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Abstract. Extension Principles play a significant role in the construction of MRA based
wavelet frames and have attracted much attention for their potential applications in
various scientific fields. A novel and simple procedure for the construction of tight
wavelet frames generated by the Walsh polynomials using Extension Principles was
recently considered by Shah in [Tight wavelet frames generated by the Walsh poly-
nomials, Int. J. Wavelets, Multiresolut. Inf. Process., 11(6) (2013), 1350042]. In this
paper, we establish a complete characterization of tight wavelet frames generated by
the Walsh polynomials in terms of the polyphase matrices formed by the polyphase
components of the Walsh polynomials.
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1 Introduction

The most common method to construct tight wavelet frames relies on the so-called Uni-
tary Extension Principles (UEP) introduced by Ron and Shen [11] and were subsequently
extended by Daubechies et al. [2] in the form of the Oblique Extension Principle (OEP).
They give sufficient conditions for constructing tight and dual wavelet frames for any
given refinable function ¢(x), which generates a multiresolution analysis. The resulting
wavelet frames are based on multiresolution analysis, and the generators are often called
framelets. These methods of construction of wavelet frames are generalized from one-
dimension to higher-dimension, tight frames to dual frames, from single scaling function
to a scaling function vector. Moreover, these principles are important because they can be
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used to construct wavelets from refinable functions which may not be scaling functions
with desirable properties such as symmetry and antisymmetry, smoothness or compact
support. To mention only a few references on tight wavelet frames, the reader is referred
to [4,6,9].

The past decade has also witnessed a tremendous interest in the problem of construct-
ing compactly supported orthonormal scaling functions and wavelets with an arbitrary
dilation factor p > 2, p € N (see Debnath and Shah [3]). The motivation comes partly
from signal processing and numerical applications, where such wavelets are useful in
image compression and feature extraction because of their small support and multifrac-
tal structure. Lang [10] constructed several examples of compactly supported wavelets
for the Cantor dyadic group by following the procedure of Daubechies [1] via scaling
filters and these wavelets turn out to be certain lacunary Walsh series on the real line.
Kozyrev [8] found a compactly supported p-adic wavelet basis for L?(Q,) which is an
analog of the Haar basis. The concept of multiresolution analysis on a positive half-line
R™ was recently introduced by Farkov [5]. He pointed out a method for constructing
compactly supported orthogonal p-wavelets related to the Walsh functions, and proved
necessary and sufficient conditions for scaling filters with p” many terms (p,n>2) to gen-
erate a p-MRA in L?(R"). Subsequently, dyadic wavelet frames on the positive half-line
R were constructed by Shah and Debnath in [17] using the machinery of Walsh-Fourier
transforms. They have established a necessary and sufficient conditions for the system
{;x(x) =2"*p(2xEk):j€Z, k€ Z"} to be a frame for L*(IRT). Wavelet packets and
wavelet frame packets related to the Walsh polynomials were deeply investigated in a
series of papers by the author in [13,14,18]. Recent results in this direction can also be
found in [6,16] and the references therein.

The second author of this article wrote an article [15] that focuses on the construction
of tight wavelet frames generated by the Walsh polynomials on a half-line R based
on the ideas from unitary extension principles. More precisely, the author provide a
sufficient condition for finite number of functions {{1,¥,---, {1} to form a tight wavelet
frame for L?(IR ") and established a characterization of tight wavelet frames on a positive

half-line R* by virtue of the modulation matrix M(&)={h,(¢+k/p) }2’,5:01 formed by the
Walsh polynomials 1,(¢), £=0,1,---,L associated with the scaling function ¢(x) and basic
wavelets ¥y (x), {=1,---,L.

