Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces

Chao Xue¹, Kai Zhu^{2,*} and Yanping Chen¹

Received 19 May 2015; Accepted (in revised version) 24 July 2016

Abstract. Let T be the singular integral operator with variable kernel, T^* be the adjoint of T and T^\sharp be the pseudo-adjoint of T. Let T_1T_2 be the product of T_1 and T_2 , $T_1 \circ T_2$ be the pseudo product of T_1 and T_2 . In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.

Key Words: Singular integral, variable kernel, fractional differentiation, BMO Sobolev space, weighted Morrey spaces.

AMS Subject Classifications: 42B20, 42B25

1 Introduction

Let S^{n-1} be the unit sphere in \mathbb{R}^n $(n \ge 2)$ with normalized Lebesgue measure $d\sigma$. The singular integral operator with variable kernel is defined by

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x, x - y)}{|x - y|^n} f(y) dy, \tag{1.1}$$

where $\Omega(x,z)$ satisfies the following conditions:

$$\Omega(x, \lambda z) = \Omega(x, z)$$
 for any $x, z \in \mathbb{R}^n$ and $\lambda > 0$, (1.2a)

$$\int_{S^{n-1}} \Omega(x, z') d\sigma(z') = 0 \quad \text{for any } x \in \mathbb{R}^n.$$
 (1.2b)

DOI: 10.4208/ata.2016.v32.n3.1

¹ Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China

² School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

^{*}Corresponding author. *Email addresses*: xue_chao09@163.com (C. Xue), kaizhu0116@126.com (K. Zhu), yanpingch@126.com (Y. P. Chen)

Let $m \in \mathbb{N}$, denote by \mathcal{H}_m the space of surface spherical harmonics of degree m on S^{n-1} with its dimension d_m . $\{Y_{m,j}\}_{j=1}^{d_m}$ denotes the normalized complete system in \mathcal{H}_m . We can write (see [1,3,9])

$$\Omega(x,z') = \sum_{m>0} \sum_{i=1}^{d_m} a_{m,j}(x) Y_{m,j}(z'), \tag{1.3}$$

where

$$a_{m,j}(x) = \int_{S^{n-1}} \Omega(x, z') \overline{Y_{m,j}(z')} d\sigma(z'). \tag{1.4}$$

Let

$$T_{m,j}f(x) = \frac{Y_{m,j}}{|\cdot|^n} * f(x).$$

Then we can write

$$Tf(x) = \sum_{m \ge 0} \sum_{j=1}^{d_m} a_{m,j}(x) T_{m,j} f(x).$$
 (1.5)

Let T^* and T^{\sharp} denote the adjoint of T and the pseudo-adjoint of T respectively, which are defined by

$$T^*f(x) = \sum_{m=0}^{\infty} \sum_{i=1}^{d_m} (-1)^m T_{m,j}(\overline{a}_{m,j}f)(x)$$
(1.6)

and

$$T^{\sharp}f(x) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} (-1)^m \overline{a}_{m,j}(x) T_{m,j} f(x).$$
 (1.7)

Let T_1T_2 denote the product of T_1 and T_2 , $T_1 \circ T_2$ denote the pseudo product of T_1 and T_2 (see [1] for the definitions).

In 1955, Calderón and Zygmund [2] investigated the L^2 boundedness of the operator T. Let D be the square root of the Laplacian operator which is defined by $\widehat{Df}(\xi) = |\xi| \widehat{f}(\xi)$. Let

$$T_1 f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega_1(x, x - y)}{|x - y|^n} f(y) dy$$
 (1.8)

and

$$T_2 f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega_2(x, x - y)}{|x - y|^n} f(y) dy.$$
 (1.9)

In [1], Calderón and Zygmund proved L^p $(1 boundedness of <math>T_1^*$, T_1^\sharp , T_1T_2 , $T_1 \circ T_2$ and D. In [3], Chen and Zhu proved the boundedness for commutator of these singular integral operators and the fractional differentiation operator D^γ on $L^p(\omega)$, where D^γ is defined by $\widehat{D^\gamma f}(\xi) = |\xi|^\gamma \widehat{f}(\xi)$. The Sobolev Space $I_\gamma(BMO)$ is the image of $BMO(\mathbb{R}^n)$ under I_γ (Riesz potential operator of order γ). A locally integrable function b is in $I_\gamma(BMO)$ if and only if $D^\gamma b \in BMO(\mathbb{R}^n)$. A weight function ω is called an A_p weight (or $\omega \in A_p$) (1 if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} \omega(x) dx \right) \left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-\frac{1}{p-1}} dx \right)^{p-1} < \infty,$$

where the supremum is taken over all cubes *Q* with sides parallel to the coordinate axes.

