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Abstract. Let T be the singular integral operator with variable kernel, T* be the adjoint
of T and T* be the pseudo-adjoint of T. Let T; T, be the product of T7 and T, Tio T,
be the pseudo product of T; and T>. In this paper, we establish the boundedness for
commutators of these operators and the fractional differentiation operator D7 on the
weighted Morrey spaces.
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1 Introduction

Let S"~! be the unit sphere in R" (1n >2) with normalized Lebesgue measure do. The
singular integral operator with variable kernel is defined by

Q(x,x—
) =p [, S sy (L.1)
where Q)(x,z) satisfies the following conditions:
Q(x,Az)=Q(x,z) forany x,zeR" and A>0, (1.2a)
/ 1Q(x,z’)d(f(z’) =0 for any xeR". (1.2b)
Sn-
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Let m € N, denote by 3, the space of surface spherical harmonics of degree m on S"~!
with its dimension d,,. { Ym,j};l;n1 denotes the normalized complete system in J(,,. We can
write (see [1,3,9])

dn
Z,) = Z Zam,j(x)ym,j(zl)l (1.3)
m>0j=1
where
i (x) = /S (02 (@0 (). (1.4)
Let y
T f (x) = |n|1 *f (x).

Then we can write

ZZam, Tonif (x). (1.5)

m>0j=1

Let T* and T* denote the adjoint of T and the pseudo-adjoint of T respectively, which are
defined by

o dy
ZOZ T j (@ i) (x) (1.6)
m=0j
and
0o dy
T*f(x) ZZ "B j (%) Ty f (). (1.7)
m—= 0]

Let T1 T, denote the product of T; and T3, T1 0T, denote the pseudo product of T; and T
(see [1] for the definitions).

In 1955, Calderén and Zygmund [2] investigated the L? boundedness of the operator
T. Let D be the square root of the Laplacian operator which is defined by [/)7 (&)=|¢ ]J?(C ).
Let

1) =p. [ ) )y 18)

and

Oy (x,x—y)

Tzf(x):p.v./n —y]"

f(y)dy. (1.9)
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In [1], Calderén and Zygmund proved L7 (1< p <co) boundedness of T}, Tlﬁ, Th T, T1oT,
and D. In [3], Chen and Zhu proved the boundedness for commutator of these singular
integral operators and the fractional differentiation operator D on L¥(w), where D7 is
defined by D7 f(Z)=|¢|7 f(£). The Sobolev Space L,(BMO) is the image of BMO(IR") un-
der I, (Riesz potential operator of order 7). A locally integrable function b is in I,,(BMO)
if and only if D"b € BMO(IR"). A weight function w is called an A, weight (or w € A))

(I<p<oo)if B
sgp <6/Qw(x)dx> <|—5|/Qw(x)_ﬁdx>p <00,

where the supremum is taken over all cubes Q with sides parallel to the coordinate axes.

The classical Morrey spaces LP* were introduced by Morrey in [7]. In [6], Komori
and Shirai defined the weighted Morrey spaces LP*(w) and studied the boundedness of
some classical operators on these weighted spaces. For a given weight function w, we
denote by | Q| the Lebesgue measure of Q and denote by w(Q)= |, Qw( Q)dx the weighted
measure of Q.

Definition 1.1 (see [6]). Let 1 <p < oo, 0 <x <1 and w be a weight function. Then the
weighted Morrey space is defined by

LP*(w)={f € L}, (w): [|f | Lrx(w) <0},

where
1 Vp
s =s0p (5 f 0 P )

and the supremum is taken over all cubes Q in IR".

The purpose of this paper is to establish the boundedness for T}, Tlti , T1T5, T1oT, and
the fractional differentiation operator D7 on the weighted Morrey spaces. Our results are
stated as follows.

Theorem 1.1. Let 0<y <1, 1<p<oo, 0<x <1and w e A,. Suppose that Q)(x,y) satisfies
(1.2a), (1.2b) and

max || DY (9 /3y )Q(x,y) | oo (R -1y < 00 (1.10)

ljil<2n

Then there is a constant C >0, such that

(@) [(TDY=DT) f | Lo (o) < Cll f I Lo

(i) [[(T*=T*) D fll (@) < ClIf o)

Theorem 1.2. Let 0<y<1,1<p<oo, 0<k<1and we A,. Suppose that O (x,y) and Qo (x,y)
satisfy (1.2a) and (1.2b). If Oy (x,y) satisfies (1.10) and

max [(9//y )0 (49 e ) < 0 (1.11)

i<



208 C. Xue, K. Zhu and Y. P. Chen / Anal. Theory Appl., 32 (2016), pp. 205-214

Then there is a constant C >0, such that

[(T1oTa=ThT2) D7 f | Liw(w) < Cllf [l Lo (w)

2 Lemmas
We begin with some Lemmas.

Lemma 2.1 (see [6]). If 1<p<oo, 0<k<1, we€ Ay and T is a Calderén-Zygmund singular
integral operator, then T is bounded on LP*(w).

