Some Inequalities for the Polynomial with *S*-Fold Zeros at the Origin

Ahmad Zireh^{1,*} and Mahmood Bidkham²

¹ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran ² Department of Mathematics, University of Semnan, Semnan, Iran

Received 8 July 2015; Accepted (in revised version) 27 October 2015

Abstract. Let p(z) be a polynomial of degree n, which has no zeros in |z| < 1, Dewan et al. [K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial inequalities, J. Math. Anal. Appl., 363 (2010), pp. 38–41] established

$$\left|zp'(z) + \frac{n\beta}{2}p(z)\right| \leq \frac{n}{2} \left\{ \left(\left|\frac{\beta}{2}\right| + \left|1 + \frac{\beta}{2}\right|\right) \max_{|z|=1} |p(z)| - \left(\left|1 + \frac{\beta}{2}\right| - \left|\frac{\beta}{2}\right|\right) \min_{|z|=1} |p(z)| \right\},$$

for any $|\beta| \le 1$ and |z| = 1. In this paper we improve the above inequality for the polynomial which has no zeros in $|z| < k, k \ge 1$, except *s*-fold zeros at the origin. Our results generalize certain well known polynomial inequalities.

Key Words: Polynomial, s-fold zeros, inequality, maximum modulus, derivative.

AMS Subject Classifications: 30A10, 30C10, 30D15

1 Introduction and statement of results

Let p(z) be a polynomial of degree *n*, then according to a result known as Bernstein's inequality [3] on the derivative of a polynomial, we have

$$\max_{|z|=1} |p'(z)| \le n \max_{|z|=1} |p(z)|.$$
(1.1)

The result is best possible and equality holds for the polynomials having all its zeros at the origin.

If the polynomial p(z) has all its zeros in $|z| \le 1$, then it was proved by Turan [10] that

$$\max_{|z|=1} |p'(z)| \ge \frac{n}{2} \max_{|z|=1} |p(z)|.$$
(1.2)

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email addresses:* azireh@shahroodut.ac.ir, azireh@gmail.com (A. Zireh), mdbidkham@gmail.om (M. Bidkham)

With equality for those polynomials which have all their zeros at the origin.

For the class of polynomials having no zeros in |z| < 1, the inequality (1.1) can be replaced by

$$\max_{|z|=1} |p'(z)| \le \frac{n}{2} \max_{|z|=1} |p(z)|.$$
(1.3)

The inequality (1.3) was conjectured by Erdös and later proved by Lax [6].

As an extension of the inequality (1.2) Malik [7] proved that if p(z) having all its zeros in $|z| \le k, k \le 1$, then

$$\max_{|z|=1} |p'(z)| \ge \frac{n}{1+k} \max_{|z|=1} |p(z)|.$$
(1.4)

Govil [5] improved the inequality (1.4) and proved that if p(z) is a polynomial of degree n having all its zeros in $|z| \le k, k \le 1$, then

$$\max_{|z|=1} |p'(z)| \ge \frac{n}{1+k} \Big\{ \max_{|z|=1} |p(z)| + \frac{1}{k^{n-1}} \min_{|z|=k} |p(z)| \Big\}.$$
(1.5)

As a refinement of the inequality (1.4) Aziz and Zargar [2] proved that if p(z) is a polynomial of degree *n* having all its zeros in $|z| \le k$, $k \le 1$, with *s*-fold zeros at the origin, then

$$\max_{|z|=1} |p'(z)| \ge \frac{n+sk}{1+k} \max_{|z|=1} |p(z)| + \frac{n-s}{(1+k)k^s} \min_{|z|=k} |p(z)|.$$
(1.6)

Recently Dewan and Hans [4] obtained a refinement of inequalities (1.2) and (1.3). They proved that if p(z) is a polynomial of degree n and has all its zeros in $|z| \le 1$, then for every real or complex number β with $|\beta| \le 1$,

$$\min_{|z|=1} \left| zp'(z) + \frac{n\beta}{2} p(z) \right| \ge n \left| 1 + \frac{\beta}{2} \right| \min_{|z|=1} |p(z)|, \tag{1.7}$$

and in the case that p(z) having no zeros in |z| < 1, they proved that

$$\max_{|z|=1} \left| zp'(z) + \frac{n\beta}{2} p(z) \right| \\
\leq \frac{n}{2} \left\{ \left(\left| 1 + \frac{\beta}{2} \right| + \left| \frac{\beta}{2} \right| \right) \max_{|z|=1} |p(z)| - \left(\left| 1 + \frac{\beta}{2} \right| - \left| \frac{\beta}{2} \right| \right) \min_{|z|=1} |p(z)| \right\}.$$
(1.8)

In this paper, we obtain an improvement and generalizations of the above inequalities. For this purpose we first present the following result which is a generalization and refinement of inequalities (1.5), (1.6) and (1.7).

