\nu)E_{n-m}(f)_{p,\omega}.$$

Proof. By Minkowski inequality and commutativity of translation and convolution, we have

$$\|U_{n,m}(f,r)(\cdot \ominus h) - U_{n,m}(f,r)(\cdot)\|_{p} \le \|U_{n,m}(f(\cdot \ominus h) - f(\cdot),r)\|_{p}.$$
(3.4)

Hence, in virtue of (2.4) and Remark 2.1, it follows that

$$\begin{aligned} \|U_{n,m}(f,r)\|_{p,\omega} &\leq \|U_{n,m}(f,r)\|_{p} + \sup_{0 < h < 1} \frac{\|U_{n,m}(f(\cdot \ominus h) - f(\cdot),r)\|_{p}}{\omega(h)} \\ &\leq C_{1} \Big(\|f\|_{p} + \sup_{0 < h < 1} \frac{\|(f(\cdot \ominus h) - f(\cdot)\|_{p}}{\omega(h)} \Big) = C_{1} \|f\|_{p,\omega}, \end{aligned}$$

where in the case $p = \infty$, the constant C_1 is equal to $M(\nu)$ from Lemma 2.8. Let $t_{n-m} \in \mathcal{P}_{n-m}$ be such that $||f - t_{n-m}||_{p,\omega} = E_{n-m}(f)_{p,\omega}$. Using equality $S_k(t_{n-m}) = t_{n-m}$ for $k \ge n-m$, we obtain similarly to (2.6)

$$\|V_{n,m}(f,r)\|_{p} \leq \|U_{n,m}(f-t_{n-m},r)\|_{p} + \|f-t_{n-m}\|_{p} \\ \leq C_{1}\|f-t_{n-m}\|_{p} + \|f-t_{n-m}\|_{p} \leq (C_{1}+1)E_{n-m}(f)_{p,\omega}.$$
(3.5)

On the other hand, by (3.4) and (3.5) (we use notation $\Delta_h f = f(\cdot \ominus h) - f(\cdot)$)

$$\sup_{\substack{0 < h < 1 \\ 0 < h < 1$$

Combining estimates (3.5) and (3.6), we finish the proof of theorem.

Corollary 3.2. Let $1 , <math>\omega, \mu \in \Omega$, where $\omega(t)$ satisfies Δ_2 -condition, while $\lambda(t) = \omega(t)/\mu(t)$ is increasing on (0,1) and $\lim_{t\to 0} \lambda(t) = 0$. If $f \in H_p^{\omega}$, $p \ge r \ge 1$, and numbers $n, m \in \mathbb{N}$ are such that $\nu n \le m \le n$, $\nu \in (0,1)$, then $\|V_{n,m}(f,r)\|_{p,\mu} \le C\lambda((n-m)^{-1}), (n-m) \in \mathbb{N}$.

Proof. In virtue of Theorem 3.5, $||V_{n,m}(f,r)||_{p,\mu} \le C_1(\nu)E_{n-m}(f)_{p,\mu}$, while by Lemma 2.10, we have $E_{n-m}(f)_{p,\mu} \le C_2\lambda(1/(n-m))$. Substituting the second inequality into first one, we prove the theorem.

Following the idea of Szal [16], we assume in two last theorems that there exists $\alpha \in (0,1)$, such that $\omega^{\alpha}(t)/\mu(t)$ is increasing on (0,1). We also require that $\omega, \mu \in \Omega$ and ω satisfies Δ_2 -condition.

Theorem 3.6. Let a matrix A satisfies conditions (1.3) and (1.7), $f \in H_{\infty}^{\omega}[0,1)$, $r \ge 1$. Then

$$\|R_n(f,r)\|_{\infty,\mu} \leq C(1+na_{n,n})^{\alpha/r} \Big(\sum_{k=0}^{\lfloor \log_2 n \rfloor - 1} 2^k a_{n,2^{k+1}} \omega^r(2^{-k}) + na_{n,n} \omega^r(n^{-1}) \Big)^{(1-\alpha)/r}.$$

Proof. In virtue of Theorem 3.1 and Minkowski inequality

$$\sup_{0 < h < 1} \|\Delta_h R_n(f,r)\|_{\infty} / \mu(h) \leq \sup_{0 < h < 1} \|R_n(\Delta_h f,r)\|_{\infty} / \mu(h)$$

$$\leq \sup_{0 < h < 1} C_1 \Big(\sum_{k=0}^{\lfloor \log_2 n \rfloor - 1} 2^k E_{2^k}^r (\Delta_h f)_{\infty} a_{n,2^{k+1}} + n a_{n,n} E_{\lfloor (n+1)/2 \rfloor}^r (\Delta_h f)_{\infty} \Big)^{1/r} / \mu(h)$$

$$= : \sup_{0 < h < 1} C_1 A_n^{1/r}(h) / \mu(h).$$

By Lemmas 2.4 and 2.5, the estimates

$$E_{2^{k}}(\Delta_{h}f)_{\infty} \leq 2E_{2^{k}}(f)_{\infty} \leq C_{2}\omega(2^{-k}), \quad E_{[(n+1)/2]}(\Delta_{h}f)_{\infty} \leq C_{3}\omega((n+1)^{-1}), \tag{3.7}$$

