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Abstract. Suppose T"! and T%? are singular integrals with variable kernels and mixed
homogeneity or £I (the identity operator). Denote the Toeplitz type operator by

Q
Tb — Z Tk,l Mh Tk,zl
k=1

where M?f =bf. In this paper, the boundedness of T’ on weighted Morrey space are

obtained when b belongs to the weighted Lipschitz function space and weighted BMO
function space, respectively.
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1 Introduction

The classical Morrey spaces, introduced by Morrey [1] in 1938, have been studied in-
tensively by various authors, and it, together with weighted Lebesgue spaces play an
important role in the theory of partial differential equations, see [2,3]. The boundedness
of the Hardy-Littlewood maximal operator, singular integral operator, fractional inte-
gral operator and commutator of these operators in Morrey spaces have been studied by
Chiarenza and Frasca in [4]. Komori and Shirai [5] introduced a version of the weighted
Morrey space LP*(w), which is a natural generalization of the weighted Lebesgue space
LP(w).

As the development of singular integral operators, their commutators have been well
studied [6-8]. In [7], the authors proved that the commutators [b, T|, which generated by
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Calderén-Zygmund singular integral operator and BMO functions, are bounded on L?
for 1 < p < oo. The commutator generated by the Calderén-Zygmund operator T and a
locally integrable function b can be regarded as a special case of the Toeplitz operator

Q
T =Y TVMTF?, (1.1)
k=1

where TF! and T%? are the Calderén-Zygmund operators or 41 (the identity operator),
MP f=bf. When be BMO, the L?-boundedness of T? was discussed, see [9,10]. In[11,12],
the authors studied the boundedness of T” on Morrey spaces.

Let K(x,{): R"xR"\{0} — R be a variable kernel with mixed homogeneity. The
singular integral operator is defined by

Tf(x)=pa. [ Kxr=y)f()dy. 1.2

The variable kernel K(x,{) depends on some parameter x and possesses good prop-
erties with respect to the second variable ¢, which was firstly introduced by Fabes and
Rieviéve in [13]. They generalized the classical Calderéon-Zygmund kernel and the
parabolic kernel studied by Jones in [14]. By introducing a new metric p, Fabes and
Rieviéve studied (1.2) in LP(R"), where R"” was endowed with the topology induced by
p and defined by ellipsoids.

By using this metric p, Softova in [15] obtained that the integral operator (1.2) and
its commutator were continuous in generalized Morrey space LP'“(R"), 1 < p < o0, w
satisfying suitable conditions. Ye and Zhu in [16] discussed the continuity of (1.2) and its
multilinear commutator in the weighted Morrey spaces LP*(w), 1 <p <oo, 0<x <1, and
wis A, weight.

Suppose T*! and T*? are singular integrals whose kernels are variable kernel with
mixed homogeneity or £I (the identity operator). In this paper, we study the bound-
edness of Toeplitz operators T? as (1.1) in weighted Morrey spaces when b belongs to
weighted Lipschitz spaces and weighted BMO spaces, respectively. The main results are
as follows.

Theorem 1.1. Suppose that T" is a Toeplitz type operator associated to singular integral operator
with variable kernel, w € Ay, and b€ Lipg . Let 0<x<p/q, 1<p<n/Band1/q=1/p—p/n.
IfTY(f) =0 for any f € LP*(w), then there exists a constant C >0 such that,

T ) asanor-1,00) < CNB i | Fll Lo eo)-

Theorem 1.2. Suppose that T" is a Toeplitz type operator associated to singular integral operator
with variable kernel, w € Ay, and b€ BMO(w). Let 1< p<oco,and 0<x <1. If T*(f) =0 for any
f € LP*(w), then there exists a constant C >0 such that,

1T () o (er-7.0) < ClBl 1] Lo
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2 Some preliminaries

Letay,---,a, be real numbers, a;>1 and define o=}, «;. Following Fabes and Riviére [6],
the function F(x,p) =Y/ x?p 2%, for any fixed x, is a decreasing one with respect to p>0
and the equation F(x,p) =1 is uniquely solvable in p(x). It is easy to check that p(x—y)
defines a distance between any two points x,y € R". Thus R"” endowed with the metric
p results a homogeneous metric space [13,15]. The balls with respect to p(x) centered at
the origin and of radius r are the ellipsoids

2 x2

X
87(0):{xe]R”: F,z—ﬁlq+"'+pzzn <1}

with Lebesgue measure |&,| = C(n)r*. It is easy to see that €(0) coincides with the unit
sphere 5"~ ! with respect to the Euclidean metric.