Theorem 1.1. If p(z) is a polynomial of degree n having all its zeros in $|z| \le k, k \le 1$, with s-fold zeros at the origin where $0 \le s \le n$, then for every $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and |z| = 1,

$$\left| zp'(z) + \beta \frac{n+sk}{1+k} p(z) \right| \ge k^{-n} \left| n + \beta \frac{n+sk}{1+k} \right| \min_{|z|=k} |p(z)|.$$
(1.9)

With equality for $p(z) = az^n$ where $a \in \mathbb{C}$.

Remark 1.1. Clearly for k = 1 and s = 0 the inequality (1.9) reduces to the inequality (1.7).

According to Lemma 2.1, if p(z) is a polynomial of degree n, having all its zeros in $|z| \le k, k \le 1$, with *s*-fold zeros at the origin, then for |z| = 1,

$$|zp'(z)| \ge \frac{n+sk}{1+k}|p(z)|,$$

then for every complex number β with $|\beta| \le 1$, by choosing suitable argument of β we have

$$\left|zp'(z) + \beta \frac{n+sk}{1+k}p(z)\right| = |zp'(z)| - |\beta| \frac{n+sk}{1+k}|p(z)|.$$
(1.10)

Combining (1.9) and (1.10) we have

$$|zp'(z)| - |\beta| \frac{n+sk}{1+k} |p(z)| \ge k^{-n} \left| n + \beta \frac{n+sk}{1+k} \right| \min_{|z|=k} |p(z)|,$$

or

$$|zp'(z)| - |\beta| \frac{n+sk}{1+k} |p(z)| \ge k^{-n} \left(n - |\beta| \frac{n+sk}{1+k}\right) \min_{|z|=k} |p(z)|,$$

equivalently

$$|zp'(z)| \ge |\beta| \frac{n+sk}{1+k} |p(z)| + k^{-n} \left(n - |\beta| \frac{n+sk}{1+k}\right) \min_{|z|=k} |p(z)|.$$

Making $|\beta| \rightarrow 1$, then

$$|p'(z)| \ge \frac{n+sk}{1+k} |p(z)| + \frac{n-s}{(1+k)k^{n-1}} \min_{|z|=k} |p(z)|.$$

Since for $0 \le s < n$ and $k \le 1$, we have $\frac{1}{k^s} \le \frac{1}{k^{n-1}}$ and for s = n we have n - s = 0, therefore the following result is a refinement and extention of the inequality (1.6).

Corollary 1.1. If p(z) is a polynomial of degree *n* having all its zeros in $|z| \le k, k \le 1$, with *s*-fold zeros at the origin, then we have

$$\min_{|z|=1} |p'(z)| \ge \frac{n+sk}{1+k} \min_{|z|=1} |p(z)| + \frac{n-s}{(1+k)k^{n-1}} \min_{|z|=k} |p(z)|,$$
(1.11a)

$$\max_{|z|=1} |p'(z)| \ge \frac{n+sk}{1+k} \max_{|z|=1} |p(z)| + \frac{n-s}{(1+k)k^{n-1}} \min_{|z|=k} |p(z)|.$$
(1.11b)

If we take s=0 in Corollary 1.1, then inequality (1.11b) reduce to inequality (1.5). Now if we take $\beta = -1$ in Theorem 1.1, we have the following result

Corollary 1.2. If p(z) is a polynomial of degree *n* having all its zeros in $|z| \le k, k \le 1$, with *s*-fold zeros at the origin, then

$$\left|zp'(z) - \frac{n+sk}{1+k}p(z)\right| \ge \frac{n-s}{(1+k)k^s} \min_{|z|=k}|p(z)|.$$
 (1.12)

