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Abstract. We know that the Box dimension of f (x)∈ C1[0,1] is 1. In this paper, we
prove that the Box dimension of continuous functions with bounded variation is still
1. Furthermore, Box dimension of Weyl fractional integral of above function is also 1.
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1 Introduction

As a new branch in mathematics, fractal geometry has proved its value with many ap-
plications over many fields. Many initial and conclusive results on fractals were done
in [2, 3, 7]. If f (x) has continuous derivative, it is not difficult to see that Box dimension
of f (x) is 1, indeed a regular 1−set. We want to know whether this result still holds for
the function f (x) with bounded variation? What about their fractional integral? Firstly,
we give definitions of Hausdorff dimension and Box dimension.

Definition 1.1 (see [1]). Let a Borel set F∈Rn is as follows. For s≥0 and δ>0, define

H
s

δ
(F)= inf

{ ∞

∑
i=1

|Ui|
s :{Ui} is a δ-cover of F

}

,

where |U|= sup{|x−y| : x,y ∈ U} denotes the diameter of a nonempty set U and the
infimum is taken over all countable collections {Ui} of sets for which F ⊂

⋃∞
i Ui and
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0< |Ui|≤δ. As δ decreases, H s
δ
(F) can not decrease, and therefore it has a limit (possibly

infinite) as δ→0; define
H

s(F)= lim
δ→0

H
s

δ
(F).

The quantity H s(F) is known as s-dimensional Hausdorff measure of F. For a given
F there is a value dimH(F) for which H s(F) = ∞ for s < dimH(F) and H s(F) = 0 for
s>dimH(F). Hausdorff dimension dimH(F) is defined to be this value, that is:

dimH(F)= inf{s :H s(F)=0}=sup{s :H s(F)=∞}.

Definition 1.2 (see [1]). Let F be a any non-empty bounded subset of R2 and let Nδ(F)
be the smallest number of sets of diameter at most δ which can cover F. The lower and
upper Box dimensions of F respectively are defined as

dimB(F)= lim
δ→0

logNδ(F)

−logδ
(1.1)

and

dimB(F)= lim
δ→0

logNδ(F)

−logδ
. (1.2)

If (1.1) and (1.2) are equal, we refer to the common value as the Box dimension of F:

dimB(F)= lim
δ→0

logNδ(F)

−logδ
.

Definition 1.3 (see [6]). Let f (x) be a finite function on I, I=[0,1]. Let {xi}
n
i=1 be arbitrary

points which satisfy
0= x0< x1< x2< ···< xn =1.

Write

Vf := sup
(x0,x1,···,xn)

n

∑
k=1

| f (xk)− f (xk−1)|. (1.3)

If (1.3) is finite, then f (x) is of bounded variation on I. Let BVI denote the set of functions
of bounded variation on I. Meanwhile, Let C(I) denote the set of functions which are
continuous on I.

Definition 1.4 (see [4]). Let f (x)∈C(I) and 0< v<1. If f (x) is piecewise integrable, we
define the Weyl fractional integral of f (x) of order v as

D−v f (x)=
1

Γ(v)

∫ ∞

x

f (t)

(t−x)1−v
dt.

In this paper, let G( f , I) denote the graph of f (x) on I, and dimB G( f , I) denote the
Box dimension of f (x) on I.
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2 Lemmas

We first derive some simple but widely applicable estimates for the Box dimension of
graphs. Given a function f (x) and an interval [a,b], we write R f the maximum range of
f (x) over [a,b], i.e.,

R f [a,b]= sup
a<x,y<b

| f (x)− f (y)|.

To prove theorems of Section 3, we need some lemmas.

Lemma 2.1 (see [1]). Let f (x)∈C(I)
⋂

BVI . Suppose that 0< δ<1, and m be the least integer
greater than or equal to δ

−1 then, if Nδ is the number of squares of the δ−mesh that intersect
G( f , I), then

δ
−1

m−1

∑
i=o

R f [iδ,(i+1)δ]≤Nδ ≤2m+δ
−1

m−1

∑
i=0

R f [iδ,(i+1)δ].

Proof. The number of mesh squares of side δ in the column above the interval [iδ,(i+1)δ]
that intersect G( f , I) is at least R f [iδ,(i+1)δ]/δ and at most 2+(R f [iδ,(i+1)δ]/δ). f (x) is
continuous. By summing all such intervals together, we can get Lemma 2.1.

If f (x) is a continuous function and Box dimension of f (x) exists, we know that Box
dimension of any continuous functions is no less than 1. Then we give the following
lemmas.

Lemma 2.2. If f (x) is a continuous function on I, we have dimBG( f , I)≥1.

Proof. By using Definition 1.2, we have

dimBG( f , I)≥ lim
δ→0

log C
δ

−logδ
=1.

So we get the conclusion that dimBG( f , I)≥1.

Lemma 2.3. If f (x) is a continuous function on I, then dimBG( f , I)≤2.

Proof. By using Definition 1.2, we have

dimBG( f , I)≤ lim
δ→0

log C
δ2

−logδ
=2.

Then dimBG( f , I)≤2.
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3 Theorems

Theorem 3.1. If f (x)∈C(I)
⋂

BVI , we have

dimB G( f , I)=1.

Let {xi}
n
i=1 be arbitrary points satisfying

0= x0< x1< x2< ···< xn =1.

We have

sup
(x0,x1,···,xn)

n

∑
k=1

| f (xk)− f (xk−1)|<C.