Since the modulation matrix involved in the unitary extension principle has a partic-
ular structure and all the information is contained in the first column; the other columns
can be derived from the first column by shifting the arguments. On contrary to this, a
polyphase matrix is un-structured and this gives an opportunity to create new wavelets
from existing ones by multiplying the polyphase matrix by some other appropriate ma-
trix factor. In this paper, we take this opportunity and establish a complete charac-
terization of tight wavelet frames generated by the Walsh polynomials in terms of the

polyphase matrix T'(§) = {p, (&)} Z,;:lo formed by the polyphase components i ,(¢),
r=0,1,---,p—1 of the Walsh polynomials /().
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The rest of this paper is organized as follows. In Section 2, we introduce some nota-
tions and preliminaries related to the operations on positive half-line R* including the
definitions of Walsh-Fourier transform and MRA based wavelet frames related to the
Walsh polynomials. In Section 3, we prove the main result of this article, shows that a
unitary polyphase matrix leads to a tight wavelet frame generated by the Walsh polyno-
mials.

2 Walsh-Fourier analysis and MRA based wavelet frames

We start this section with certain results on Walsh-Fourier analysis. We present a brief
review of generalized Walsh functions, Walsh-Fourier transforms and its various proper-
ties.

As usual, let RT =[0,+00), ZT ={0,1,2,---} and N=2Z"—{0}. Denote by [x] the
integer part of x. Let p be a fixed natural number greater than 1. For x € R" and any
positive integer j, we set

=[p/x](mod p),  x_j=[p'x](mod p), 2.1)

where x;,x_;€{0,1,---,p—1}. Itis clear that for each x € R, there exist k=k(x) in N such
thatx_;=0, Vj> k.
Consider on R™ the addition defined as follows:

xoy=Y Gp T+ Y gr
j<0 j>0
with {;=x;+y;(mod p), j€ Z\ {0}, where {; € {0,1,---,p—1} and x;, y; are calculated by
(2.1). As usual, we write z=x0Oy if z®y = x, where © denotes subtraction modulo p in
R".
For x€10,1), let ro(x) is given by

{ 1, if x€[0,1/p),

ey, if xe[lp™,((+1)p7h), £=1,2,---,p—1,

ro(x) =

where e, = exp(27i/p). The extension of the function ry to R™ is given by the equality
ro(x+1)=ro(x), x€R™. Then, the generalized Walsh functions {w,,(x):meZ*} are defined
by

k

wo(x)=1 and  wy(x)=]](ro(p'x))",
j=0

where

k .
m=Y wip!, wj€{0,1,--,p—1}, u#0.
=0
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They have many properties similar to those of the Haar functions and trigonometric se-
ries, and form a complete orthogonal system. Further, by a Walsh polynomial we shall
mean a finite linear combination of Walsh functions.

For x,y € R, let

2771 & ) 22)

x(xy —eXP(TZ XjY—j+x—jy;
j=1

where x;, y; are given by (2.1).
We observe that

X(x,%)zx(}fﬂ,m) wm(%), Vxe0,p"), mmneZ",

x(xoy,z) =x(x2)x(v.2), x(xoyz)=x(x2)xV.2),

where x,y,z€ R" and x®y is p-adic irrational. It is well known that systems {x(«,-)}$_,
and {x(-,&)}%_, are orthonormal bases in L? in [0,1] (see Golubov et al. [7]).
The Walsh-Fourier transform of a function f € L}(RT)NL?(IR™) is defined by

f@)= [ fextedx, @3)

where x(x,¢) is given by (2.2). The Walsh-Fourier operator F: L' (R*)NL2(R*)—L2(R"),
Ff=f, extends uniquely to the whole space L2(IR*). The properties of the Walsh-Fourier

transform are quite similar to those of the classic Fourier transform (see [7,12]). In partic-
ular, if f € L2(R"), then f € L?(R™) and

112 ey = 1 2 e -
For given ¥:= {y,---, 1 } CL*(RT), define the wavelet system

Fy:={9j:1<t<L,jeZ keZ"}, (2:4)

where 7, =p//>¢! (p/-©k). The wavelet system Fy is called a framelet system, if there exist
positive numbers 0 < A < B < oo such that for all f € L?(R")

AHfH2<ZZ Y [Fto | <B f]a (2.5)