If p(z) is a polynomial of degree n, having no zeros in $|z| < k, k \ge 1$, except s-fold zeros at the origin, i.e., $p(z) = z^s h(z)$, where h(z) is a polynomial of degree (n-s) that does not vanish in $|z| < k, k \ge 1$, then the polynomial

$$q(z) = z^{n+s} \overline{p\left(\frac{1}{\overline{z}}\right)} = z^n \overline{h\left(\frac{1}{\overline{z}}\right)} = z^s \left(z^{n-s} \overline{h\left(\frac{1}{\overline{z}}\right)}\right)$$

is of degree *n*, having all its zeros in $|z| \le 1/k$, with *s*-fold zeros at the origin. Also

$$\min_{|z|=1/k} |q(z)| = \frac{1}{k^{n+s}} \min_{|z|=k} |p(z)|.$$

By applying Theorem 1.1 for the polynomial q(z), we get the following result

Corollary 1.3. If p(z) is a polynomial of degree *n*, having no zeros in $|z| < k, k \ge 1$, except *s*-fold zeros at the origin, then for any $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and |z| = 1,

$$\left| zq'(z) + \beta \frac{nk+s}{1+k} q(z) \right| \ge k^{-s} \left| n + \beta \frac{nk+s}{1+k} \right| \min_{|z|=k} |p(z)|,$$
(1.13)

where

$$q(z) = z^{n+s} \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

Finally by using Corollary 1.3, we prove the following interesting result which is a generalization of the inequality (1.8).

Theorem 1.2. If p(z) is a polynomial of degree n, having no zeros in |z| < k, $k \ge 1$, except s-fold zeros at the origin, then for every complex number β with $|\beta| \le 1$,

$$\max_{|z|=k^{2}} \left| zp'(z) + \beta \frac{nk+s}{1+k} p(z) \right| \\
\leq \frac{1}{2} \left[\left\{ k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| + k^{s} \left| s + \beta \frac{nk+s}{1+k} \right| \right\} \max_{|z|=k} |p(z)| \\
- \left\{ k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| - k^{s} \left| s + \beta \frac{nk+s}{1+k} \right| \right\} \min_{|z|=k} |p(z)| \right].$$
(1.14)

If we take k = 1 in (1.14) we have

Corollary 1.4. If p(z) is a polynomial of degree *n*, having no zeros in |z| < 1, except *s*-fold zeros at the origin, then for every complex number β with $|\beta| \le 1$,

$$\max_{|z|=1} \left| zp'(z) + \beta \frac{n+s}{2} p(z) \right| \\
\leq \frac{1}{2} \left[\left\{ \left| n + \beta \frac{n+s}{2} \right| + \left| s + \beta \frac{n+s}{2} \right| \right\} \max_{|z|=1} |p(z)| \\
- \left\{ \left| n + \beta \frac{n+s}{2} \right| - \left| s + \beta \frac{n+s}{2} \right| \right\} \min_{|z|=1} |p(z)| \right].$$
(1.15)

For s = 0 the inequality (1.15) reduces to the inequality (1.8).

2 Lemmas

For the proof of these theorems, we need the following lemmas. The first lemma is due to Aziz and Shah [1].

Lemma 2.1. If p(z) is a polynomial of degree n, having all its zeros in the closed disk $|z| \le k$, $k \le 1$, with s-fold zeros at the origin, then for |z| = 1,

$$|zp'(z)| \ge \frac{n+sk}{1+k}|p(z)|.$$
 (2.1)

Lemma 2.2. Let F(z) be a polynomial of degree n having all its zeros in $|z| \le k$, $k \le 1$ and f(z) be a polynomial of degree not exceeding that of F(z). If $|f(z)| \le |F(z)|$ for |z| = k, $k \le 1$, and F(z), f(z) have common s-fold zeros at the origin, then for every real or complex number β with $|\beta| \le 1$ and |z| = 1,

$$\left|zf'(z) + \beta \frac{n+sk}{1+k}f(z)\right| \le \left|zF'(z) + \beta \frac{n+sk}{1+k}F(z)\right|.$$
(2.2)