The classical Morrey spaces $L^{p,\lambda}$ were introduced by Morrey in [7]. In [6], Komori and Shirai defined the weighted Morrey spaces $L^{p,\kappa}(\omega)$ and studied the boundedness of some classical operators on these weighted spaces. For a given weight function ω , we denote by |Q| the Lebesgue measure of Q and denote by $\omega(Q) = \int_Q \omega(Q) dx$ the weighted measure of Q.

Definition 1.1 (see [6]). Let $1 \le p < \infty$, $0 < \kappa < 1$ and ω be a weight function. Then the weighted Morrey space is defined by

$$L^{p,\kappa}(\omega) = \{ f \in L^p_{loc}(\omega) : ||f||_{L^{p,\kappa}(\omega)} < \infty \},$$

where

$$||f||_{L^{p,\kappa}(\omega)} = \sup_{Q} \left(\frac{1}{\omega(Q)^{\kappa}} \int_{Q} |f(x)|^{p} \omega(x) dx \right)^{1/p}$$

and the supremum is taken over all cubes Q in \mathbb{R}^n .

The purpose of this paper is to establish the boundedness for T_1^* , T_1^{\sharp} , T_1T_2 , $T_1 \circ T_2$ and the fractional differentiation operator D^{γ} on the weighted Morrey spaces. Our results are stated as follows.

Theorem 1.1. Let $0 < \gamma < 1$, $1 , <math>0 < \kappa < 1$ and $w \in A_p$. Suppose that $\Omega(x,y)$ satisfies (1.2a), (1.2b) and

$$\max_{|j| \le 2n} \|D_x^{\gamma}(\partial^j/\partial y^j)\Omega(x,y)\|_{L^{\infty}(\mathbb{R}^n \times S^{n-1})} < \infty.$$
(1.10)

Then there is a constant C > 0, such that

(i)
$$\|(TD^{\gamma}-D^{\gamma}T)f\|_{L^{p,\kappa}(\omega)} \le C\|f\|_{L^{p,\kappa}(\omega)};$$

(ii)
$$\|(T^*-T^{\sharp})D^{\gamma}f\|_{L^{p,\kappa}(\omega)} \le C\|f\|_{L^{p,\kappa}(\omega)}$$
.

Theorem 1.2. Let $0 < \gamma < 1$, $1 , <math>0 < \kappa < 1$ and $w \in A_p$. Suppose that $\Omega_1(x,y)$ and $\Omega_2(x,y)$ satisfy (1.2a) and (1.2b). If $\Omega_2(x,y)$ satisfies (1.10) and

$$\max_{|j| \le 2n} \|(\partial^j / \partial y^j) \Omega_1(x, y)\|_{L^{\infty}(\mathbb{R}^n \times S^{n-1})} < \infty.$$
(1.11)

Then there is a constant C > 0, such that

$$||(T_1 \circ T_2 - T_1 T_2) D^{\gamma} f||_{L^{p,\kappa}(\omega)} \le C ||f||_{L^{p,\kappa}(\omega)}.$$

2 Lemmas

We begin with some Lemmas.

Lemma 2.1 (see [6]). *If* $1 , <math>0 < \kappa < 1$, $\omega \in A_p$ and T is a Calderón-Zygmund singular integral operator, then T is bounded on $L^{p,\kappa}(\omega)$.

Given a weight ω , we say that ω satisfies the doubling condition if there exists a constant D > 0 such that for any cube Q, we have $\omega(2Q) \le D\omega(Q)$. When ω satisfies this condition, we denote $\omega \in \Delta_2$. If $\omega \in A_p$, we know $\omega \in \Delta_2$ (see [5]).

Lemma 2.2 (see [6]). *If* $\omega \in \Delta_2$, then there exists a constant $D_1 > 1$ such that

$$\omega(2Q) \geq D_1\omega(Q)$$
.

