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Abstract

In time series analysis, fitting the Moving Average (MA) model is more complicated than Autoregressive
(AR) models because the error terms are not observable. This means that iterative nonlinear fitting
procedures need to be used in place of linear least squares. In this paper, Time-Varying Moving Average
(TVMA) models are proposed for an autocovariance nonstationary time series. Through statistical
analysis, the parameter estimates of the MA models demonstrate high statistical efficiency. The Akaike
Information Criterion (AIC) analyses and the simulations by the TVMA models were carried out. The
suggestion about the TVMA model selection is given at the end. This research is useful for analyzing
an autocovariance nonstationary time series in theoretical and practical fields.
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1 Introduction

For the past decades, time series analysis has become a highly developed subject, and there are
now well-established methods for fitting a wide range of models to time series data as in the books
[1-4] and in the articles [5-8]. However, none of these studies focused on autocovariance nonsta-
tionary time series. Virtually all the established methods rest on one fundamental assumption,
namely, that the process is autocovariance stationary, or locally stationary. At least the statis-
tical characteristics of the nonstationary processes class are changing smoothly over time. The
nonstationarity of the time series means at least one statistical characteristic is variant with time
points. The mean (or trend) nonstationary time series can usually be reduced to mean stationary
by some simple transformation, such as the difference method. The autocovariance is one of the
most important statistical characteristics of the nonstationary time series [9] and can be used as
an important index when evaluating simulation by some time series analysis models. Needless
to say, for a single time series sampled from some time series, the assumption of autocovariance
stationarity is a mathematical idealization which, in some cases, may be valid only as an approx-
imation to the real situation. In practical applications, the most one could hope for is, over the
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observed time interval, the series would not depart too far from autocovariance stationarity for
the results of the analysis to be valid.

It is not difficult to see why the notion of autocovariance stationarity is such an appealing
one. It endows the process with statistical stability so that autocovariances originally defined
as ensemble averages can be estimated from a single realization by computing the corresponding
time domain averages. (Strictly speaking, the property to which we are referring here is ergodicity
rather than stationarity, but in practical terms the two ideas are very closely related.) However,
like virtually all mathematical concepts, stationarity is an idealization, and in practice, it can at
best be expected to hold only as an approximation. In order to carry out meaningful statistical
analysis on a single time series, the time series is usually considered to be in some sense locally
stationary although globally nonstationary [3, 5, 8]. It is clearly of interest, therefore, to examine
if any type of the analysis is available for those cases where the assumption of autocovariance
nonstationarity becomes realistic.

Usually, it is hard to statistically analyze a nonstationary time series for its complexity. Non-
stationary models offer greater complexity than stationary models, and the statistical problems
of model identification and parameter estimation are similarly more intricate. Experience gained
so far has shown that even simple nonstationary models can capture examples of time series
behavior which would be impossible to describe with stationary models. For a zero mean au-
tocovariance nonstationary time series with finite length, the full order Time-varying Parameter
Autoregressive (TVPAR) model with time varying AR coefficients and variances of residuals [10]
was used for simulation [11] and pattern recognition [12]. The term TVPAR model was adopted
to differentiate from the TVAR model in which the variance of residual is time invariant [13],
at least in a time segment. There are three TVPAR models: full order TVPAR (TVPAR(T )),
time-unvarying order TVPAR (TVPAR(p)), and time-varying order TVPAR (TVPAR(pt)) [14].
In this paper, three time-varying moving average (TVMA) models are presented and analyzed
by means of AIC [15], and TVMA model selection is suggested. The AIC is a measure of the
relative quality of a statistical model, for a given set of data. As such, AIC provides a means
for model selection. In the general case, the AIC is AIC=2k − 2 ln(L), where k is the number
of parameters in the statistical model, and L is the maximized value of the likelihood function
for the estimated model. We believe that although these models are analyzed by AIC, the result
will still remain valid if analyzed by other information criterion [16]. The AIC is used only as an
information criterion and is not compared with other criterion in this study.

In time series analysis, the Moving-average (MA) model is a common approach for modeling
univariate stationary time series. Time series can be expressed to be generated by passing white
noises through a non-recursive linear filter. The notation MA(q) refers to the moving average
model of order q:

Xt = µt +

q∑

k=0

θkεt−k,

where µt is the mean of the series at the time point t, the θk are the parameters of the model,
and the εt−k are white noise error terms, εt ∼ N(0, 1). The value of q is called the order of the
MA model. We can assume, without loss of generality, that µt is zero at each time point t.

