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Abstract. Suppose Tk,1 and Tk,2 are singular integrals with variable kernels and mixed
homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by

Tb =
Q

∑
k=1

Tk,1MbTk,2,

where Mb f = b f . In this paper, the boundedness of Tb on weighted Morrey space are
obtained when b belongs to the weighted Lipschitz function space and weighted BMO
function space, respectively.
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1 Introduction

The classical Morrey spaces, introduced by Morrey [1] in 1938, have been studied in-
tensively by various authors, and it, together with weighted Lebesgue spaces play an
important role in the theory of partial differential equations, see [2, 3]. The boundedness
of the Hardy-Littlewood maximal operator, singular integral operator, fractional inte-
gral operator and commutator of these operators in Morrey spaces have been studied by
Chiarenza and Frasca in [4]. Komori and Shirai [5] introduced a version of the weighted
Morrey space Lp,κ(ω), which is a natural generalization of the weighted Lebesgue space
Lp(ω).

As the development of singular integral operators, their commutators have been well
studied [6–8]. In [7], the authors proved that the commutators [b,T], which generated by
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Calderón-Zygmund singular integral operator and BMO functions, are bounded on Lp

for 1< p<∞. The commutator generated by the Calderón-Zygmund operator T and a
locally integrable function b can be regarded as a special case of the Toeplitz operator

Tb=
Q

∑
k=1

Tk,1MbTk,2, (1.1)

where Tk,1 and Tk,2 are the Calderón-Zygmund operators or ±I (the identity operator),
Mb f =b f . When b∈BMO, the Lp-boundedness of Tb was discussed, see [9,10]. In [11,12],
the authors studied the boundedness of Tb on Morrey spaces.

Let K(x,ξ) : Rn×Rn\{0} → R be a variable kernel with mixed homogeneity. The
singular integral operator is defined by

T f (x)= p.v.
∫

Rn
K(x,x−y) f (y)dy. (1.2)

The variable kernel K(x,ξ) depends on some parameter x and possesses good prop-
erties with respect to the second variable ξ, which was firstly introduced by Fabes and
Rieviéve in [13]. They generalized the classical Calderón-Zygmund kernel and the
parabolic kernel studied by Jones in [14]. By introducing a new metric ρ, Fabes and
Rieviéve studied (1.2) in Lp(Rn), where Rn was endowed with the topology induced by
ρ and defined by ellipsoids.

By using this metric ρ, Softova in [15] obtained that the integral operator (1.2) and
its commutator were continuous in generalized Morrey space Lp,ω(Rn), 1 < p < ∞, ω

satisfying suitable conditions. Ye and Zhu in [16] discussed the continuity of (1.2) and its
multilinear commutator in the weighted Morrey spaces Lp,κ(ω), 1< p<∞, 0<κ<1, and
ω is Ap weight.

Suppose Tk,1 and Tk,2 are singular integrals whose kernels are variable kernel with
mixed homogeneity or ±I (the identity operator). In this paper, we study the bound-
edness of Toeplitz operators Tb as (1.1) in weighted Morrey spaces when b belongs to
weighted Lipschitz spaces and weighted BMO spaces, respectively. The main results are
as follows.

Theorem 1.1. Suppose that Tb is a Toeplitz type operator associated to singular integral operator
with variable kernel, ω∈A1, and b∈Lipβ,ω. Let 0<κ< p/q, 1< p<n/β and 1/q=1/p−β/n.

If T1( f )=0 for any f ∈Lp,κ(ω), then there exists a constant C>0 such that,

‖Tb( f )‖Lq,κq/p(ω1−q,ω)≤C‖b‖Lipβ,ω
‖ f‖Lp,κ(ω).