Proof. Let α be a complex number with $|\alpha| < 1$, then $|\alpha f(z)| < |F(z)|$ for |z| = k. It is concluded from Rouche's Theorem, the polynomial $\alpha f(z) - F(z)$ has as many zeros in |z| < k as F(z) and so has all of its zeros in |z| < k, with *s*-fold zeros at the origin. On applying Lemma 2.1, we have for |z| = 1,

$$|\alpha z f'(z) - z F'(z)| \ge \frac{n+sk}{1+k} |\alpha f(z) - F(z)|.$$

Therefore for any real or complex number β with $|\beta| < 1$, the polynomial

$$T(z) = \alpha z f'(z) - z F'(z) + \beta \frac{n + sk}{1 + k} (\alpha f(z) - F(z)) \neq 0,$$

for |z| = 1.

Equivalently

$$T(z) = \alpha \left\{ zf'(z) + \beta \frac{n+sk}{1+k} f(z) \right\} - \left\{ zF'(z) + \beta \frac{n+sk}{1+k} F(z) \right\} \neq 0,$$
(2.3)

for |z| = 1. This concludes that

$$\left|zf'(z) + \beta \frac{n+sk}{1+k}f(z)\right| \le \left|zF'(z) + \beta \frac{n+sk}{1+k}F(z)\right|,\tag{2.4}$$

for |z| = 1. If the inequality (2.4) is not true, then there is a point $z = z_0$ with $|z_0| = 1$ such that

$$z_0 f'(z_0) + \beta \frac{n+sk}{1+k} f(z_0) \Big| > \Big| z_0 F'(z_0) + \beta \frac{n+sk}{1+k} F(z_0) \Big|.$$

Now take

$$\alpha = -\frac{z_0 F'(z_0) + \beta \frac{n+sk}{1+k} F(z_0)}{z_0 f'(z_0) + \beta \frac{n+sk}{1+k} f(z_0)},$$

then $|\alpha| < 1$ and with this choice of α , we have from (2.3), $T(z_0) = 0$ for $|z_0| = 1$. But this contradicts the fact that $T(z) \neq 0$ for |z| = 1. For β with $|\beta| = 1$, the inequality (2.4) follows by continuity. This is equivalent to the desired result.

If we take $F(z) = M(\frac{z}{k})^n$ in Lemma 2.2, where $M = \max_{|z|=k} |p(z)|$, then we have:

Lemma 2.3. If p(z) is a polynomial of degree n with s-fold zeros at the origin, then for any $\beta \in \mathbb{C}$ with $|\beta| \le 1$, $k \le 1$ and |z| = 1,

$$\left| zp'(z) + \beta \frac{n+sk}{1+k} p(z) \right| \le k^{-n} \left| n + \beta \frac{n+sk}{1+k} \right| \max_{|z|=k} |p(z)|.$$
(2.5)

Lemma 2.4. If p(z) is a polynomial of degree n with s-fold zeros at the origin and $k \ge 1$, then for any $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and |z| = 1,

$$\left| zq'(z) + \beta \frac{nk+s}{1+k} q(z) \right| \le k^{-s} \left| n + \beta \frac{nk+s}{1+k} \right| \max_{|z|=k} |p(z)|,$$
(2.6)

where

$$q(z) = z^{n+s} \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

Proof. Let $p(z) = z^{s}h(z)$, where h(z) is a polynomial of degree n-s. Then the polynomial

$$q(z) = z^{n+s} \overline{p\left(\frac{1}{\overline{z}}\right)} = z^n \overline{h\left(\frac{1}{\overline{z}}\right)} = z^s \left(z^{n-s} \overline{h\left(\frac{1}{\overline{z}}\right)}\right)$$

is of degree *n* with *s*-fold zeros at the origin. Also

$$\max_{|z|=\frac{1}{k}} |q(z)| = \frac{1}{k^{n+s}} \max_{|z|=k} |p(z)|.$$

By applying Lemma 2.3 for the polynomial q(z), we get the result.