Lemma 2.3. If $1 , <math>0 < \kappa < 1$ and $\omega \in A_p$. Let $T_{m,j}$ be the convolution operator with kernel $\frac{Y_{m,j}}{|\cdot|^n}$, that is,

$$T_{m,j}f(x) = \frac{Y_{m,j}}{|\cdot|^n} * f(x),$$

then

$$||T_{m,j}f||_{L^{p,\kappa}(\omega)} \leq Cm^{n/2}||f||_{L^{p,\kappa}(\omega)}.$$

Proof. It is sufficient to prove that there exists C > 0 such that

$$\frac{1}{\omega(B)^{\kappa}}\int_{B}|T_{m,j}f(x)|^{p}\omega(x)dx\leq Cm^{np/2}\|f\|_{L^{p,\kappa}(\omega)}^{p}.$$

Fix a ball $B = B(x_0, r)$, where $B(x_0, r)$ denotes the ball with center x_0 and radius r. Decompose $f = f_1 + f_2$ with $f_1 = f_{\chi_{2B}}$. Since $T_{m,j}$ is linear, we can get

$$\frac{1}{\omega(B)^{\kappa}} \int_{B} |T_{m,j}f(x)|^{p} \omega(x) dx$$

$$\leq C \left\{ \frac{1}{\omega(B)^{\kappa}} \int_{B} |T_{m,j}f_{1}(x)|^{p} \omega(x) dx + \frac{1}{\omega(B)^{\kappa}} \int_{B} |T_{m,j}f_{2}(x)|^{p} \omega(x) dx \right\}$$

$$= C \left\{ I_{1} + I_{2} \right\}.$$

For the term I_1 , using the fact that if $\omega \in A_p$ then $||T_{m,j}f||_{L^p(\omega)} \le Cm^{n/2}||f||_{L^p(\omega)}$ (see [3]), we can get

$$\int_{B} |T_{m,j}f_{1}(x)|^{p} \omega(x) dx \leq \int_{\mathbb{R}^{n}} |T_{m,j}f_{1}(x)|^{p} \omega(x) dx
\leq C m^{np/2} \int_{2B} |f(x)|^{p} \omega(x) dx
\leq C m^{np/2} ||f||_{L^{p,\kappa}(\omega)}^{p} \omega(B)^{\kappa}.$$

Hence we have

$$||T_{m,j}f_1||_{L^{p,\kappa}(\omega)} \leq Cm^{n/2}||f||_{L^{p,\kappa}(\omega)}.$$

For the term I_2 , for $x \in B$ and $y \in (2B)^c$ we have $|x_0 - y| < C|x - y|$. By the fact that $|Y_{m,j}| \le Cm^{(n-2)/2}$ (see [1]), we get

$$|T_{m,j}f_2(x)| \le Cm^{n/2} \int_{\mathbb{R}^n} \frac{|f_2(y)|}{|x-y|^n} dy \le Cm^{n/2} \int_{|x_0-y|>2r} \frac{|f(y)|}{|x_0-y|^n} dy.$$

Therefore we obtain

$$\frac{1}{\omega(B)^{\kappa}} \int_{B} |T_{m,j} f_{2}(x)|^{p} \omega(x) dx \leq C m^{np/2} \left(\int_{|x_{0}-y|>2r} \frac{|f(y)|}{|x_{0}-y|^{n}} dy \right)^{p} \omega(B)^{1-\kappa}.$$

Then, by Hölder's inequality and $\omega \in A_p$, we have

$$\int_{|x_0 - y| > 2r} \frac{|f(y)|}{|x_0 - y|^n} dy = \sum_{j=1}^{\infty} \int_{2^{j}r < |x_0 - y| \le 2^{j+1}r} \frac{|f(y)|}{|x_0 - y|^n} dy$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{|2^{j}B|} \int_{2^{j+1}B} |f(y)| dy$$

$$\leq \sum_{j=1}^{\infty} \frac{1}{|2^{j}B|} \left(\int_{2^{j+1}B} |f(y)|^p \omega(y) dy \right)^{1/p} \left(\int_{2^{j+1}B} \omega(y)^{1-p'} dy \right)^{(p-1)/p}$$

$$\leq C \|f\|_{L^{p,\kappa}(\omega)} \sum_{j=1}^{\infty} \frac{1}{\omega(2^{j+1}B)^{(1-\kappa)/p}}.$$