Definition 2.1. The function K(x,{): R" xR"\ {0} — R is called a variable kernel with
mixed homogeneity if:
(i) for every fixed x, the function K(x,-) is a constant kernel satisfying

(1) K(x,-) e C=(R"\{0}),

(2) forany p>0,0;>1, =) a;

K(x,u" 181, ,u* &) =p “K(x,8),

(3) Jou1K(x,8)dé=0and [, |K(x,{)[dE <o,
(ii) for every multiindex B, sup;cgi-1 |D§ K(x,¢)| <C(B) independent of x.

Note that in the special case a; =1, 1 <i <n, Definition 2.1 gives rise to the classical
Calderén-Zygmund kernels. When a; =1, 1<i<n-—1, and «, > 1, we obtain the kernel
studied by Jones in [14] and discussed in [13].

A weight w is a nonnegative, locally integrable function on R". Let £ =&, (xp) denote
the ellipsoid with the center x¢ and radius r. For a given weight function w and a mea-
surable set E, we also denote the Lebesgue measure of E by |E| and set weighted measure
w(E) = [pw(x)dx. For any given weight function w on R", 0 < p < 0o, denote by L*(w)
the space of all function f satisfying

1/p

I fller ()= (/}R !f(x)l”w(x)dx) < oo,

A weight w is said to belong to the Muckenhoupt class A, for 1 <p < oo, if there exists
a constant C such that
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for every ellipsoid €. The class A; is defined by replacing the above inequality with

1
_ <C. i
H /Ew(y)dy_c esxs€18r1fw(x)

for every ball €.
The classical A, weight theory was first introduced by Muckenhoupt in the study of
weighted L?-boundedness of Hardy-Littlewood maximal function in [17].

Lemma 2.1. Suppose w € Ay. Then
(i) there exists a € >0 such that

(r fetra)" <2 [t @)

(ii) there exist two constant Cq and C,, such that

Cre(€) < [€linfa(x) < Cauw (€). 22)

xeé

Let us recall the definition of weighted Lipschitz function space and weighted BMO
function space.

Definition 2.2. For 1<p<oo, 0<f<1, and w € Aw. A locally integrable function b is said
to be in the weighted Lipschitz function space if

P 1pg]
sgp ﬁ/n /|b —belPw(x) dx] <C<oo,

where bg =[€]7! [ b(y)dy, and the supremum is taken over all ellipsoids €.

The Banach space of such functions modulo constants is denoted by Lipg ,(w). The
smallest bound C satisfying conditions above is then taken to be the norm of b denoted by
Hb||sz )-Put Lipg ,=Lipg1(w). Obviously, for the case w=1, the Lip, ,(w) space is the

Classmal sz,g space. Let w € A;. Garcia-Cuerva in [18] proved that the spaces Lipg ,(w)
coincide, and the norms ||b|| Lip,  (w) A€ equivalent with respect to different values of p
P

provided that 1 < p < co. Since we always discuss under the assumption w € A; in the
following, then we denote the norm of Lipg ,(w) by ||| Lip,,, for 1< p<co.

Definition 2.3 (see [6]). Let b be a locally integrable function and w be a weight func-
tion. A locally integrable function b is said to be in the weighted BMO function space
BMO(w), if there exists a constant C such that

ol o =sup s [ 10(y) el dy <,

where be =[&]7! [, b(y)dy, and the supremum is taken over all ellipsoids €.
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If w € A1, Garcin-Cuera in [19] showed that
1- Vp
ol <sp (7 [0 —belPwo(x)!Pdy) " <ol
€

for1<p<oo.

Now we shall introduce the Hardy-Littlewood maximal operator and several vari-
ants.