32

Lemma 2.5. If p(z) is a polynomial of degree n with s-fold zeros at the origin and $k \ge 1$, then for any $\beta \in \mathbb{C}$ with $|\beta| \le 1$ and |z| = 1,

$$\left| zk^{2}p'(k^{2}z) + \beta \frac{nk+s}{1+k}p(k^{2}z) \right| + k^{n+s} \left| zq'(z) + \beta \frac{nk+s}{1+k}q(z) \right|$$

$$\leq \left\{ k^{s} \left| s + \beta \frac{nk+s}{1+k} \right| + k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| \right\} \max_{|z|=k} |p(z)|, \qquad (2.7)$$

where

$$q(z) = z^{n+s} \overline{p\left(\frac{1}{\overline{z}}\right)}.$$

Proof. Let $M = \max_{|z|=k} |p(z)|$, then for every complex number α with $|\alpha| > 1$, it follows by Rouche's Theorem that the polynomial $G(z) = p(z) - \alpha M(\frac{z}{k})^s$ has no zeros in |z| < k, except *s*-fold zeros at the origin. Correspondingly the polynomial

$$H(z) = z^{n+s} \overline{G\left(\frac{1}{\overline{z}}\right)} = q(z) - \overline{\alpha} k^{-s} M z^{n},$$

has all its zeros in $|z| \le 1/k$ with *s*-fold zeros at the origin and

$$\left|\frac{1}{k^{n+s}}G(k^2z)\right| = |H(z)|$$

for |z|=1/k. Therefore, by applying Lemma 2.2 to polynomials $G(k^2z)$ and $k^{n+s}H(z)$, we have for $|\beta| \le 1$, $1/k \le 1$ and |z|=1,

$$\left| zk^2G'(k^2z) + \beta \frac{nk+s}{1+k}G(k^2z) \right| \leq k^{n+s} \left| zH'(z) + \beta \frac{nk+s}{1+k}H(z) \right|,$$

or

$$\left|zk^{2}p'(k^{2}z)+\beta\frac{nk+s}{1+k}p(k^{2}z)-\alpha\left(s+\beta\frac{nk+s}{1+k}\right)k^{s}Mz^{s}\right|$$

$$\leq\left|k^{n+s}\left(zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right)-\overline{\alpha}k^{n}\left(n+\beta\frac{nk+s}{1+k}\right)Mz^{n}\right|.$$
(2.8)

Now by applying the inequality (2.6) and choosing a suitable argument of α , we have

$$\left|k^{n+s}\left(zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right)-\overline{\alpha}k^{n}\left(n+\beta\frac{nk+s}{1+k}\right)Mz^{n}\right|$$
$$=\left|\alpha\right|k^{n}\left|n+\beta\frac{nk+s}{1+k}\right|M-k^{n+s}\left|zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right|.$$
(2.9)

By combining inequalities (2.8) and (2.9), we obtain

$$\left| zk^{2}p'(k^{2}z) + \beta \frac{nk+s}{1+k}p(k^{2}z) \right| - |\alpha| \left| s + \beta \frac{nk+s}{1+k} \right| k^{s}M \\
\leq |\alpha|k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| M - k^{n+s} \left| zq'(z) + \beta \frac{nk+s}{1+k}q(z) \right|.$$
(2.10)

Or

$$\left| zk^{2}p'(k^{2}z) + \beta \frac{nk+s}{1+k}p(k^{2}z) \right| + k^{n+s} \left| zq'(z) + \beta \frac{nk+s}{1+k}q(z) \right| \\
\leq \left| \alpha \right| \left\{ k^{s} \left| s + \beta \frac{nk+s}{1+k} \right| + k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| \right\} M.$$
(2.11)

Making $|\alpha| \rightarrow 1$ we have the result.

The following lemma is due to Zireh [11].

Lemma 2.6. *If*

$$p(z) = \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$$

is a polynomial of degree n, having all its zeros in |z| < k, (k > 0), then $m < k^n |a_n|$, where $m = \min_{|z|=k} |p(z)|$.