Theorem 1.2. Suppose that Tb is a Toeplitz type operator associated to singular integral operator
with variable kernel, ω∈A1, and b∈BMO(ω). Let 1< p<∞, and 0<κ<1. If T1( f )=0 for any
f ∈Lp,κ(ω), then there exists a constant C>0 such that,

‖Tb( f )‖Lp,κ(ω1−p,ω)≤C‖b‖∗,ω‖b‖Lp,κ(ω).
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2 Some preliminaries

Let α1,··· ,αn be real numbers, αi≥1 and define α=∑
n
i=1αi. Following Fabes and Riviére [6],

the function F(x,ρ)=∑
n
i=1 x2

i ρ−2αi , for any fixed x, is a decreasing one with respect to ρ>0
and the equation F(x,ρ)= 1 is uniquely solvable in ρ(x). It is easy to check that ρ(x−y)
defines a distance between any two points x,y∈Rn. Thus Rn endowed with the metric
ρ results a homogeneous metric space [13, 15]. The balls with respect to ρ(x) centered at
the origin and of radius r are the ellipsoids

Er(0)=
{

x∈R
n :

x2
1

ρ2α1
+···+

x2
n

ρ2αn
<1

}

with Lebesgue measure |Er|=C(n)rα. It is easy to see that E1(0) coincides with the unit
sphere Sn−1 with respect to the Euclidean metric.

Definition 2.1. The function K(x,ξ) : Rn×Rn\{0}→R is called a variable kernel with
mixed homogeneity if:

(i) for every fixed x, the function K(x,·) is a constant kernel satisfying

(1) K(x,·)∈C∞(Rn\{0}),

(2) for any µ>0, αi ≥1, α=∑
n
i=1αi

K(x,µα1 ξ1,··· ,µαn ξn)=µ−αK(x,ξ),

(3)
∫

Sn−1 K(x,ξ)dξ=0 and
∫

Sn−1 |K(x,ξ)|dξ<∞,

(ii) for every multiindex β, supξ∈Sn−1 |D
β
ξ K(x,ξ)|≤C(β) independent of x.

Note that in the special case αi = 1, 1≤ i≤ n, Definition 2.1 gives rise to the classical
Calderón-Zygmund kernels. When αi = 1, 1≤ i≤ n−1, and αn ≥ 1, we obtain the kernel
studied by Jones in [14] and discussed in [13].

A weight ω is a nonnegative, locally integrable function on Rn. Let E=Er(x0) denote
the ellipsoid with the center x0 and radius r. For a given weight function ω and a mea-
surable set E, we also denote the Lebesgue measure of E by |E| and set weighted measure
ω(E)=

∫

E ω(x)dx. For any given weight function ω on Rn, 0< p<∞, denote by Lp(ω)
the space of all function f satisfying

‖ f‖Lp(ω)=
(

∫

Rn
| f (x)|pω(x)dx

)1/p
<∞.

A weight ω is said to belong to the Muckenhoupt class Ap for 1< p<∞, if there exists
a constant C such that

( 1

|E|

∫

E

ω(x)dx
)( 1

|E|

∫

E

ω(x)−
1

p−1 dx
)p−1

≤C
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for every ellipsoid E. The class A1 is defined by replacing the above inequality with

1

|E|

∫

E

ω(y)dy≤C ·ess inf
x∈E

w(x)

for every ball E.
The classical Ap weight theory was first introduced by Muckenhoupt in the study of

weighted Lp-boundedness of Hardy-Littlewood maximal function in [17].

Lemma 2.1. Suppose ω∈A1. Then

(i) there exists a ǫ>0 such that

( 1

|E|

∫

E

ω(x)1+ǫdx
)1/(1+ǫ)

≤
C

|E|

∫

E

ω(x)dx, (2.1)

(ii) there exist two constant C1 and C2, such that

C1ω(E)≤|E| inf
x∈E

ω(x)≤C2ω(E). (2.2)

Let us recall the definition of weighted Lipschitz function space and weighted BMO
function space.

Definition 2.2. For 1≤ p<∞, 0<β<1, and ω∈A∞. A locally integrable function b is said
to be in the weighted Lipschitz function space if

sup
E

1

ω(E)β/n

[ 1

ω(E)

∫

E

|b(x)−bE|
pω(x)1−pdx

]1/p
≤C<∞,

where bE= |E|−1
∫

E
b(y)dy, and the supremum is taken over all ellipsoids E.

