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Abstract. Let p(z) be a polynomial of degree n, which has no zeros in |z|<1, Dewan
et al. [K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial
inequalities, J. Math. Anal. Appl., 363 (2010), pp. 38–41] established
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for any |β| ≤ 1 and |z|= 1. In this paper we improve the above inequality for the
polynomial which has no zeros in |z|< k, k≥ 1, except s-fold zeros at the origin. Our
results generalize certain well known polynomial inequalities.
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1 Introduction and statement of results

Let p(z) be a polynomial of degree n, then according to a result known as Bernstein’s
inequality [3] on the derivative of a polynomial, we have

max
|z|=1

|p′(z)|≤nmax
|z|=1

|p(z)|. (1.1)

The result is best possible and equality holds for the polynomials having all its zeros at
the origin.

If the polynomial p(z) has all its zeros in |z|≤1, then it was proved by Turan [10] that

max
|z|=1

|p′(z)|≥
n

2
max
|z|=1

|p(z)|. (1.2)

∗Corresponding author. Email addresses: azireh@shahroodut.ac.ir, azireh@gmail.com (A. Zireh),
mdbidkham@gmail.om (M. Bidkham)

http://www.global-sci.org/ata/ 27 c©2016 Global-Science Press



28 A. Zireh and M. Bidkham / Anal. Theory Appl., 32 (2016), pp. 27-37

With equality for those polynomials which have all their zeros at the origin.
For the class of polynomials having no zeros in |z|< 1, the inequality (1.1) can be

replaced by

max
|z|=1

|p′(z)|≤
n

2
max
|z|=1

|p(z)|. (1.3)

The inequality (1.3) was conjectured by Erdös and later proved by Lax [6].
As an extension of the inequality (1.2) Malik [7] proved that if p(z) having all its zeros

in |z|≤ k, k≤1, then

max
|z|=1

|p′(z)|≥
n

1+k
max
|z|=1

|p(z)|. (1.4)

Govil [5] improved the inequality (1.4) and proved that if p(z) is a polynomial of degree
n having all its zeros in |z|≤ k, k≤1, then

max
|z|=1

|p′(z)|≥
n

1+k

{

max
|z|=1

|p(z)|+
1

kn−1
min
|z|=k

|p(z)|
}

. (1.5)

As a refinement of the inequality (1.4) Aziz and Zargar [2] proved that if p(z) is a poly-
nomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, with s-fold zeros at the origin,
then
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|z|=1
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1+k
max
|z|=1

|p(z)|+
n−s

(1+k)ks
min
|z|=k

|p(z)|. (1.6)

Recently Dewan and Hans [4] obtained a refinement of inequalities (1.2) and (1.3). They
proved that if p(z) is a polynomial of degree n and has all its zeros in |z| ≤ 1, then for
every real or complex number β with |β|≤1,
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and in the case that p(z) having no zeros in |z|<1, they proved that
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In this paper, we obtain an improvement and generalizations of the above inequalities.
For this purpose we first present the following result which is a generalization and re-
finement of inequalities (1.5), (1.6) and (1.7).

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in |z|≤k, k≤1, with s-fold
zeros at the origin where 0≤ s≤n, then for every β∈C with |β|≤1 and |z|=1,
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min
|z|=k

|p(z)|. (1.9)

With equality for p(z)= azn where a∈C.
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Remark 1.1. Clearly for k=1 and s=0 the inequality (1.9) reduces to the inequality (1.7).

According to Lemma 2.1, if p(z) is a polynomial of degree n, having all its zeros in
|z|≤ k, k≤1, with s-fold zeros at the origin, then for |z|=1,

|zp′(z)|≥
n+sk

1+k
|p(z)|,

then for every complex number β with |β| ≤ 1, by choosing suitable argument of β we
have

∣

∣

∣
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n+sk
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p(z)

∣

∣

∣
= |zp′(z)|−|β|

n+sk

1+k
|p(z)|. (1.10)

Combining (1.9) and (1.10) we have
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equivalently

|zp′(z)|≥ |β|
n+sk

1+k
|p(z)|+k−n

(

n−|β|
n+sk

1+k

)

min
|z|=k

|p(z)|.

Making |β|→1, then

|p′(z)|≥
n+sk

1+k
|p(z)|+

n−s

(1+k)kn−1
min
|z|=k

|p(z)|.

Since for 0≤s<n and k≤1, we have 1
ks ≤

1
kn−1 and for s=n we have n−s=0, therefore the

following result is a refinement and extention of the inequality (1.6).