A moving average model is conceptually a linear regression of the current value of the series
against previous (unobserved) white noise error terms or random shocks. In stationary time
series analysis, the random shocks at each point are assumed to be mutually independent and
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to come from the same distribution, typically a normal distribution, with location at zero and
constant scale. The distinction in this model is that these random shocks are propagated to future
values of the time series. Fitting the MA estimates is more complicated than with autoregressive

models, e.g. Xt =
p∑

j=1

ϕjXt−j +εt, because the lagged error terms are not observable while Xt and

Xt−j are observable. This means that iterative nonlinear fitting procedures need to be used in
place of linear least squares. It is meaningful to estimate the parameters of the MA models since
MA models have a less obvious interpretation than AR models. Sometimes the autocorrelation
function (ACF) and partial autocorrelation function (PACF) will suggest that a MA model would
be a better model choice and sometimes both AR and MA terms should be used in the same model
[1]. The moving average model is essentially a finite impulse response filter applied to white noise,
with some additional interpretation placed on it.

Fitting the MA estimates is so complicated that the MA model is rarely analyzed and applied
in practical engineering. The most general problem of time series model building may be stated
in the following terms: given some observations sampled from some stochastic process, find the
function which reduces the observations to a strict white noise process. The main purpose of
this paper is to present a novel type of MA model for autocovariance nonstationary time series.
Fortunately, after statistical analysis and simulation, the resulting estimates of the MA model
demonstrate statistical efficiency.

This paper focuses on TVMA models for autocovariance nonstationary time series which are
repeatedly sampled as size series of cocoon filament from same category cocoons. In this study,
the assumption of autocovariance stationarity is abandoned. The TVMA models can be used to
analyse and simulate autocovariance nonstationary time series including the size series of cocoon
filament.

2 The Time Series and the TVMA Models

Autocovariance nonstationary time series is expressed as follows:

For time series data {zi,t} repeatedly sampled from some nonstationary linear stochastic pro-
cess, where i = 1, 2, · · · , n, n is the series number repeatedly sampled, which is great enough in
statistical significance, t = 0, 1, · · · , T , T is a positive integer. The series is called an autocovari-
ance nonstationary time series if it satisfies the following:

A. The average at every time point, µt = E{z·,t} = limn→∞ 1
n

n∑
i=1

zi,t is finite;

B. The autocovariance, ct,τ = cov(z·,t, z·,τ ) = E{(z·,t − µt)(z·,t − µτ )} = limn→∞ 1
n

n∑
i=1

(zi,t −
µt)(zi,t − µτ ) is finite, where t, τ ∈ {0, 1, · · · , T}, meanwhile, the autocovariance ct,τ depends not
only on the separation between the time points t and τ , but also on their individual locations.

If the average at every time point µt is equal to zero, the time series described above is called
zero mean autocovariance nonstationary time series.

Fig. 1 shows a real example of a raw autocovariance nonstationary time series and a preprocessed
series. (I) The upper left portion shows the raw data of filament size (the thickness of a segment
of cocoon filament) series sampled from some category cocoon [11], measured in dtex, {xi,t|i =
1, 2, · · · , n, t = 0, 1, · · · , Ti}. (II) The bottom left portion shows the preprocessed length unified
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(to the mean length T + 1) size series of the cocoon filaments, {yi,t|t = 0, 1, · · · , T}. (III) The
upper right and the bottom right portions show the deterministic (trend) component {di,t} and the
stochastic component {zi,t} of the unified size series respectively. Obviously {yi,t} = {di,t}+{zi,t}.
Fig. 2 shows the autocovariance ct,τ of the time series both shown in the bottom of Fig. 1.
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Fig. 1: A real example of an autocovariance nonstationary time series
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Fig. 2: The autocovariance ct,τ of the process shown in the bottom of Fig. 1

The time series data {zi,t} with the same physical meaning are sampled n times from the same
zero mean autocovariance nonstationary process. This differs from the panel series data which
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usually has various meanings which refer to multi-dimensional data sampled from some entity
only one time over multiple time periods.

To analyze a zero mean autocovariance nonstationary time series {zi,t}, the following three
TVMA models are presented now:

A. Full order TVMA model, TVMA(T ):

zi,t =
t∑

k=0

θk,tεi,t−k (1)

B. Time-unvarying order TVMA model, TVMA(q):

zi,t =

η∑

k=0

θk,tεi,t−k (2)

where η = min(t, q).

C. Time-varying order TVMA model, TVMA(qt):

zi,t =

qt∑

k=0

θk,tεi,t−k (3)

where qt ≤ t.

The common points of the above three TVMA models are: their parameters θk,t (including the

variances θ2
0,t = limn→∞ 1

n

n∑
i=1

(zi,t −
τ∑

k=1

θk,tεi,t−k)
2, where τ = t, η or qt) are time-varying on the

time points, do not have to change smoothly over time; and residuals εi,t unrelated to previous
time series value(s) zi,t are independent normal random variables at all time points. Series values
at a present time point can be expressed as the addition of two parts, one linearly dependent
on the residual(s) of previous time point(s) and the other which is not. The correlation between
values at different time points is, of course, zero, and we may therefore write:

E{z·,t} = 0, var{ε·,t} = 1, every t;

cov{ε·,t, ε·,τ} = 0, all t 6= τ.