The Banach space of such functions modulo constants is denoted by Lipβ,p(ω). The
smallest bound C satisfying conditions above is then taken to be the norm of b denoted by
‖b‖Lip

β,p
(ω). Put Lipβ,ω=Lipβ,1(ω). Obviously, for the case ω=1, the Lip

β,p
(ω) space is the

classical Lipβ space. Let ω∈ A1. Garcı́a-Cuerva in [18] proved that the spaces Lipβ,p(ω)
coincide, and the norms ‖b‖Lip

β,p
(ω) are equivalent with respect to different values of p

provided that 1≤ p < ∞. Since we always discuss under the assumption ω ∈ A1 in the
following, then we denote the norm of Lipβ,p(ω) by ‖·‖Lipβ,ω

for 1≤ p<∞.

Definition 2.3 (see [6]). Let b be a locally integrable function and ω be a weight func-
tion. A locally integrable function b is said to be in the weighted BMO function space
BMO(ω), if there exists a constant C such that

‖b‖∗,ω =sup
E

1

ω(E)

∫

E

|b(y)−bE|dy<∞,

where bE= |E|−1
∫

E
b(y)dy, and the supremum is taken over all ellipsoids E.
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If ω∈A1, Garcı́n-Cuera in [19] showed that

C1‖b‖∗,ω ≤sup
E

( 1

ω(E)

∫

E

|b(x)−bE|
pω(x)1−pdy

)1/p
≤C2‖b‖∗,ω

for 1≤ p<∞.
Now we shall introduce the Hardy-Littlewood maximal operator and several vari-

ants.
For a given measurable function f ∈ L1

loc(R
n), define the Hardy-Littlewood maximal

operator M f and the sharp maximal operator M♯ f as

M( f )(x)=sup
x∈E

1

|E|

∫

E

| f (y)|dy,

M♯( f )(x)=sup
x∈E

1

|E|

∫

E

| f (y)− fE|dy≈sup
x∈E

inf
c

1

|E|

∫

E

| f (y)−c|dy.

For 1≤ r<∞, the weighted maximal operator Mω,r f is defined by

Mω,r( f )(x)=sup
x∈E

( 1

ω(E)

∫

E

| f (y)|rω(y)dy
)1/r

.

For 0<β<n, and 1≤ r<∞, we define the fractional weighted maximal operator Mβ,ω,r f
by

Mβ,ω,r( f )(x)=sup
x∈E

( 1

ω(E)1−rβ/n

∫

E

| f (y)|rω(y)dy
)1/r

,

where the supremum is taken over all ellipsoids E.

Definition 2.4. Let 1≤ p<∞, 0≤κ<1 and ω be a weight function. Then for two weights
µ and ν, the weighted Morrey space is defined by

Lp,κ(µ,ν)=
{

f ∈L
p
loc(µ) :‖ f‖Lp,κ(µ,ν)<∞

}

,

where

‖ f‖Lp,κ(µ,ν)=sup
E

( 1

ν(E)κ

∫

E

| f (x)|pµ(x)dx
)1/p

,

and the supremum is taken over all ellipsoids E.

If ν=µ, then we have the classical Morrey space Lp,κ(µ) with measure µ.

Lemma 2.2 (see [20]). Suppose ω∈∪1≤t<∞ At.

(i) If 1≤ r< p<∞, and 0<κ<1, then

‖Mω,r f‖Lp,κ(ω)≤C‖ f‖Lp,κ(ω). (2.3)

(ii) If 0<β<n, 1≤ r< p<n/β, 1/q=1/p−β/n and 0<κ< p/q, then

‖Mβ,ω,r f‖Lq,κq/p(ω)≤C‖ f‖Lp,κ(ω). (2.4)
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Lemma 2.3 (see [16]). Let T be a singular integral operator with variable kernel, 1< p<∞ and
1<κ<1. If ω∈Ap, then there exists a constant C>0 such that

‖T f‖Lp,κ(ω)≤C‖ f‖Lp,κ(ω). (2.5)

In view of Proposition 3.1 in [20], we have

Lemma 2.4. Let 0<κ<1 and 1<p<∞. If µ,ν∈A∞, then for every f∈Lloc with M♯ f∈Lp,κ(µ,ν),
there exists a constant C such that

‖M( f )‖Lp,κ(µ,ν)≤C‖M♯ f‖Lp,κ(µ,ν). (2.6)

The following lemmas play a critical role in the proof of our theorems.