Given a weight w, we say that w satisfies the doubling condition if there exists a
constant D >0 such that for any cube Q, we have w(2Q) < Dw(Q). When w satisfies this

condition, we denote w € Ay. If w € A, we know w € A; (see [5]).

Lemma 2.2 (see [6]). If w € Ay, then there exists a constant D1 >1 such that
w(2Q) > D1w(Q).

Lemma 2.3. If 1<p<oo, 0<x<1and w€ Ap. Let Ty, ; be the convolution operator with kernel
Ini that is,

||n/

Tm,jf<x>:%*f<x>,

then
1T Wl (o) < Com™ 2| fll o)

Proof. 1t is sufficient to prove that there exists C >0 such that

R L Y ST

Fix a ball B=B(x,r), where B(x(,r) denotes the ball with center xy and radius r. Decom-
pose f = f1+ f> with f1 = f,,,. Since T}, ; is linear, we can get

%/ | Ty j f (x) [P (x)dx

{ /ITm,ﬁ (W)t~ /misz x)[Pew(x )dx}
:C{Il‘Hz}-



C. Xue, K. Zhu and Y. P. Chen / Anal. Theory Appl., 32 (2016), pp. 205-214 209

For the term I;, using the fact that if w € A, then || Ty i f || 1r () < Cm”/2||f||Lp(w) (see [3]),
we can get

LT i) Pl < [ [T,1.(6) oo ()
SCm””/zf |f(x)|Pew(x)dx
<C 2 £ 0 (B

Hence we have

T fill o (o) < Cot | £l Lo o)
For the term I, for x € B and y € (2B)° we have |xg—y| < C]x—y|. By the fact that |Y},, j| <
Cm("=2)/2 (see [1]), we get

’Tm,]fz(x)lgcmn/Z/ |f2(y)’ dygcmn/Z/ ’f(y)’ dy

R [x—y|" lxo—y|>2r [ X0 —Yy|"

Therefore we obtain
1 DL N gy
——— [ | T, P dx<C ”p/2</ =2 dy | w(B)F
oy T e@drsen?( [ Py ) (@)
Then, by Holder’s inequality and w € Ay, we have

) Wl
/| dy = Z / | y

xXo—y|>2r ’xO_y’” 2ir<|xg—y| <21 | X0 —Y|"

s;%Aw'@
® 1 1/p ) (p=1)/p
<Lm(foalf o) (Lem )
1
SCHfHLP"‘ (w Zw(2j+1B)(l—K)/P

=1

By Lemma 2.2, we get

f ()] : . o o(B)I/P \P
(/ i) B <CIf ><§w(zf+13><u>/p>

xo—y|>2r !xo —y!”
<Cl A pw ()

So we have
T foll Lo (o) < C" 2| Lo ()

This completes the proof. O
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3 Proof of Theorem 1.1: L?*(w) norm of TD7"—D'T

Proof of Theorem 1.1: Let

Tf(x)= / ; Q,(;’_ixy}zy)f (y)dy
Write p
Q(x,y)= ZOZ;”m](x)Ym](y)/
m=0j=
where

(TD"—D'T)f = ZZ[amV ] m]f
m=1j=1
and
DYy, j|| 1~ < Cm 2", (3.1)

In fact, [b,D7] (see [8]) is a generalized Calder6n-Zygmund operator, then by Lemma 2.1,
we can get that [b,D7] is bounded on LP*(w) for 1 < p<co, 0<x<1and w € A,, namely

16,7 f ) < CIID™blrt0 s (62)

Then by d,,, ~~m" 2 (see [4]), (3.1), (3.2) and Lemma 2.3, we get

co dpy
I(TDY—=D"T) fll (o) < Y 3 M m,js DT j f | ok )

m=1j=1

oo dy
<C Z Z’|D7am]’|BMOHTm]fHLPK

3

—_
—.