For a given measurable function f € L} (IR"), define the Hardy-Littlewood maximal
operator M f and the sharp maximal operator M*f as

M) () =suprzr [ 1£0)ldy,

xeé

M (f)(x —sup|8’/]f fg]dywsupmf’a/]f —cldy.

xeé

For 1 <r <o, the weighted maximal operator M, f is defined by

Mo 1)) =sup (g5 [ IF )

xeé

For 0< g <n, and 1<r < oo, we define the fractional weighted maximal operator Mg, f
by

My (1) () =309 (s [P o)

xeé

where the supremum is taken over all ellipsoids €.

Definition 2.4. Let 1 <p <o, 0<x <1 and w be a weight function. Then for two weights
i and v, the weighted Morrey space is defined by

LP*(uv) = {f € Lioe (1) 1 low () <o}

where

/p
st =510 (g [ 1F I Pucaz)

and the supremum is taken over all elhpsmds €.
If v=y, then we have the classical Morrey space LP* () with measure p.

Lemma 2.2 (see [20]). Suppose w € Ui<coAt.
(i) If1<r<p<oo,and 0<x <1, then

[Meo,r fllLew (o) SCl f 1l Lpn (o) (2.3)
() If0<B<n, 1<r<p<n/B,1/q=1/p—B/nand 0<x<p/q, then
HM,B,w,TfHL’%W/P(w) SCHfHLP/”(w)' (2.4)
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Lemma 2.3 (see [16]). Let T be a singular integral operator with variable kernel, 1 < p < oo and
1<x<1.If we Ap, then there exists a constant C > 0 such that

TNl Lox () Sl llLom (o) (2.5)

In view of Proposition 3.1 in [20], we have

Lemma 2.4. Let 0<x<1and 1<p<co. If u,vE Ac, then for every f €Ly, with M* fELP* (u,v),
there exists a constant C such that

HM(f) HLW(;I,V) < CHMﬁfHLP'K(y,V)' (2.6)
The following lemmas play a critical role in the proof of our theorems.

Lemma 2.5. Suppose w € Ay, and b€ Lipg, (0< B <1). Then there exist a sufficiently large
number s and a constant C > 0 such that, for every f € LV (w) with p>1and 1 <r < p, we have

(7 ) —bel DI dx)” < Clbliyy0(6) M ar () x), @7)

where 1/s+1/s' =1.

Proof. Letro=r/s', r3=€/(s'—1) and 1/r1+1/r,+1/r3 =1, where € is the constant in
Lemma 2.1. Choosing a sufficiently large number s such that 1<s’ <r(1+€)/(r+¢€), then
r1,72,73>1. By Holder’s inequality, we have

|8’/’b b8| |f )IS/dx>b7
/’b —be | w )lfs,!f(x)| w(x)flw(x)s/*% rzdx)

1
— 1

<clel ™ ( [ o) —tel ey ) ([ 0P i) >

X (/ew(x)H“(S/_l)dx) 7

Since b € Lipg ., and w € A1, by (2.1), (2.2) we get

1
B

1
7

(g o) ~be £ a)
- E L 1+e€ é
<Cllbllip, ||~ (&) 7 / Fwxdr)’ ([l eax)
1

<l X (s 17w )
SCHbHLiPﬁ,w w(x )Mﬁwr(f)(x
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Similar to the proof of Lemma 2.5, we have

Lemma 2.6. Suppose w € Ay, and b€ BMO(w). Then there exist sufficiently large number s and
constant C > 0 such that, for every f € LV (w) with p>1and 1 <r < p, we have

1
J

(77 160) =be £ dx)” < CeollblcoMss () ), @8)

where 1/s+1/s' =1.