3 Proofs of the theorems

Proof of Theorem 1.1. If p(z) has a zero on |z|=k, then $\min_{|z|=k} |p(z)|=0$ and the inequality (1.9) is true. Therefore we suppose that p(z) has all its zeros in |z| < k with *s*-fold zeros at the origin. We consider $p(z) = z^s h(z)$, where h(z) is a polynomial of degree (n-s) has all its zeros in |z| < k and $h(0) \neq 0$. Let $m = \min_{|z|=k} |p(z)|$ and $m_1 = \min_{|z|=k} |h(z)|$ then $m = k^s m_1 > 0$ and

$$|p(z)| \ge m \left| \left(\frac{z}{k} \right) \right|$$

for |z| = k, hence

$$h(z)| \ge m_1 \left| \left(\frac{z}{k}\right)^{n-s} \right|$$

for |z| = k. Therefore, if $|\lambda| < 1$ then it follows by Rouche's Theorem that the polynomial

$$G(z) = p(z) - \lambda m \left(\frac{z}{k}\right)^n = z^s \left(h(z) - \lambda m_1 \left(\frac{z}{k}\right)^{n-s}\right)$$

has all its zeros in |z| < k with *s*-fold zeros at the origin. Also by using Lemma 2.6 the polynomial

$$G(z) = p(z) - \lambda m \left(\frac{z}{k}\right)^n$$

is of degree *n*, for $|\lambda| < 1$. On applying Lemma 2.1 to the polynomial G(z) of degree *n*, we get

$$|zG'(z)| \ge \frac{n+sk}{1+k}|G(z)|,$$

34

i.e.,

$$\left|zp'(z) - \lambda mn\left(\frac{z}{k}\right)^n\right| \ge \frac{n+sk}{1+k} \left|p(z) - \lambda m\left(\frac{z}{k}\right)^n\right|,$$

where |z| = 1.

Therefore for β with $|\beta| < 1$, it can be easily verified that the polynomial

$$T(z) = \left(zp'(z) - \lambda mn\left(\frac{z}{k}\right)^n\right) + \beta \frac{n+sk}{1+k} \left\{p(z) - \lambda m\left(\frac{z}{k}\right)^n\right\},$$

i.e.,

$$T(z) = \left(zp'(z) + \beta \frac{n+sk}{1+k}p(z)\right) - \lambda m \left(\frac{z}{k}\right)^n \left(n + \beta \frac{n+sk}{1+k}\right)$$

will have no zeros on |z| = 1. As $|\lambda| < 1$ we have for β with $|\beta| < 1$ and |z| = 1,

$$\left|zp'(z) + \beta \frac{n+sk}{1+k}p(z)\right| > m \left|\lambda \left(\frac{z}{k}\right)^n\right| \left|n + \beta \frac{n+sk}{1+k}\right|,$$

i.e.,

$$\left|zp'(z) + \beta \frac{n+sk}{1+k}p(z)\right| \ge mk^{-n} \left|n + \beta \frac{n+sk}{1+k}\right|.$$
(3.1)

For β with $|\beta| = 1$, (3.1) follows by continuity. This completes the proof of Theorem 1.1. \Box *Proof* of the Theorem 1.2. Let $m = \min_{|z|=k} |p(z)|$. By hypothesis the polynomial p(z) has no zeros in |z| < k, except *s*-fold zeros at the origin. Correspondingly the polynomial

$$q(z) = z^{n+s} \overline{p\left(\frac{1}{\overline{z}}\right)}$$

has all its zeros in $|z| \leq 1/k$ with *s*-fold zeros at the origin and

$$\frac{1}{k^{n+s}}|p(k^2z)| = |q(z)|$$

for |z| = 1/k. Then by applying Lemma 2.2 to the polynomials $p(k^2z)$ and $k^{n+s}q(z)$, we have for |z| = 1,

$$\left| zk^{2}p'(k^{2}z) + \beta \frac{nk+s}{1+k}p(k^{2}z) \right| \leq k^{n+s} \left| zq'(z) + \beta \frac{nk+s}{1+k}q(z) \right|.$$
(3.2)

If m = 0, by combining inequalities (3.2) and (2.7), Theorem 1.2 follows.

Therefore we suppose that $m \neq 0$ then for every complex number λ with $|\lambda| < 1$, we have

$$|\lambda m| < m \le |p(z)|,$$

where |z| = k. Hence by Rouche's Theorem the polynomial

$$G(z) = p(z) - \lambda m \left(\frac{z}{k}\right)^s$$

has no zero in |z| < k except *s*-fold zeros at the origin. Therefore the polynomial

$$H(z) = z^{n+s} \overline{G(1/\overline{z})} = q(z) - \overline{\lambda} k^{-s} m z^n,$$

will have all its zeros in $|z| \le 1/k$ with *s*-fold zeros at the origin. Also $|G(k^2z)| = k^{n+s}|H(z)|$ for |z| = 1/k.