(=1jeZkeZ*

The largest A and the smallest B for which (2.5) holds are called wavelet frame bounds.
A wavelet frame is a tight wavelet frame if A and B are chosen such that A= B and then
generators 1,9y, -, i, are often referred as framelets. If only the right-hand inequality in
(2.5) holds, then Fy is called a Bessel sequence.
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Next, we give a brief account of the MRA based wavelet frames generated by the
Walsh polynomials on a positive half-line R*. Following the unitary extension principle,
one often starts with a refinable function or even with a refinement mask to construct
desired wavelet frames. A compactly supported function ¢ € L?(R™) is called a refinable
function, if it satisfies an equation of the type

pi-1
P(x)=p ) cxp(pxSk), x€RT, (2.6)
k=0
where ¢ are complex coefficients. Applying the Walsh-Fourier transform, we can write
this equation as

$(&)=ho(p~'&)p(p'E), (2.7)
where
p'-1
ho(¢)=Y_ crwi(¢) (2.8)
k=0

is a generalized Walsh polynomial, which is called the mask or symbol of the refinable func-
tion ¢ and is of course a p-adic step function. Observe that

~

wi(0)=¢(0)=1.
Hence, letting ¢ =0 in (2.7) and (2.8), we obtain

pi-1
Z Ck:1.
k=0

Since ¢ is compactly supported and in fact suppg C [0,p" 1), therefore € €, _1 (R ") and
hence as a result ¢(&) =1 forall € [0,p' ") as $(0) =1.

For a compactly supported refinable function ¢ € L?>(IR™"), let V; be the closed shift
invariant space generated by {¢(xok):k€Z"} and Vij={¢(p/x):p €V}, jEZ. Then, itis
proved in [5] that the closed subspaces {V;:j € Z} forms a p-multiresolution analysis (p-
MRA) for L*(R ™). Recall that a p-MRA is a family of closed subspaces {V;}jcz of L*(R™)
that satisfies: (i) V; C Vj11, j€Z, (i) Ujez Vj is dense in L>(R™) and (iii) Nz Vj={0}. We
further assume that

|$(0)>=1 and ]1Lr?o]¢(pj§)|:0 for a.e. F€RT. (2.9)

Given an p-MRA generated by a compactly supported refinable function ¢(x), one
can construct a set of basic tight framelets ¥ = {¢y,---, {1} C V; satisfying

&) =h(p'O)P(p'E), (2.10)
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where
Z diwi(€), (=1,---,L, (2.11)

are the generalized Walsh polynomials in L?[0,1] and are called the framelet symbols or
wavelet masks.

With hy(¢), £=0,1,---,L, L > p—1, as the Walsh polynomials (wavelet masks), we
formulate the matrix M(¢) as:

ho(§)  ho(§B1/p) -+ ho(E®(p—1)/p)
M(G) = hl@ hl(ée?l/r)) hl(g@(ﬁ_l)/p) . (2.12)
hi(§) hu(cel/p) - hu(§e(p—1)/p)

The so-called unitary extension principle (UEP) provides a sufficient condition on ¥ =
{1,---, 91} such that the wavelet system Fy given by (2.4) forms a tight frame of L2(R™").
In this connection, Shah [15] gave an explicit construction scheme for the construction of
tight wavelet frames generated by the Walsh polynomials using unitary extension prin-
ciples in the following way.

Theorem 2.1. Let ¢(x) be a compactly supported refinable function and $(0) =1. Then, the
wavelet system Fy given by (2.4) constitutes a normalized tight wavelet frame in L?>(R™) pro-
vided the matrix M(¢) as defined in (2.12) satisfies

MEG)M* () =1y, for ae.lco(Vy), (2.13)

where

o(vo):i={¢e01]: ¥ [§(zek) 2 #0},

keZ+

3 Polyphase matrix characterization of tight wavelet frames

Motivated and inspired by the construction of tight wavelet frames generated by the
Walsh polynomials [15] using the machinery of unitary extension principles. In this sec-
tion, we shall first derive the polyphase representation of the Walsh polynomials (wavelet
masks) and then establish a complete characterization of tight wavelet frames generated
by the Walsh polynomials by means of their polyphase components.