Lemma 2.5. Suppose ω∈ A1, and b∈ Lipβ,ω (0< β< 1). Then there exist a sufficiently large
number s and a constant C>0 such that, for every f ∈Lp(ω) with p>1 and 1< r< p, we have

( 1

|E|

∫

E

|b(x)−bE|
s′ | f (x)|s

′
dx

)
1
s′

≤C‖b‖Lipβ,ω
ω(x)Mβ,ω,r( f )(x), (2.7)

where 1/s+1/s′=1.

Proof. Let r2 = r/s′, r3 = ǫ/(s′−1) and 1/r1+1/r2+1/r3 = 1, where ǫ is the constant in
Lemma 2.1. Choosing a sufficiently large number s such that 1<s′<r(1+ǫ)/(r+ǫ), then
r1,r2,r3>1. By Hölder’s inequality, we have

( 1

|E|

∫

E

|b(x)−bE|
s′ | f (x)|s

′
dx

)
1
s′

=|E|−
1
s′

(

∫

E

|b(x)−bE|
s′ω(x)

1
r1
−s′

| f (x)|s
′
ω(x)

1
r2 ω(x)

s′− 1
r1
− 1

r2 dx
)

1
s′

≤C|E|−
1
s′

(

∫

E

|b(x)−bE|
r1s′ω(x)1−r1s′dx

)
1

r1s′ (
∫

B
| f (x)|r2s′ω(x)dx

)
1

r2s′

×
(

∫

E

ω(x)1+r3(s
′−1)dx

)
1

r3s′

.

Since b∈Lipβ,ω, and ω∈A1, by (2.1), (2.2) we get

( 1

|E|

∫

E

|b(x)−bE|
s′ | f (x)|s

′
dx

)
1
s′

≤C‖b‖Lipβ,ω
|E|−

1
s′ ω(E)

β
n+

1
r1s′

(

∫

B
| f (x)|rω(x)dx

)
1
r
(

∫

E

ω(x)1+ǫdx
)

1
r3s′

≤C‖b‖Lipβ,ω

ω(E)1+ β
n

|E|

( 1

ω(E)

∫

B
| f (x)|rω(x)dx

)
1
r

≤C‖b‖Lipβ,ω
ω(x)Mβ,ω,r( f )(x).
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Similar to the proof of Lemma 2.5, we have

Lemma 2.6. Suppose ω∈A1, and b∈BMO(ω). Then there exist sufficiently large number s and
constant C>0 such that, for every f ∈Lp(ω) with p>1 and 1< r< p, we have

( 1

|E|

∫

E

|b(x)−bE|
s′ | f (x)|s

′
dx

)
1
s′

≤Cω(x)‖b‖∗,ω Mω,r( f )(x), (2.8)

where 1/s+1/s′=1.

Finally, we need the spherical harmonics and their properties (see more detail in [13,
15]). Recall that any homogeneous polynomial P :Rn→R of degree m that satisfies ∆P=0
is called an n-dimensional solid harmonic of degree m. Its restriction to the unit sphere
Sn−1 will be called an n-dimensional spherical harmonic of degree m Denote by Hm the
space of all n-dimensional spherical harmonics of degree m. In general it results in a finite
dimensional linear space with gm =dimHm such that g0=1, g1 =n and

gm =Cn−1
m+n−1−Cn−1

m+n−3≤C(n)mn−2, m≥2. (2.9)

Furthermore, let {Ysm}
gm

s=1 be an orthonormal base of Hm, then {Ysm}
gm∞

s=1m=0 is a complete
orthonormal system in L2(Sn−1) and

sup
x∈Sn−1

|D
β
xYsm(x)|≤C(n)m|β|+(n−2)/2, m=1,2,··· . (2.10)

If, for instance, φ∈C∞(Sn−1), then ∑s,mbsmYsm is the Fourier series expansion of φ(x) with
respect to {Ysm}sm then

bsm=
∫

Sn−1
φ(y)Ysm(y)dσ, |bsm|≤C(n,l)m−2l sup

|β|=2l

sup
y∈Sn−1

|D
β
y φ(y)|, (2.11)

for any integer l. In particular, the expansion of φ into spherical harmonics converges
uniformly to φ. For the proof of the above results see [21].