By Lemma 2.2, we get

$$\left(\int_{|x_0-y|>2r} \frac{|f(y)|}{|x_0-y|^n} dy\right)^p \omega(B)^{1-\kappa} \leq C \|f\|_{L^{p,\kappa}(\omega)}^p \left(\sum_{j=1}^{\infty} \frac{\omega(B)^{(1-\kappa)/p}}{\omega(2^{j+1}B)^{(1-\kappa)/p}}\right)^p \\
\leq C \|f\|_{L^{p,\kappa}(\omega)}^p.$$

So we have

$$||T_{m,j}f_2||_{L^{p,\kappa}(\omega)} \le Cm^{n/2}||f||_{L^{p,\kappa}(\omega)}.$$

This completes the proof.

3 **Proof of Theorem 1.1:** $L^{p,\kappa}(\omega)$ **norm of** $TD^{\gamma} - D^{\gamma}T$

Proof of Theorem 1.1: Let

$$Tf(x) = \int_{\mathbb{R}^n} \frac{\Omega(x, x - y)}{|x - y|^n} f(y) dy.$$

Write

$$\Omega(x,y) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} a_{m,j}(x) Y_{m,j}(y),$$

where

$$a_{m,j}(x) = \int_{S^{n-1}} \Omega(x,z') \overline{Y_{m,j}(z')} d\sigma(z').$$

For $\Omega(x,y')$ satisfies (1.10), we have (see [3])

$$(TD^{\gamma} - D^{\gamma}T)f = \sum_{m=1}^{\infty} \sum_{i=1}^{d_m} [a_{m,j}, D^{\gamma}]T_{m,j}f,$$

and

$$||D^{\gamma}a_{m,i}||_{L^{\infty}} \le Cm^{-2n}.$$
 (3.1)

In fact, $[b,D^{\gamma}]$ (see [8]) is a generalized Calderón-Zygmund operator, then by Lemma 2.1, we can get that $[b,D^{\gamma}]$ is bounded on $L^{p,\kappa}(\omega)$ for $1 , <math>0 < \kappa < 1$ and $w \in A_p$, namely

$$||[b,D^{\gamma}]f||_{L^{p,\kappa}(\omega)} \le C||D^{\gamma}b||_{BMO}||f||_{L^{p,\kappa}(\omega)}.$$
 (3.2)

Then by $d_m \simeq m^{n-2}$ (see [4]), (3.1), (3.2) and Lemma 2.3, we get

$$\begin{split} \|(TD^{\gamma} - D^{\gamma}T)f\|_{L^{p,\kappa}(\omega)} &\leq \sum_{m=1}^{\infty} \sum_{j=1}^{d_m} \|[a_{m,j}, D^{\gamma}]T_{m,j}f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \sum_{m=1}^{\infty} \sum_{j=1}^{d_m} \|D^{\gamma}a_{m,j}\|_{BMO} \|T_{m,j}f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \sum_{m=1}^{\infty} \sum_{j=1}^{d_m} m^{n/2} \|D^{\gamma}a_{m,j}\|_{L^{\infty}} \|f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \sum_{m=1}^{\infty} m^{n-2} m^{n/2} m^{-2n} \|f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \|f\|_{L^{p,\kappa}(\omega)}. \end{split}$$

Thus, we complete the proof.

4 Proof of Theorem 1.1: $L^{p,\kappa}(\omega)$ norm of $(T^{\sharp}-T^{*})D^{\gamma}$

Proof of Theorem 1.1: By (1.6) and (1.7), we can write

$$(T^{\sharp} - T^{*})D^{\gamma} f = \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} (-1)^{m} [\overline{a}_{m,j}, T_{m,j}] D^{\gamma} f.$$

$$(4.1)$$

We first estimate the $L^{p,\kappa}(\omega)$ norm of $[b,T_{m,i}]D^{\gamma}$ for any fixed $b \in I_{\gamma}(BMO)$. We get

$$[b, T_{m,i}]D^{\gamma} f = [b, D^{\gamma} T_{m,i}] f - T_{m,i}[b, D^{\gamma}] f.$$