Corollary 1.1. If p(z) is a polynomial of degree n having all its zeros in |z|≤k, k≤1, with
s-fold zeros at the origin, then we have

min
|z|=1

|p′(z)|≥
n+sk

1+k
min
|z|=1

|p(z)|+
n−s

(1+k)kn−1
min
|z|=k

|p(z)|, (1.11a)

max
|z|=1

|p′(z)|≥
n+sk

1+k
max
|z|=1

|p(z)|+
n−s

(1+k)kn−1
min
|z|=k

|p(z)|. (1.11b)

If we take s=0 in Corollary 1.1, then inequality (1.11b) reduce to inequality (1.5). Now
if we take β=−1 in Theorem 1.1, we have the following result
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Corollary 1.2. If p(z) is a polynomial of degree n having all its zeros in |z|≤k, k≤1, with
s-fold zeros at the origin, then
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If p(z) is a polynomial of degree n, having no zeros in |z|<k, k≥1, except s-fold zeros
at the origin, i.e., p(z)=zsh(z), where h(z) is a polynomial of degree (n−s) that does not
vanish in |z|< k, k≥1, then the polynomial

q(z)= zn+s p
(1

z

)

= znh
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= zs
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z

))

is of degree n, having all its zeros in |z|≤1/k, with s-fold zeros at the origin. Also

min
|z|=1/k

|q(z)|=
1

kn+s
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|z|=k

|p(z)|.

By applying Theorem 1.1 for the polynomial q(z), we get the following result

Corollary 1.3. If p(z) is a polynomial of degree n, having no zeros in |z|< k, k≥1, except
s-fold zeros at the origin, then for any β∈C with |β|≤1 and |z|=1,
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where

q(z)= zn+s p
(1

z

)

.

Finally by using Corollary 1.3, we prove the following interesting result which is a
generalization of the inequality (1.8).

Theorem 1.2. If p(z) is a polynomial of degree n, having no zeros in |z|< k, k≥1, except s-fold
zeros at the origin, then for every complex number β with |β|≤1,
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If we take k=1 in (1.14) we have
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Corollary 1.4. If p(z) is a polynomial of degree n, having no zeros in |z|<1, except s-fold
zeros at the origin, then for every complex number β with |β|≤1,
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For s=0 the inequality (1.15) reduces to the inequality (1.8).

2 Lemmas

For the proof of these theorems, we need the following lemmas. The first lemma is due
to Aziz and Shah [1].

Lemma 2.1. If p(z) is a polynomial of degree n, having all its zeros in the closed disk |z| ≤ k,
k≤1, with s-fold zeros at the origin, then for |z|=1,

|zp′(z)|≥
n+sk

1+k
|p(z)|. (2.1)

Lemma 2.2. Let F(z) be a polynomial of degree n having all its zeros in |z|≤k, k≤1 and f (z) be
a polynomial of degree not exceeding that of F(z). If | f (z)|≤ |F(z)| for |z|= k, k≤1, and F(z),
f (z) have common s- fold zeros at the origin, then for every real or complex number β with |β|≤1
and |z|=1,
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∣
. (2.2)

Proof. Let α be a complex number with |α| < 1, then |α f (z)| < |F(z)| for |z| = k. It is
concluded from Rouche’s Theorem, the polynomial α f (z)−F(z) has as many zeros in
|z|< k as F(z) and so has all of its zeros in |z|< k, with s-fold zeros at the origin. On
applying Lemma 2.1, we have for |z|=1,

|αz f ′(z)−zF′(z)|≥
n+sk

1+k
|α f (z)−F(z)|.

Therefore for any real or complex number β with |β|<1, the polynomial

T(z)=αz f ′(z)−zF′(z)+β
n+sk

1+k
(α f (z)−F(z)) 6=0,

for |z|=1.
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Equivalently

T(z)=α
{

z f ′(z)+β
n+sk

1+k
f (z)

}

−
{

zF′(z)+β
n+sk

1+k
F(z)

}

6=0, (2.3)

for |z|=1. This concludes that
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∣
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for |z|=1. If the inequality (2.4) is not true, then there is a point z= z0 with |z0|=1 such
that

∣
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∣
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f (z0)

∣

∣

∣
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∣

∣

∣
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F(z0)

∣

∣

∣
.

Now take

α=−
z0F′(z0)+β n+sk

1+k F(z0)

z0 f ′(z0)+β n+sk
1+k f (z0)

,

then |α|< 1 and with this choice of α, we have from (2.3), T(z0)= 0 for |z0|= 1. But this
contradicts the fact that T(z) 6=0 for |z|=1. For β with |β|=1, the inequality (2.4) follows
by continuity. This is equivalent to the desired result.