Let x,y∈Rn, and

y=
y

ρ(y)
=
( y1

ρ(y)α1
,··· ,

yn

ρ(y)αn

)

∈S
n−1.

In view of the properties of the kernel K with respect to the second variable and the
complete of {Ysm(x)} in L2(Sn−1), we get

K(x,x−y)=ρ(x−y)−αK(x,x−y)

=ρ(x−y)−α
∞

∑
m=1

gm

∑
s=1

bsm(x)Ysm(x−y).



Y. X. He and Y. S. Wang / Anal. Theory Appl., 32 (2016), pp. 90-102 97

Replacing the kernel with its series expansion, (1.2) can be written as

T( f )(x)= lim
ǫ→0

Tǫ( f )(x)

= lim
ǫ→0

∫

ρ(x−y)>ǫ

∞

∑
m=1

gm

∑
s=1

bsm(x)ρ(x−y)−αYsm(x−y) f (y)dy.

From the properties of (2.9)-(2.11), the series expansion

∣

∣

∣

N

∑
m=1

gm

∑
s=1

bsm(x)ρ(x−y)−αYsm(x−y) f (y) f (y)
∣

∣

∣

≤C(n,α)
| f (y)|

ρ(x−y)α

∞

∑
m=1

m3(n−2)/2−2l,

where the integer l is preliminarily chosen greater than (3n−2)/4. Along with the ρ(x−
y)−α f (y)∈ L1(Rn) for almost everywhere x∈Rn, by the Fubini dominated convergence
theorem, we have

T( f )(x)=
∞

∑
m=1

gm

∑
s=1

bsm(x) lim
ǫ→0

∫

ρ(x−y)>ǫ
Hsm(x−y) f (y)dy

=
∞

∑
m=1

gm

∑
s=1

bsm(x)Tsm f (x), (2.12)

where

Hsm(x−y)=ρ(x−y)−αYsm(x−y),

and Hsm satisfies pointwise Hörmander condition as following

|Hsm(x−y)−Hsm(x0−y)|≤C(n,α)mn/2 ρ(x0−x)

ρ(x−y)α+1
(2.13)

for each x∈E and y /∈2E (see [15, Lemma 3.2]). Then

Tsm f (x)= lim
ǫ→0

∫

ρ(x−y)>ǫ
Hsm(x−y) f (y)dy

=p.v.
∫

Rn
Hsm(x−y) f (y)dy (2.14)

is a classical Calderón-Zygmund operator with a constant kernel.
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3 Proof of theorems

Proof of Theorem 1.1. We only give the proof of Theorem 1.1, since the proof of Theorem
1.2 is similar to Theorem 1.1. Let

Tb( f )(x)=
Q

∑
k=1

Tk,1MbTk,2( f )(x).

Without loss generality, we may assume Tk,1 (k=1,··· ,Q) are singular integral operators
with variable kernel. By (2.12),

Tb( f )(x)=
Q

∑
k=1

∞

∑
m=1

gm

∑
s=1

bk,1
sm(x)Tk,1

sm MbTk,2( f )(x),

where

Tk,1
sm ( f )(x)=

∫

Rn
Hk,1

sm(x−y) f (y)dy

are classical Calderón-Zygmund operator with constant kernel as (2.14). Set E for the
ellipsoid centered at x0 and of radius r, and let E∋ x. Since T1(g)=0 for any g∈ Lp,κ(ω),
then

Tb( f )(x)=
Q

∑
k=1

∞

∑
m=1

gm

∑
s=1

bk,1
sm(x)Tk,1

sm Mb−b2ETk,2( f )(x).