Let m be the least integer greater than or equal to 1/δ. Nδ is the number of squares of the
δ−mesh that intersect G( f , I). By Lemma 2.1, we know

Nδ ≤2m+δ
−1

m

∑
i=1

R f [(i−1)δ,iδ].

For 1≤ i≤m−1 and xi,0= iδ, xi,3=(i+1)δ, xi,1, xi,2∈ (iδ,(i+1)δ),

R f [iδ,(i+1)δ]≤ sup
xi,0<xi,1<xi,2<xi,3

3

∑
k=1

| f (xi,k)− f (xi,k−1)|.

So there exists a certain absolutely positive constant C such that

Nδ ≤Cδ
−1.

From Definition 1.1, it holds that

dimBG( f , I)≤1, 0<v<1. (3.1)

The topolopy dimension of a continuous function f (x) is no less than 1. From Definition
1.1, we get

dimBG( f , I)≥1, 0<v<1. (3.2)

Combining (3.1) and (3.2), we get the result of Theorem 3.1.

Remark 3.1. If f (x)∈LipM, then dimB G( f , I)=1.

Proof. f (x)∈LipM, ∀x,y∈ I, we have

| f (x)− f (y)|≤M|x−y|,

where M is a positive constant. Let {xi}
n
i=1 be arbitrary points satisfying

0= x0< x1< x2< ···< xn =1.
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We have

sup
(x0,x1,···,xn)

n

∑
k=1

| f (xk)− f (xk−1)|≤M
n

∑
k=1

|xk−xk−1|≤M.

Then f (x)∈BVI . From Theorem 3.1, we can prove dimB G( f , I)=1.

Theorem 3.2. If f (x)∈C(I)
⋂

BVI , we have

dimB G(D−v f , I)=1. (3.3)

Proof. Since f (x) ∈ C(I) and f (x) is of bounded variation on I, by Theorem 6.6 of [6],
we know that f (x) can be replaced by the difference of two monotone increasing and
continuous functions g1(x) and g2(x). Then

f (x)= g1(x)−g2(x),

where g1(x)=h1(x)−c, g2(x)=h2(x)−c, h1(1)=h2(1)=c on [1,+∞). h1(x) and h2(x) are
also monotone increasing and continuous functions.

(1) If f (0)≥0, we can choose g1(0)≥0 and g2(0)=0. By Definition 1.3, if

G1(x)=D−vg1(x)=
1

Γ(v)

∫ ∞

x

h1(t)−c

(t−x)1−v
dt, 0<v<1,

we know that G1(x) still is continuous on I when g1(x) is continuous on I. Let 0≤ x1 ≤
x2≤1 and 0<v<1. We have

G1(x2)−G1(x1)=
1

Γ(v)

∫ ∞

x2

(t−x2)
v−1(h1(t)−c)dt−

1

Γ(v)

∫ ∞

x1

(t−x1)
v−1(h1(t)−c)dt

=
1

Γ(v)

∫ 1

x2

(t−x2)
v−1(h1(t)−c)dt−

1

Γ(v)

∫ 1

x1

(t−x1)
v−1(h1(t)−c)dt

=
1

Γ(v)

(

∫ 1

x2

(t−x2)
v−1h1(t)dt−

∫ 1

x1

(t−x1)
v−1h1(t)dt

)

+
1

Γ(v)

(

∫ 1

x1

(t−x1)
v−1cdt−

∫ 1

x2

(t−x2)
v−1cdt

)

=
1

Γ(v)

∫ 1−x2+x1

x1

(t−x1)
v−1h1(t−x1+x2)dt−

1

Γ(v)

∫ 1

x1

(t−x1)
v−1h1(t)dt

+
1

Γ(v)

(

∫ 1−x1+x2

x2

(t−x2)
v−1cdt−

∫ 1

x2

(t−x2)
v−1cdt

)

=
1

Γ(v)

∫ 1−x2+x1

x1

(t−x1)
v−1(h1(t−x1+x2)−h1(t))dt

+
1

Γ(v)

∫ 1

1+x1−x2

(t−x1)
v−1(c−h1(t))dt

≥0.
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Thus function G1(x) still is a monotone increasing and continuous function on I. If

G2(x)=D−vg2(x)=
1

Γ(v)

∫ ∞

x

h2(t)−c

(t−x)1−v
dt, 0<v<1,

G2(x) is also a monotone increasing and continuous function on I.

(2) If f (0)<0, we can choose g1(x)=0 and g2(x)>0. Using a similar argument, we can get
that both D−vg1(x) and D−vg2(x) are monotone increasing and continuous functions on
I. From Theorem 6.6 of [6], we know D−v f (x) still is a continuous function of bounded
variation on I.

4 Conclusions

The result that Box dimension of a continuous function of bounded variation on I is 1 has
been proved in Theorem 3.1. Theorem 3.2 shows that Box dimension of Weyl fractional
integral of such function still is 1. As we know that Box dimension of classical integral
of a one-dimensional continuous function on I is 1. We consider whether Box dimension
of Weyl fractional integral of a one-dimensional continuous function on I is 1 or not.
From this paper, we know that Box dimension of Weyl fractional integral of a continuous
function of bounded variation still is 1 on I.

However, we still can not calculate Hausdorff dimension of Weyl fractional integral of
continuous with bounded variation. The calculation of Hausdorff dimension is difficult.
Furthermore, we only discuss fractal dimension of continuous function of bounded vari-
ation on I in this paper. We hardly know about fractal dimension of continuous function
with unbounded variation.
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