If we take F(z)=M( z
k )

n in Lemma 2.2, where M=max|z|=k |p(z)|, then we have:

Lemma 2.3. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then for any β∈C

with |β|≤1, k≤1 and |z|=1,
∣

∣

∣
zp′(z)+β

n+sk

1+k
p(z)

∣

∣

∣
≤ k−n

∣

∣

∣
n+β

n+sk

1+k

∣

∣

∣
max
|z|=k

|p(z)|. (2.5)

Lemma 2.4. If p(z) is a polynomial of degree n with s-fold zeros at the origin and k≥1, then for
any β∈C with |β|≤1 and |z|=1,

∣

∣

∣
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∣

∣
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∣

∣
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|p(z)|, (2.6)

where

q(z)= zn+s p
(1

z

)

.

Proof. Let p(z)= zsh(z), where h(z) is a polynomial of degree n−s. Then the polynomial

q(z)= zn+s p
(1

z

)

= znh
(1

z

)

= zs
(

zn−sh
(1

z

))

is of degree n with s-fold zeros at the origin. Also

max
|z|= 1

k

|q(z)|=
1

kn+s
max
|z|=k

|p(z)|.

By applying Lemma 2.3 for the polynomial q(z), we get the result.
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Lemma 2.5. If p(z) is a polynomial of degree n with s-fold zeros at the origin and k≥1, then for
any β∈C with |β|≤1 and |z|=1,

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣
+kn+s

∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣

≤
{

ks
∣

∣

∣
s+β

nk+s

1+k

∣

∣

∣
+kn

∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣

}

max
|z|=k

|p(z)|, (2.7)

where

q(z)= zn+s p
(1

z

)

.

Proof. Let M=max|z|=k |p(z)|, then for every complex number α with |α|> 1, it follows
by Rouche’s Theorem that the polynomial G(z)= p(z)−αM( z

k )
s has no zeros in |z|< k,

except s-fold zeros at the origin. Correspondingly the polynomial

H(z)= zn+sG
(1

z

)

=q(z)−αk−s Mzn,

has all its zeros in |z|≤1/k with s-fold zeros at the origin and

∣

∣

∣

1

kn+s
G(k2z)

∣

∣

∣
= |H(z)|

for |z|=1/k. Therefore, by applying Lemma 2.2 to polynomials G(k2z) and kn+sH(z), we
have for |β|≤1, 1/k≤1 and |z|=1,

∣

∣

∣
zk2G′(k2z)+β

nk+s

1+k
G(k2z)

∣

∣

∣
≤ kn+s

∣

∣

∣
zH′(z)+β

nk+s

1+k
H(z)

∣

∣

∣
,

or
∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)−α

(

s+β
nk+s

1+k

)

ks Mzs
∣

∣

∣

≤
∣

∣

∣
kn+s

(

zq′(z)+β
nk+s

1+k
q(z)

)

−αkn
(

n+β
nk+s

1+k

)

Mzn
∣

∣

∣
. (2.8)

Now by applying the inequality (2.6) and choosing a suitable argument of α, we have

∣

∣

∣
kn+s

(

zq′(z)+β
nk+s

1+k
q(z)

)

−αkn
(

n+β
nk+s

1+k

)

Mzn
∣

∣

∣

=|α|kn
∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣
M−kn+s

∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
. (2.9)

By combining inequalities (2.8) and (2.9), we obtain

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣
−|α|

∣

∣

∣
s+β

nk+s

1+k

∣

∣

∣
ks M

≤|α|kn
∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣
M−kn+s

∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
. (2.10)
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Or

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣
+kn+s

∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣

≤|α|
{

ks
∣

∣

∣
s+β

nk+s

1+k

∣

∣

∣
+kn

∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣

}

M. (2.11)

Making |α|→1 we have the result.

The following lemma is due to Zireh [11].

Lemma 2.6. If

p(z)=
n

∑
ν=0

aνzν

is a polynomial of degree n, having all its zeros in |z|< k, (k> 0), then m< kn|an|, where m=
min|z|=k |p(z)|.

3 Proofs of the theorems

Proof of Theorem 1.1. If p(z) has a zero on |z|=k, then min|z|=k |p(z)|=0 and the inequality
(1.9) is true. Therefore we suppose that p(z) has all its zeros in |z|< k with s-fold zeros
at the origin. We consider p(z)= zsh(z), where h(z) is a polynomial of degree (n−s) has
all its zeros in |z|< k and h(0) 6= 0. Let m=min|z|=k |p(z)| and m1 =min|z|=k |h(z)| then
m= ksm1>0 and

|p(z)|≥m
∣

∣

∣

( z

k

)∣

∣

∣

for |z|= k, hence

|h(z)|≥m1

∣

∣

∣

(z

k

)n−s∣
∣

∣

for |z|= k. Therefore, if |λ|<1 then it follows by Rouche’s Theorem that the polynomial