We first prove

M♯Tk,1
sm Mb−b2ETk,2( f )(x)

≤Cmn/2‖b‖Lipβ,ω
ω(x)

(

Mβ,ω,r(T
k,2( f ))(x)+Mβ,ω,1(T

k,2( f ))(x)
)

(3.1)

for arbitrary x∈E. We write Tk,1
sm Mb−b2ETk,2( f )(x) as

Tk,1
sm Mb−b2ETk,2( f )(y)

=Tk,1
sm M(b−b2E)χ2ETk,2( f )(y)+Tk,1

sm M(b−b2E)χ(2E)c Tk,2( f )(y)

=U1(y)+U2(y).

Taking c=U2(x0), then

1

|E|

∫

E

|Tk,1
sm Mb−b2ETk,2( f )(y)−c|dy

≤
1

|E|

∫

E

|U1(y)|dy+
1

|E|

∫

E

|U2(y)−U2(x0)|dy

= M1+M2.
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Choosing a sufficiently large number s and by Hölder’s inequality, the boundedness

of Tk,1
sm in Ls′(Rn) and Lemma 2.5, we have

M1=
1

|E|

∫

E

|Tk,1
sm M(b−b2E)χ2ETk,2( f )(y)|dy

≤
( 1

|E|

∫

E

|Tk,1
sm M(b−b2E)χ2ETk,2( f )(y)|s

′
dy

)1/s′

≤C
( 1

|E|

∫

Rn
|M(b−b2E)χ2ETk,2( f )(y)|s

′
dy

)1/s′

≤C‖b‖Lipβ,ω
ω(x)Mβ,ω,r(T

k,2( f ))(x).

For any y∈E, and z∈ (2E)c , we have ρ(y−z)∼ρ(x0−z). Then by (2.13) we get,

M2≤
1

|E|

∫

E

|Tk,1
sm M(b−b2E)χ(2E)c Tk,2( f )(y)−Tk,1

sm M(b−b2E)χ(2E)c Tk,2( f )(x0)|dy

≤C
1

|E|

∫

E

∫

(2E)c
|b(z)−b2E||H

k,1
sm (y−z)−Hk,1

sm (x0−z)||Tk,2( f )(z)|dzdy

≤Cmn/2 1

|E|

∫

E

∫

(2E)c
|b(z)−b2E|

ρ(x0−y)

ρ(y−z)α+1
|Tk,2( f )(z)|dzdy

≤Cmn/2
∞

∑
j=1

∫

2j+1E\2jE

|b(z)−b2E|
ρ(x0−y)

ρ(x0−z)α+1
Tk,2( f )(z)|dz

≤Cmn/2
∞

∑
j=1

r

(2kr)α+1

∫

2j+1E

|b(z)−b2E||T
k,2( f )(z)|dz

≤Cmn/2
∞

∑
j=1

2−j|b2j+1E−b2E|
1

|2j+1E|

∫

2j+1E

|Tk,2( f )(z)|dz

+Cmn/2
∞

∑
j=1

2−j 1

|2j+1E|

∫

2j+1E

|b(z)−b2j+1E||T
k,2( f )(z)|dz

=M21+M22.

Note that ω∈A1, and

|b2j+1E−b2E|≤
j

∑
k=1

1

|2kE|

∫

2k+1E

|b(z)−b2k+1E|dz

≤C‖b‖Lipβ,ω

j

∑
k=1

ω(2k+1
E)1+β/n

|2kE|

≤C‖b‖Lipβ,ω

j

∑
k=1

inf
x∈2k+1E

ω(x)ω(2k+1
E)

β
n

≤Cj‖b‖Lipβ,ω
ω(x)ω(2j+1

E)β/n,
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then by (2.2), we get

M21=Cmn/2
∞

∑
j=1

2−j|b2j+1E−b2E|
1

|2j+1E|

∫

2j+1E

|Tk,2( f )(z)|dz

≤Cmn/2
∞

∑
j=1

2−j|b2j+1E−b2E|
1

ω(2j+1E)

∫

2j+1E

|Tk,2( f )(z)|ω(z)dz

≤Cmn/2‖b‖Lipβ,ω
ω(x)

∞

∑
j=1

j2−j 1

ω(2j+1E)1−β/n

∫

2j+1E

|Tk,2( f )(z)|ω(z)dz

≤Cmn/2‖b‖Lipβ,ω
ω(x)Mβ,ω,1(T

k,2( f ))(x)
∞

∑
j=1

j2−j

≤Cmn/2‖b‖Lipβ,ω
ω(x)Mβ,ω,1(T

k,2( f ))(x).