Finally, we need the spherical harmonics and their properties (see more detail in [13,
15]). Recall that any homogeneous polynomial P:IR" — R of degree m that satisfies AP=0
is called an n-dimensional solid harmonic of degree m. Its restriction to the unit sphere
S"~1 will be called an n-dimensional spherical harmonic of degree m Denote by H,, the
space of all n-dimensional spherical harmonics of degree m. In general it results in a finite
dimensional linear space with g,, =dimH,, such that go=1, g1 =7 and

gm_cm—i-n 1 C;;Hrln 3—C( ) 2' m22. (2'9)

Furthermore, let {Ysm} 1 be an orthonormal base of H,,, then {Yen 313
orthonormal system in LZ(S” 1) and

o m—p is a complete

sup |DEYo (x)| < C(n)ymPI+=2/2 py—19 ... (2.10)

xeGn-1

If, for instance, ¢ €C®(S" 1), then Y s, mbsm Ysm is the Fourier series expansion of ¢(x) with
respect to {Ysm }sm then

bon= [ 9@ Yon()do, [bonl <COnDm sup sup [Dfg(y)l, 1)
S |B|=2lyeSr—1

for any integer I. In particular, the expansion of ¢ into spherical harmonics converges
uniformly to ¢. For the proof of the above results see [21].
Let x,y € R", and

R

p(y)  \py) " p(y)™

In view of the properties of the kernel K with respect to the second variable and the
complete of { Y (x)}in L2(S" 1), we get

K(x,x—y)=p(x—y) "K(x,x—y)
oo 8m

=p(x—y)~ Zstm Yom(X=Y).

m=1s=
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Replacing the kernel with its series expansion, (1.2) can be written as
T(f)(x) =hmTe(f)(x)
€—0

—lim Yo Y ban(x)p(x—y) Yo (x—=Y) f(y)dy.

e—0 p(xiy)>€m:1s:]
From the properties of (2.9)-(2.11), the series expansion

8m

N
|2 Y b (Wp(x—y) Yo T F 1) f ()

m=1s=1

" fW)] & n3(n—2)/2-21
SO ey '

where the integer [ is preliminarily chosen greater than (3n—2) /4. Along with the p(x—
y)~*f(y) € L'(R") for almost everywhere x € R", by the Fubini dominated convergence
theorem, we have

-y gzmbsm(x)nm f(x), 2.12)

where

Hyn(x—y) =p(x—y) ™ Yeu(x—),

and H,, satisfies pointwise Hérmander condition as following

Honl3 =)~ Han )] < Clnapm2- 0T 213)

for each x € € and y £ 2€ (see [15, Lemma 3.2]). Then

Tomf (x) =lim Hsm (x—y) f(y)dy

€=0Jp(x—y)>e

:P-U-/]Rn Hom(x—y) f(y)dy (214)

is a classical Calderén-Zygmund operator with a constant kernel.
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3 Proof of theorems

Proof of Theorem 1.1. We only give the proof of Theorem 1.1, since the proof of Theorem
1.2 is similar to Theorem 1.1. Let

Q
T*(f)(x) ZkZ T MT*?(f) (x).
=1

Without loss generality, we may assume T®! (k=1,---,Q) are singular integral operators
with variable kernel. By (2.12),

m

=fiz¢17MWﬂww»

k=1m=1s=1

where
TS ()= [ HE G-y f()dy

are classical Calderén-Zygmund operator with constant kernel as (2.14). Set € for the
ellipsoid centered at xo and of radius r, and let € 3 x. Since T'(g) =0 for any g€ LP*(w),
then

oq

m

:ii bkl Tkle bngkZ(f)( )

k=1m=1s=1

We first prove

METEI MY T2 ) x)

<O bl 0 () (Mpon (T2 () (04 Mpooa(TR(N) () (3.)
for arbitrary x € &. We write T MV =022 TR2(f)(x) as

TELMP P22 TR2 () (y)
=TEI M=l xee TR2 () () ThI M —b2)X e TR2 () (1)
=U1(y)+Uz(y).

laking ¢ =U(xp), then
1 T ~be T
’8| L | 5{(7’711 Mb bZS krz (f) (y) C’dy

1 1
<= [1u,)ld —/U Us(xo)|d
_m@mwﬁmgxwzmw
= M+ M.
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Choosing a sufficiently large number s and by Holder’s inequality, the boundedness
of TH! in L' (R") and Lemma 2.5, we have

My = ,8|/1Tk1M” R TH(£) (y) dy
<(gar LI M O BT ) )y

, 1/¢'
MU TR (£) (1) dy )

1/

<C<]8| R

<CIb|Lipg,. @ (X) Mp o, (T () ().