hold. On the other hand, $E_k(\Delta_h f)_{\infty} \leq ||\Delta_h f||_{\infty} \leq \omega(h)$, $k \in \mathbb{N}$, and as Corollary,

$$A_{n}(h) \leq \omega^{r}(h) \Big(\sum_{k=0}^{\lfloor \log_{2} n \rfloor - 1} 2^{k} a_{n,2^{k+1}} + n a_{n,n} \Big) \leq C_{4} \omega^{r}(h) (1 + n a_{n,n}),$$
(3.8)

since $2^k a_{n,2^{k+1}} \leq C_5 \sum_{i=2^{k+1}}^{2^{k+2}-1} a_i$ by Lemma 2.6 and $\sum_{k=1}^n a_{nk} = 1$ by (1.3). Writing $A_n(h)$ as $A_n(h) = A_n(h)^{\alpha} A_n(h)^{1-\alpha}$ and applying (3.8) to the first factor and (3.7) to the second one, we obtain the required estimate for $\sup_{0 < h < 1} ||\Delta_h R_n(f,r)||_{\infty} / \mu(h)$. For $||R_n(f,r)||_{\infty}$ similar result follows from Theorem 3.1 and second inequality (3.8). The theorem is proved. \Box

Theorem 3.7. *Let a matrix A satisfies conditions* (1.3) *and* (1.6), $f \in L^p[0,1)$, $1 , or <math>f \in C^*[0,1)$ (for $p = \infty$), $p \ge r \ge 1$. If $f \in H_p^{\omega}$, then

$$||R_n(f,r)||_{\infty,\mu} \le C \Big(\sum_{k=0}^n a_{n,k} \omega^r(k^{-1})\Big)^{(1-\alpha)/r}.$$

The proof of Theorem 3.7 is similar to the one of Theorem 3.6, and uses Theorems 3.3 and 3.4 instead of Theorem 3.1.

Remark 3.2. The conterparts of Theorems 3.1 and 3.7, proved in [16], contain the term $\ln 2na_{n,n}$ instead of $na_{n,n}$ in the present paper (by authors opinion, it is more correctly to write $1 + \ln^{+} na_{n,n}$). Such estimates may have a better order of decreasing (for example, if $a_{n,n}=1$, $a_{n,k}=0$, $1 \le k < n$). It will be interesting to refine Theorems 3.1 and 3.7 in a similar manner and to study $||R_n(f,r)||_p$ in the case of p=1.

References

 N. Yu. Agafonova, Λ-summability and multiplicators of Hölder classes of Fourier series with respect to character systems, Izvestiya of Saratov State Univ. Ser. Mat. Mech. Inform., 11(2) (2011), 3–8.

- [2] M. Avdispahic and M. Pepic, Summability and integrability of vilenkin series, Collect. Math., 51(3) (2000), 237–354.
- [3] W. Bloom and J. J. F. Fournier, Smoothness conditions and integrability theorems on bounded vilenkin groups, J. Austral. Math. Soc. (Ser. A), 45(1) (1988), 46–61.
- [4] P. Chandra, On the degree of approximation of class of functions by means of Fourier series, Acta Math. Hungar., 52(1-2) (1988), 199–205.
- [5] S. Fridli, On the rate of convergence of Cesaro means of Walsh-Fourier series, J. Approx. Theory, 76(1) (1994), 31–53.
- [6] S. Fridli and F. Schipp, Strong aproximation via Sidon type inequalities, J. Approx. Theory, 94(3) (1998), 263–284.
- [7] S. Fridli and F. Schipp, Strong summability and sidon type inequalities, Acta Sci. Math. (Szeged), 60(1-2) (1995), 277–289.
- [8] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Walsh Series and Transforms, Dordrecht, 1991.
- [9] T. V. Iofina and S. S. Volosivets, On the degree of approximation by means of Fourier-Vilenkin series in Hölder and *L^p* norm, East J. Approx., 15(2) (2009), 143–158.
- [10] L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar., 104 (2004), 105–113.
- [11] L. Leindler, On summability of Fourier series, Acta Sci. Math. (Szeged), 29(1-2) (1968), 147– 162.
- [12] L. Leindler, A. Meir and V. Totik, On approximation of continuous functions in Lipschitz norms, Acta Math. Hungar., 45(3-4) (1985), 441–443.
- [13] J. Prestin and S. Prössdorf, Error estimates in generalized Hölder-Zygmund norms, Zeit. Anal. Anwend., 9(4) (1990), 343–349.
- [14] F. Schipp, On *L^p*-norm convergence of series with respect to product systems, Anal. Math., 2(1) (1976), 49–64.
- [15] P. Simon, Verallgemeinerte Walsh-Fourierreihen II, Acta Math. Hungar., 27(3-4) (1976), 329– 341.
- [16] B. Szal, On the strong approximation by matrix means in the generalized Hölder metric, Rend. Circ. Mat. Palermo Ser., 56(3) (2007), 287–304.
- [17] B. Szal, On the rate of strong summability by matrix means in the generalized Hölder metric, J. Ineq. Pure Appl. Math., 9(1) (2008), N28.
- [18] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl., 326(2) (2007), 721–735.
- [19] T. Xie and X. Sun, On the problem of approximation by linear means, J. Math. Res. Exposition, 5 (1985), 93–96.
- [20] Wo-Sang Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc., 218 (1976), 311–320.