—_

u

m

Z m" 2| DYty ||| f | Lo )

<C Y m"2m " 2m | £ L)

m=1

<C

3 uMS

<Cl|fllrx(w)

Thus, we complete the proof. O
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4 Proof of Theorem 1.1: L"*(w) norm of (T*—T*)D7

Proof of Theorem 1.1: By (1.6) and (1.7), we can write

o dy
(TF=T")D7f= ) Z " (@i, T D f- (4.1)
m=1j=1
We first estimate the LP*(w) norm of [b,T,, ;] D7 for any fixed b € I, (BMO). We get
[, Ty j|DY f =[b,D"Ty, j|f — Ty j[b,D"]f.
By (3.2) and Lemma 2.3, we get
1 Ton,j(B, D7) f || o (o) < Crt" (| D70 avto | 1] o o) (4.2)

To estimate LP*(w) norm of [b,D"T,, ;|f, we know that (see [3]) [b,D“YTm,j] f is a general-
ized Calderén-Zygmund operator with kernel

1
ke, j(x,y)| < Cm"/2 147 ||D7b||BMOW/
then by Lemma 2.1, we get
116, D7 Ty 1 f || ot @) < Crt" 57| DV | s || £ || Lo o) (4.3)

where C is independent of m and j. Then by (4.2) and (4.3), we have
16, T j1D” fll Lo () SCI B, D" Ton ] fll Lo () + Cl Ton [0, DI f | Lo ()
<Cm"* 7 Dbl samo | fllr o +CM”/2HD”?HBMOHwa
<Cm"/ 2| Db a0 | f | (w)- (44
By (4.1), (4.4) and (3.1), we get

I(T*=T*)D |l () < Z Z [@m,js T 1D fl| Lo ()
Z Z " DVl mmo || £l o )
m=1j=1

<C Z Zm”/2+7||Dmm,j||L°°HfHW(w)
m=1j=1

[e¢]
<C Z mnfzmn/2+’ym72nHfHLP,K(w)

m=1

<C|lfllerx(w)
Thus, we complete the proof. i
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5 Proof of Theorem 1.2

Proof of Theorem 1.2: Let Ty, T be like in (1.8) and (1.9). Write

oo dy
xXy)= Z Zam,j(x)Ym](y)
m=0j—1
and
oo dy
Z wa X)Y)u(y)
where
yj(x - 101 Y,,,j(2)do(2'),
bau(x)= | x,2 )Yy, (2)do(2),
and (see [3])
Ay j(x) = (—1)”m_”(m+n—2)_”/snilL;,(Ql(x,y’))Ym,j(y’)dU(y’), m>1,
Dby, (x)=(-1)'A (A +n—2)"" - D;YLly,Qz(x,y’)ij(y’)dU(y’), m>1.

Since 04 (x,y) satisfies (1.11), then we get
[, jl| L < Cm 2", (5.1)

where C is independent of m and j. Since () (x,y’) satisfies (1.10), we get

D7Dy | < CAT2". (5.2)
Let
T ()= T (1)
and
Y, You

T/\,yf() ||n f()

Since O (x,y) and Oy (x,y) satisfies (1.2b), then we get

Taf(x Z Z”m] T f (x)

m=1j=1
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and
oo d)

Tof(x ZZM TMtf X).

Write (see [3])

© dy oo dy

(TioTh)f ZZZ Zﬂm] bAy (Tm]TAyf)( x),

m=1j=1A=1p=
and
o dy oo dy
(L'T2)f ZZZZ“W Ton,j (b Tauf) (x).
m=1j=1A=1p=
Then

o dy oo dy

(Tl OTz—Tsz)D’yf: Z Z Z Z Am,j [b/\,;uTm,j]DryTA,;lf'

m=1j=1A=1p=1

So, by Lemma 2.3, (4.4), (5.1) and (5.2), we get

(TroTa=ThTo) D7 fl| ox ()

o dy oo dy

<C Z Z Z Z Ham,jHL"" | [b)\,me,j]DvTA,nyLPrK(w)

m=1j=1A=1pu=1

o dy oo dy
<CY. Y 3 Y amjlle= D ballatom™ T Ty f | Lo (o)
m=1j=1A=1p=1

dy

<CE T Y D7 o A2

m=1j=1A=1pu=1

(o] (o]
SC Z mn72m72nmn/2+7 Z An72A72nAn/2||f||Lp,K(w)
m=1 A=1

Thus, we complete the proof. i
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