The polyphase representation of the refinement mask /(&) can be derived by using the
properties of Walsh polynomials as

p'—=1p-1

pi-1
&)=Y cxwe( Z Zcpk+mwpk+m ¢)
k=0
p—1 1
:mZ::me(C) I;) Cpk+mwk(p€) = ﬁmzzzoyo,m(l?@wm( ),
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where

p'—1
Hom($)=+/pP Z Cpk+mwk(€), m=0,1,---,p—1. (3.1)
k=0

Similarly, the wavelet masks 7,(¢), 1 < ¢ <L, as defined in (2.11) can be splitted into
polyphase components as

y
h =— " m(C), 3.2
(¢) \/?n;ow’ (PS)wm($) (3.2)
where
prlo1
Hom(@)=VP Y, dyntor(@), m=01,--,p—1. (3.3)
=0

With the polyphase components given by (3.1) and (3.3), we formulate the polyphase ma-
trix T'(¢) as:

poo(8)  po(@) - pro(@)
r()= Plo,f(C) ,ul,l:(g) P‘L,l:(é) (3.4
pop-1(8) prp-1(8) - HLp-1(8)
The polyphase matrix I'(§) is called a unitary matrix if
L(pd)T*(p&)=1,, ae. £€[01], (3.5)
which is equivalent to
L
EZ: Vé,r(pg) Her (PC) = 5r,r’
=0
L S
& Y 1o (PO e (pE) =60 — o, (pE)por (pg), 0<rr' <p-1. (3.6)
=1

The following theorem, the main result of this paper, shows that a unitary polyphase
matrix leads to a tight wavelet frame generated by Walsh polynomial on a half-line R".

Theorem 3.1. Let ¢ € L2(R™) be a compactly supported refinable function and every element of
the framelet symbols, hy(¢), he(&), £=1,2,---,L, in (2.8) and (2.11) is a Walsh polynomial. More-
over, if the polyphase matrix T'(§) given by (3.4) satisfy UEP condition (3.5), then the wavelet
system Fy given by (2.4) constitutes a tight frame for L>(R™).
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Proof. By Parseval’s formula, we have

L

Y Y ¥ [l

(=1j€ZkezZ+

L . . 2
=Y T % (£ (pxek))]

(=1jeZkezZ+

L N 4 2
=YX ¥ [(Fr (rTe)w(p o))

(=1jeZkez+

L 2
=Y LP L [(fP0) i@ @)

(=1jeZ kezZ+

L . pr i 12] ap s |2
I MICHIAGIE (37)

(=1jeZ

Implementing the polyphase component formula (3.3) of wavelet masks ,(¢), ¢=1,--- L,
we obtain

i\zf/*(é)\z
—Z\hg oo

:Em<p—1g>4><p—la>he<p—1¢>43<p‘1¢>

~ L pil pil N
=p(p7 1) Y. | wr(é)w,r(é)> < wAé)w,Aé)) é(p'¢)
=0

r/

T L, Lo ol6)( S @)1

Since the polyphase matrix I'(¢{) is unitary, which is equivalent to (3.6), the above expres-
sion reduces to

L —1p-1
621(#’ ‘ = _16 X%),Z:wr v (rr’_VO,Y(C)VO,r’(C)>43(p_1‘:)
- p—1p-1
:4)( 16)43(;7716 Z;,),Z:wr 7 (&)por(C )P‘Or’(g)‘l;(iflg)

~[¢(p1¢) 2—¢(p—15)ho(p—1c>ho(p* &)¢(r 1)
=lo(r 0| ~[m(r b )|
o | o (3.8)
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By substituting Eq. (3.8) in (3.7), we obtain
ZZ Z <f w]k>‘ _Zp]/
=1jeZkeZ~*
ol g (i

Fwol (|p ol -leerP)

2
o)) a0 ) . (39)
Using the assumption (2.9), the summand in the above expression can be written as

L

jez

:hm‘@(p*f*lé)(z—‘lim (@(P’jé)(z

b0 - lotre)[) e

—hm‘(,b ]C ‘ —hm‘gb pe) ‘

—19(0) [~ lim ¢ (472)|
=1.

By using the above estimate in Eq. (3.9), we obtain

T v [(ra= [l

jeZkeZ+ (=1

©| ae=|1].=

This completes the proof of the theorem. O
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