On applying Lemma 2.2 for $G(k^2z)$ and $k^{n+s}H(z)$, we have

$$\left|zk^{2}p'(k^{2}z)+\beta\frac{nk+s}{1+k}p(k^{2}z)-\left(s+\beta\frac{nk+s}{1+k}\right)\lambda k^{s}mz^{s}\right|$$

$$\leq\left|k^{n+s}\left(zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right)-k^{n}\left(n+\beta\frac{nk+s}{1+k}\right)\overline{\lambda}mz^{n}\right|.$$
(3.3)

By using the inequality (1.13), for an appropriate choice of the argument of λ , we have

$$\left|k^{n+s}\left(zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right)-k^{n}\left(n+\beta\frac{nk+s}{1+k}\right)\overline{\lambda}mz^{n}\right|$$
$$=k^{n+s}\left|zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right|-k^{n}\left|n+\beta\frac{nk+s}{1+k}\right||\lambda|m.$$
(3.4)

By combining (3.3) and (3.4), we get for |z| = 1 and $|\beta| \le 1$,

$$\left|zk^{2}p'(k^{2}z)+\beta\frac{nk+s}{1+k}p(k^{2}z)\right|-k^{s}\left|s+\beta\frac{nk+s}{1+k}\right||\lambda|m$$

$$\leq k^{n+s}\left|zq'(z)+\beta\frac{nk+s}{1+k}q(z)\right|-k^{n}\left|n+\beta\frac{nk+s}{1+k}\right||\lambda|m.$$

Equivalently

$$\left| zk^{2}p'(k^{2}z) + \beta \frac{nk+s}{1+k}p(k^{2}z) \right|$$

$$\leq k^{n+s} \left| zq'(z) + \beta \frac{nk+s}{1+k}q(z) \right| - \left\{ k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| - k^{s} \left| s + \beta \frac{nk+s}{1+k} \right| \right\} |\lambda|m.$$

As $|\lambda| \rightarrow 1$, we have

$$\left| zk^{2}p'(k^{2}z) + \beta \frac{nk+s}{1+k}p(k^{2}z) \right|$$

$$\leq k^{n+s} \left| zq'(z) + \beta \frac{nk+s}{1+k}q(z) \right| - \left\{ k^{n} \left| n + \beta \frac{nk+s}{1+k} \right| - k^{s} \left| s + \beta \frac{nk+s}{1+k} \right| \right\} m.$$

This is a conjunction with inequality (2.7), which completes the proof of Theorem 1.2. \Box

Acknowledgements

The authors would like to thank the referees, for the careful reading of the paper and the helpful suggestions and comments.

References

- A. Aziz and W. M. Shah, Inequalities for a polynomial and its derivative, Math. Ineq. Appl., 7 (2004), 379–391.
- [2] A. Aziz and B. A. Zargar, Inequalities for the maximum modulus of the derivative of a polynomial, J. Inequal. Pure Appl. Math., 8 (2007), 8 pages.
- [3] S. Bernstein, Leons sur les Proprs Extrmales et la Meilleure Approximation des Fonctions Analytiques dune Variable Relle, Gauthier Villars, Paris, 1926.
- [4] K. K. Dewan and S. Hans, Generalization of certain well-known polynomial inequalities, J. Math. Anal. Appl., 363 (2010), 38–41.
- [5] N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66 (1991), 29–35.
- [6] P. D. Lax, Proof of a conjecture of P. Erdös, on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509–513.
- [7] M. A. Malik, On the derivative of a polynomial, J. London. Math. Soc., 1 (1969), 57–60.
- [8] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
- [9] H. A. Soleiman Mezerji, M. Bidkham and A. Zireh, Bernstien type inequalities for polynomial and its derivative, J. Adv. Research Pure Math., 4 (2012), 26–33.
- [10] P. Turan, Uber die ableitung von polynomen, Compos. Math., 7 (1939), 89–95.
- [11] A. Zireh, On the maximum modulus of a polynomial and its polar derivative, J. Ineq. Appl., (2011), 9 pages.