G(z)= p(z)−λm
( z

k

)n
= zs

(

h(z)−λm1

( z

k

)n−s)

has all its zeros in |z|< k with s-fold zeros at the origin. Also by using Lemma 2.6 the
polynomial

G(z)= p(z)−λm
( z

k

)n

is of degree n, for |λ|< 1. On applying Lemma 2.1 to the polynomial G(z) of degree n,
we get

|zG′(z)|≥
n+sk

1+k
|G(z)|,
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i.e.,

∣

∣

∣
zp′(z)−λmn

( z

k

)n∣
∣

∣
≥

n+sk

1+k

∣

∣

∣
p(z)−λm

( z

k

)n∣
∣

∣
,

where |z|=1.
Therefore for β with |β|<1, it can be easily verified that the polynomial

T(z)=
(

zp′(z)−λmn
( z

k

)n)

+β
n+sk

1+k

{

p(z)−λm
( z

k

)n}

,

i.e.,

T(z)=
(

zp′(z)+β
n+sk

1+k
p(z)

)

−λm
( z

k

)n(

n+β
n+sk

1+k

)

will have no zeros on |z|=1. As |λ|<1 we have for β with |β|<1 and |z|=1,

∣

∣

∣
zp′(z)+β

n+sk

1+k
p(z)

∣

∣

∣
>m

∣

∣

∣
λ
( z

k

)n∣
∣

∣

∣

∣

∣
n+β

n+sk

1+k

∣

∣

∣
,

i.e.,
∣

∣

∣
zp′(z)+β

n+sk

1+k
p(z)

∣

∣

∣
≥mk−n

∣

∣

∣
n+β

n+sk

1+k

∣

∣

∣
. (3.1)

For β with |β|=1, (3.1) follows by continuity. This completes the proof of Theorem 1.1. �

Proof of the Theorem 1.2. Let m=min|z|=k |p(z)|. By hypothesis the polynomial p(z) has
no zeros in |z|< k, except s-fold zeros at the origin. Correspondingly the polynomial

q(z)= zn+s p
(1

z

)

has all its zeros in |z|≤1/k with s-fold zeros at the origin and

1

kn+s
|p(k2z)|= |q(z)|

for |z|= 1/k. Then by applying Lemma 2.2 to the polynomials p(k2z) and kn+sq(z), we
have for |z|=1,

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣
≤ kn+s

∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
. (3.2)

If m=0, by combining inequalities (3.2) and (2.7), Theorem 1.2 follows.
Therefore we suppose that m 6= 0 then for every complex number λ with |λ|< 1, we

have

|λm|<m≤|p(z)|,
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where |z|= k. Hence by Rouche’s Theorem the polynomial

G(z)= p(z)−λm
( z

k

)s

has no zero in |z|< k except s-fold zeros at the origin. Therefore the polynomial

H(z)= zn+sG(1/z)=q(z)−λk−smzn,

will have all its zeros in |z|≤1/k with s-fold zeros at the origin. Also |G(k2z)|=kn+s|H(z)|
for |z|=1/k.

On applying Lemma 2.2 for G(k2z) and kn+sH(z), we have

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)−

(

s+β
nk+s

1+k

)

λksmzs
∣

∣

∣

≤
∣

∣

∣
kn+s

(

zq′(z)+β
nk+s

1+k
q(z)

)

−kn
(

n+β
nk+s

1+k

)

λmzn
∣

∣

∣
. (3.3)

By using the inequality (1.13), for an appropriate choice of the argument of λ, we have

∣

∣

∣
kn+s

(

zq′(z)+β
nk+s

1+k
q(z)

)

−kn
(

n+β
nk+s

1+k

)

λmzn
∣

∣

∣

=kn+s
∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
−kn

∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣
|λ|m. (3.4)

By combining (3.3) and (3.4), we get for |z|=1 and |β|≤1,

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣
−ks

∣

∣

∣
s+β

nk+s

1+k

∣

∣

∣
|λ|m

≤kn+s
∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
−kn

∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣
|λ|m.

Equivalently

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣

≤kn+s
∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
−
{

kn
∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣
−ks

∣

∣

∣
s+β

nk+s

1+k

∣

∣

∣

}

|λ|m.

As |λ|→1, we have

∣

∣

∣
zk2 p′(k2z)+β

nk+s

1+k
p(k2z)

∣

∣

∣

≤kn+s
∣

∣

∣
zq′(z)+β

nk+s

1+k
q(z)

∣

∣

∣
−
{

kn
∣

∣

∣
n+β

nk+s

1+k

∣

∣

∣
−ks

∣

∣

∣
s+β

nk+s

1+k

∣

∣

∣

}

m.

This is a conjunction with inequality (2.7), which completes the proof of Theorem 1.2. �
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