By Hölder’s inequality,

M22=Cmn/2
∞

∑
j=1

2−j 1

|2j+1E|

∫

2j+1E

|b(z)−b2j+1E||T
k,2( f )(z)|dz

≤Cmn/2
∞

∑
j=1

2−j
( 1

|2j+1E|

∫

2j+1E

|b(z)−b2j+1E|
r′ω(z)1−r′dz

)
1
r′

×
( 1

|2j+1E|

∫

2j+1E

|Tk,2( f )(z)|rω(z)dz
)

1
r

≤Cmn/2‖b‖Lipβ,ω

∞

∑
j=1

2−j ω(2j+1
E)1+β/n

|2j+1E|

×
( 1

ω(2j+1E)

∫

2j+1E

|Tk,2( f )(z)|rω(z)dz
)

1
r

≤Cmn/2‖b‖Lipβ,ω
ω(x)Mβ,ω,r(T

k,2( f ))(x)
∞

∑
j=1

2−j

≤Cmn/2‖b‖Lipβ,ω
ω(x)Mβ,ω,r(T

k,2( f ))(x).

Hence

M2≤Cmn/2‖b‖Lipβ,ω
ω(x)(Mβ,ω,r(T

k,2( f ))(x)+Mβ,ω,1(T
k,2( f ))(x)).

Combining the estimates for M1 and M2, we finish the proof of (3.1).

Since ω∈ A1 implies ω1−q ∈ Aq, by Lemma 2.4, (3.1), Lemma 2.2 and Lemma 2.3, we
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have

‖Tk,1
sm Mb−b2ETk,2( f )‖Lq,κq/p(ω1−q,ω)

≤‖MTk,1
sm Mb−b2ETk,2( f )‖Lq,κq/p(ω1−q,ω)

≤‖M♯Tk,1
sm Mb−b2ETk,2( f )‖Lq,κq/p(ω1−q,ω)

≤Cmn/2‖b‖Lipβ,ω
‖ω(·)(Mβ,ω,r(T

k,2( f ))+Mβ,ω,1(T
k,2( f )))‖Lq,κq/p(ω1−q,ω)

=Cmn/2‖b‖Lipβ,ω
‖Mβ,ω,r(T

k,2( f ))+Mβ,ω,1(T
k,2( f )‖Lq,κq/p(ω)

≤Cmn/2‖b‖Lipβ,ω
‖Tk,2 f‖Lp,κ(ω)

≤Cmn/2‖b‖Lipβ,ω
‖ f‖Lp,κ(ω).

Choosing l> (3n−2)/4, then

‖Tb( f )‖Lq,κq/p(ω1−q,ω)

≤
∥

∥

∥

Q

∑
k=1

∞

∑
m=1

gm

∑
s=1

bk,1
sm(x)Tk,1

sm Mb−b2ETk,2( f )(x)
∥

∥

∥

Lq,κq/p(ω1−q,ω)

≤
Q

∑
k=1

∞

∑
m=1

gm

∑
s=1

‖bk,1
sm(x)‖L∞‖Tk,1

sm Mb−b2ETk,2( f )‖Lq,κq/p(ω1−q,ω)

≤C‖b‖Lipβ,ω
‖ f‖Lp,κ(ω)

Q

∑
k=1

∞

∑
m=1

gm

∑
s=1

m−2l+n/2

≤C‖b‖Lipβ,ω
‖ f‖Lp,κ(ω)

∞

∑
m=1

m−2l+n/2+n−2

≤C‖b‖Lipβ,ω
‖ f‖Lp,κ(ω).

This finishes the proof of Theorem 1.1. �
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