Forany y€ &, and z€ (2€)¢, we have p(y—z) ~p(xo—z). Then by (2.13) we get,

Mo < g [[ITGM B T2 1) ()~ T MO e 52 ) )y

,8|//28 —bae|[HEY (y—2) — HYY (00 — 2) || T*? () (2) | dzdy

n p(xo—y)
<cmos | /25 z) —bae | 02 1T (1) (2)
SO T, [ )bl TN

<Cm”/ZZW/WE|b(Z)—bzellT"'2(f) (2)|dz

» 1
<O Y2 g bl g [ TR (Pl

j=1
©
ML g fyng M) bl T () 2) 2
j=1
=M+ M.

Note that w € A1, and

j
|b2j+1€ — bzg ’ ; /2k+1 ) — b2k+18 |dZ

w(2k+18)1+ﬁ/n
<ClbllLippe }— e
1Pg, kg:l ]2k8|
j
‘ . k1o B
scy|b\\upﬁw;xelzrglgw(x)w(z &)

<Cjl[blLipg, w(x)ew (21PN,
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then by (2.2), we get

o 1
My =Cm"/2Y "2 ]!bzmg—bzefm/zmg’Tk’z(f)(z)’dz

=1
n/2 —j ) . k,2
<Cm ;2 |byire b2€’w(2j+18)/2j+16|T (f)(2)|w(z)dz
1
n/2 . - k,2
<Cm"2|blluipy, zjz STTET Jye TN )
Scmn/ZHbHLipﬁw ( )Mﬁwl Tk 2]2 I

<Cm""2|b|Lip, ,w (x)Mp01 (T(f)) (x)'

By Holder’s inequality,

My =Cm" ]2_1;2 f|2]+18|/]+18 by || T (f)(2)|dz
1

¢} . 1 ,
n/2 —j 1 r 1—r
<Cm ]-2_12 (|2f+18| 2j+18|b(Z) byg|" w(z) dz>

! 620 Py (1 %
< (g Ly TN @ ()
© ) i+1e\14B/n
21| jw(@e)
SCm HbHszﬁ,w]§2 ’2j+18’
1

(o1 foe TN w@))’
Scmn/zHbHLipﬁ,ww(x)Mﬁ,w,r(Tk’z(f))(x)iz_j
L

<Cm" b Lip,,, 0 (x) Mp o (T2 (£)) ().

Hence

Mz < Ct"2[[b ipg ., w (x) (Mo, (T () (%) + Mp o, (T2 () (%))

Combining the estimates for M; and M,, we finish the proof of (3.1).
Since w € A implies wl e Ay, by Lemma 2.4, (3.1), Lemma 2.2 and Lemma 2.3, we
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have

I T8 MO~ T2 () [ Laasp (o190
<[ MTE M =P T2 (f) | L9%9/P (01~ )
<[ MET MP P TR () | Lamarp(et=1,0)
<Cm"2b]lLipg,, 0 () (Mpao,r (T () + Mp,ot (T (F)D) ] asas(eot-0,0)
=Cont"" ||| Lipg , || Mp,0o,r (T (F)) Mot (T2 (F) | asaro o)
<Cm" 2Bl 1ip,, [ T f | o)
<Cm"?(1b| Lipg o 11| Lo ()

Choosing [ > (3n—2) /4, then
| T (Al L%/ (w!=1,w)

<szzbk1 Tkle bzéTkz(f)( )

Laxa/p(wl=1,w)

—=1m=1s=
& & & k,1 k,1 A sb—0: k,2
<y X ZHb ) || oo [ T M7= T2 () | Lamarv (eot-0,0)
k=1m=1s=
Q & & —2l+n/2
<ClIbllLipg | fllLrsy Yo Y Y m
k:1m:1s:l
<Clbl Lipg 1f L (@ Z —2n/2tn =2
m=1
<ClIbl Lipg 1 (@)
This finishes the proof of Theorem 1.1. O
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