The only difference among the above three TVMA models is the model order. The order of the
full order TVMA model is always the time point t; the order of the time-unvarying order TVMA
model is a fixed lag unvarying with the time point except at the beginning of the time series; and
the order of the time-varying order TVMA model is usually variable with the time point.

It had been proved [10] that the autocovariances of the time series simulated by a full order
time-varying parameter autoregressive model are equal to those of the original time series. It
is not difficult to prove that the autocovariances of the time series simulated by the TVMA(T )
model are equal to those of the original time series.

The TVMA(q) model will become the TVMA(T ) model if the order q equals T . Virtually, the
order q is selected between 1 and T/2 while analyzing the longer time series. The TVMA(qt)
model will become the TVMA(q) model if qt happens to be invariant with the time point after
the beginning of the time series.
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3 Model Parameters and AIC Analysis

3.1 For TVMA(q)

For the time-unvarying order TVMA model expressed in Equation (2), q is the time-unvarying
order usually less than T/2 while the model is used to analyze the longer time series. The
residual εi,t is a white noise, εi,t ∼ N(0, 1). Obviously, θ̂2

0,0 = c0,0, εi,0 = zi,t/θ̂0,0. Considering
the independence between εi,t and εi,τ (t 6= τ), where εi,t is unrelated with previous time series
value(s) zi,t−k, according to sampled time series data zi,t and Equation (2), when t = 1, we can
obtain:

c0,1 = θ0,0θ1,1, c1,1 = θ2
0,1 + θ2

1,1.

where c0,0, c0,1 and c1,1 are known items through calculation on sampled time series data. After
finishing,

θ̂1,1 = c0,1/θ̂0,0, θ̂2
0,1 = c1,1 − θ̂2

1,1.

Similarly, increasing t progressively, j = η, η − 1, · · · , 1, 0, we can obtain the estimates of MA
parameters θ̂k,t and θ̂2

0,t in Equation (2) by use of the following iterative Equation (4) and Equation
(5 or 5′).

θ̂j,t =

(
ct−j,t −

η−j∑

k=1

θ̂k,t−j θ̂j+k,t

)/
θ̂0,t−j, (4)

θ̂2
0,t = ct,t −

η∑

k=1

θ̂2
k,t, if ct,t >

η∑

k=1

θ̂2
k,t, (5)

otherwise,

θ̂2
0,t =

1

n

n∑
i=1

(
zi,t −

η∑

k=1

θ̂k,tεi,t−k

)2

. (5’)

The likelihood function of zi,0, · · · , zi,T will be:

L(θ0,t, θ1,t, · · · , θη,t) =
T∏

t=0

f(zi,t|εi,t−1, · · · , εi,t−η)

where f(zi,t|εi,t−1, · · · , εi,t−η) is the normal density function with the mean
η∑

k=1

θk,t−jεi,t−k and

variance θ2
0,t, expressed as:

f(zi,t|εi,t−1, · · · , εi,t−η) =
1√

2πθ2
0,t

exp



−

1

2θ2
0,t

(
zi,t −

η∑

k=1

θk,tεi,t−k

)2


 .
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Therefore, the likelihood function of the TVMA(q) model on the ith series is:

Li({θk,t}, θ2
0,t) =

(
1

2π

)(T+1)/2 T∏
t=0

1√
θ2
0,t

exp



−

1

2

T∑
t=0

1

θ2
0,t

(
zi,t −

η∑

k=1

θk,tεi,t−k

)2


 .

The log-likelihood function of the TVMA(q) model on the ith series and all the n series are
respectively given by the following two equations:

li({θk,t}, θ2
0,t) = −T + 1

2
log 2π − 1

2

T∑
t=0

log θ2
0,t −

1

2

T∑
t=0

1

θ2
0,t

(
zi,t −

η∑

k=1

θk,tεi,t−k

)2

, (6)

l({θk,t}, θ2
0,t) = −n(T + 1)

2
log 2π − n

2

T∑
t=0

log θ2
0,t −

1

2

T∑
t=0

1

θ2
0,t

n∑
i=1

(
zi,t −

η∑

k=1

θk,tεi,t−k

)2

, (7)

Substituting parameters θ̂k,t and θ̂2
0,t for Equation (7), the maximum log-likelihood value can

be expressed as:

l({θ̂k,t}, θ̂2
0,t) = −n(T + 1)

2
(log 2π + 1)− n

2

T∑
t=0

log θ̂2
0,t

There are T + 1 + q(2T + 1 − q)/2 parameters in the TVMA(q) model. The AIC(q) of the
TVMA(q) model can be obtained by:

AIC(q) = −2l({θ̂k,t}, θ̂2
0,t) + 2(T + 1) + q(2T + 1− q) = κ + n

T∑
t=0

log θ̂2
0,t + q(2T + 1− q) (8)

where κ = n(T + 1)(log 2π + 1) + 2(T + 1). The value of q yielding the minimum AIC specifies
the best TVMA(q) model.