By (3.2) and Lemma 2.3, we get

$$||T_{m,j}[b,D^{\gamma}]f||_{L^{p,\kappa}(\omega)} \le Cm^{n/2}||D^{\gamma}b||_{BMO}||f||_{L^{p,\kappa}(\omega)}. \tag{4.2}$$

To estimate $L^{p,\kappa}(\omega)$ norm of $[b,D^{\gamma}T_{m,j}]f$, we know that (see [3]) $[b,D^{\gamma}T_{m,j}]f$ is a generalized Calderón-Zygmund operator with kernel

$$|k_m,j(x,y)| \le Cm^{n/2-1+\gamma} ||D^{\gamma}b||_{BMO} \frac{1}{|x-y|^n},$$

then by Lemma 2.1, we get

$$||[b, D^{\gamma} T_{m,i}]f||_{L^{p,\kappa}(\omega)} \le Cm^{n/2+\gamma} ||D^{\gamma}b||_{BMO} ||f||_{L^{p,\kappa}(\omega)}, \tag{4.3}$$

where C is independent of m and j. Then by (4.2) and (4.3), we have

$$||[b,T_{m,j}]D^{\gamma}f||_{L^{p,\kappa}(\omega)} \leq C||[b,D^{\gamma}T_{m,j}]f||_{L^{p,\kappa}(\omega)} + C||T_{m,j}[b,D^{\gamma}]f||_{L^{p,\kappa}(\omega)} \leq Cm^{n/2+\gamma}||D^{\gamma}b||_{BMO}||f||_{L^{p,\kappa}(\omega)} + Cm^{n/2}||D^{\gamma}b||_{BMO}||f||_{L^{p,\kappa}(\omega)} \leq Cm^{n/2+\gamma}||D^{\gamma}b||_{BMO}||f||_{L^{p,\kappa}(\omega)}.$$

$$(4.4)$$

By (4.1), (4.4) and (3.1), we get

$$\begin{split} \|(T^{\sharp} - T^{*})D^{\gamma}f\|_{L^{p,\kappa}(\omega)} &\leq \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} \|[\overline{a}_{m,j}, T_{m,j}]D^{\gamma}f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} m^{n/2+\gamma} \|D^{\gamma}\overline{a}_{m,j}\|_{BMO} \|f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} m^{n/2+\gamma} \|D^{\gamma}\overline{a}_{m,j}\|_{L^{\infty}} \|f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \sum_{m=1}^{\infty} m^{n-2} m^{n/2+\gamma} m^{-2n} \|f\|_{L^{p,\kappa}(\omega)} \\ &\leq C \|f\|_{L^{p,\kappa}(\omega)}. \end{split}$$

Thus, we complete the proof.

5 Proof of Theorem 1.2

Proof of Theorem 1.2: Let T_1 , T_2 be like in (1.8) and (1.9). Write

$$\Omega_1(x,y) = \sum_{m=0}^{\infty} \sum_{j=1}^{d_m} a_{m,j}(x) Y_{m,j}(y),$$

and

$$\Omega_2(x,y) = \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} b_{\lambda,\mu}(x) Y_{\lambda,\mu}(y),$$

where

$$a_{m,j}(x) = \int_{S^{n-1}} \Omega_1(x,z') \overline{Y_{m,j}(z')} d\sigma(z'),$$

$$b_{\lambda,\mu}(x) = \int_{S^{n-1}} \Omega_2(x,z') \overline{Y_{\lambda,\mu}(z')} d\sigma(z'),$$

and (see [3])

$$a_{m,j}(x) = (-1)^n m^{-n} (m+n-2)^{-n} \int_{S^{n-1}} L_{y'}^n (\Omega_1(x,y')) Y_{m,j}(y') d\sigma(y'), \qquad m \ge 1,$$

$$D^{\gamma} b_{\lambda,\mu}(x) = (-1)^l \lambda^{-l} (\lambda+n-2)^{-l} \int_{S^{n-1}} D_x^{\gamma} L_{y'}^l \Omega_2(x,y') Y_{mj}(y') d\sigma(y'), \qquad m \ge 1.$$

Since $\Omega_1(x,y)$ satisfies (1.11), then we get

$$||a_{m,j}||_{L^{\infty}} \le Cm^{-2n},$$
 (5.1)

where *C* is independent of *m* and *j*. Since $\Omega_2(x,y')$ satisfies (1.10), we get

$$||D^{\gamma}b_{\lambda,\mu}||_{L^{\infty}} \le C\lambda^{-2n}. \tag{5.2}$$

Let

$$T_{m,j}f(x) = \frac{Y_{m,j}}{|\cdot|^n} * f(x)$$

and

$$T_{\lambda,\mu}f(x) = \frac{Y_{\lambda,\mu}}{|\cdot|^n} * f(x).$$

Since $\Omega_1(x,y)$ and $\Omega_2(x,y)$ satisfies (1.2b), then we get

$$T_1 f(x) = \sum_{m=1}^{\infty} \sum_{j=1}^{d_m} a_{m,j}(x) T_{m,j} f(x)$$

and

$$T_2 f(x) = \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} b_{\lambda,\mu}(x) T_{\lambda,\mu} f(x).$$

Write (see [3])

$$(T_1 \circ T_2) f(x) = \sum_{m=1}^{\infty} \sum_{j=1}^{d_m} \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} a_{m,j}(x) b_{\lambda,\mu}(x) (T_{m,j} T_{\lambda,\mu} f)(x),$$

and

$$(T_1T_2)f(x) = \sum_{m=1}^{\infty} \sum_{j=1}^{d_m} \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} a_{m,j}(x) T_{m,j}(b_{\lambda,\mu} T_{\lambda,\mu} f)(x).$$

Then

$$(T_1 \circ T_2 - T_1 T_2) D^{\gamma} f = \sum_{m=1}^{\infty} \sum_{i=1}^{d_m} \sum_{\lambda=1}^{\infty} \sum_{u=1}^{d_{\lambda}} a_{m,i} [b_{\lambda,\mu}, T_{m,i}] D^{\gamma} T_{\lambda,\mu} f.$$

So, by Lemma 2.3, (4.4), (5.1) and (5.2), we get

$$\begin{split} & \| (T_{1} \circ T_{2} - T_{1}T_{2})D^{\gamma}f \|_{L^{p,\kappa}(\omega)} \\ \leq & C \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} \|a_{m,j}\|_{L^{\infty}} \|[b_{\lambda,\mu}, T_{m,j}]D^{\gamma}T_{\lambda,\mu}f\|_{L^{p,\kappa}(\omega)} \\ \leq & C \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} \|a_{m,j}\|_{L^{\infty}} \|D^{\gamma}b_{\lambda,\mu}\|_{BMO} m^{n/2+\gamma} \|T_{\lambda,\mu}f\|_{L^{p,\kappa}(\omega)} \\ \leq & C \sum_{m=1}^{\infty} \sum_{j=1}^{d_{m}} \sum_{\lambda=1}^{\infty} \sum_{\mu=1}^{d_{\lambda}} \|a_{m,j}\|_{L^{\infty}} \|D^{\gamma}b_{\lambda,\mu}\|_{L^{\infty}} m^{n/2+\gamma} \lambda^{n/2} \|f\|_{L^{p,\kappa}(\omega)} \\ \leq & C \sum_{m=1}^{\infty} m^{n-2} m^{-2n} m^{n/2+\gamma} \sum_{\lambda=1}^{\infty} \lambda^{n-2} \lambda^{-2n} \lambda^{n/2} \|f\|_{L^{p,\kappa}(\omega)} \\ \leq & C \|f\|_{L^{p,\kappa}(\omega)}. \end{split}$$

Thus, we complete the proof.

Acknowledgments

The research was supported by NSF of China (Grant No. 11471033), NCET of China (Grant No. NCET-11-0574) and the Fundamental Research Funds for the Central Universities (FRF-TP-12-006B).

References

- [1] A. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901–921.
- [2] A. Calderón and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc., 78 (1955), 209–224.
- [3] Y. Chen and K. Zhu, Weighted norm inequality for the singular integral with variable kernel and fractional differentiation, J. Math. Anal. Appl., 423 (2015), 1610–1629.
- [4] G. Di Fazio and M. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241–256.
- [5] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc. Upper Saddle River, New Jersey, 2004.
- [6] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219–231.
- [7] C. B. Morrey, On the solution of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166.
- [8] M. A. M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces, Indiana Univ. Math. J., 34 (1985), 205–215.
- [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N. J., 1971.