If series with longer length (T À q) are stationary and ergodic and satisfy θ2
0,0 = θ2

0,1 = · · · =
θ2
0,T = σ̂2 for any given single series in this series cluster, the number of parameters in this MA

model can be considered to be q + 1. Hence,

AIC(q) = (T + 1)(log 2π + 1) + (T + 1) log σ̂2 + 2(q + 1).

Ignoring the constant (T + 1)(log 2π + 1), the above equation can be theoretically used as the
AIC formula for a single autocovariance stationary time series.

3.2 For TVMA(T )

For a zero-mean autocovariance nonstationary time series, if the order q of the TVMA(q) model
becomes T , the TVMA(q) model will become the TVMA(T ) model. Therefore, the estimates of
the MA parameter θ̂k,t and variances θ̂2

0,t of residual εi,t in Equation (1) can also be obtained.
The AIC(T ) of the TVMA(T ) model can be calculated through the following equation:

AIC(T ) = −2l({θ̂k,t}, θ̂2
0,t) + 2(T + 1) + T (2T + 1− T ) = κ + n

T∑
t=0

log θ̂2
0,t + T (T + 1) (9)

where κ = n(T + 1)(log 2π + 1) + 2(T + 1).
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3.3 For TVMA(qt)

For the time-varying order TVMA model expressed in Equation (3), qt is the time-varying order
usually less than T/2 where the model is used to analyze the longer time series. The residual εi,t is

a white noise, εi,t ∼ N(0, 1). Obviously, θ̂2
0,0 = c0,0. Considering the independence between εi,t and

εi,t(t 6= τ), where εi,t is unrelated with previous time series value(s) zi,t−k, let t = 1, 2, · · · , T, j =

qt, qt − 1, · · · , 1, 0. We can obtain the estimates of the MA parameter θ̂k,t and variance θ̂2
0,t of

residual εi,t in Equation (3) by use of Equation (10) and Equation (11 or 11′).

θ̂j,t =

(
ct−j,t −

qt−j∑

k=0

θ̂k,t−j θ̂j+k,t

)/
θ̂0,t−j (10)

θ̂2
0,t = ct,t −

qt∑

k=1

θ̂2
k,t if ct,t >

qt∑

k=1

θ̂2
k,t, (11)

otherwise,

θ̂2
0,t =

1

n

n∑
i=1

(
zi,t −

qt∑

k=1

θ̂k,tεi,t−k

)2

. (11’)

The likelihood function of zi,0, · · · , zi,T will be:

L(θ0,t, θ1,t, · · · , θqt,t) =
T∏

t=0

f(zi,t|εi,t−1, · · · , εi,t−qt)

where f(zi,t|εi,t−1, · · · , εi,t−qt) is the normal density function with the mean
qt∑

k=1

θk,t−jεi,t−k and

variance θ2
0,t, expressed as:

f(zi,t|εi,t−1, · · · , εi,t−qt) =
1√

2πθ2
0,t

exp



−

1

2θ2
0,t

(
zi,t −

qt∑

k=1

θk,tεi,t−k

)2


 .

Therefore, the likelihood function of the TVMA(qt) model on all n series at time point t will
be:

Lt({θk,t}, θ2
0,t) =


 1√

2πθ2
0,t




n

exp



−

1

2θ2
0,t

n∑
i=1

(
zi,t −

qt∑

k=1

θk,tεi,t−k

)2


 .

The log-likelihood function is expressed as the following:

lt({θk,t}, θ2
0,t) = −n

2
log 2πθ2

0,t −
1

2θ2
0,t

n∑
i=1

(
zi,t −

qt∑

k=1

θk,tεi,t−k

)2

(12)

On substituting parameters θ̂k,t and θ̂2
0,t for Equation (12), the maximum log-likelihood value

can be expressed as:

lt({θk,t}, θ2
0,t) = −n

2
(log 2π + 1)− n

2
log θ̂2

0,t
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There are qt + 1 parameters in the TVMA(qt) model at time point t. The AIC(qt) of the
TVMA(qt) model can be obtained by:

AICt(qt) = −2l({θ̂k,t}, θ̂2
0,t) + 2(qt + 1) = n(log 2π + 1) + n log θ̂2

0,t + 2(qt + 1).

The value of qt yielding the minimum AICt(qt) specifies the best TVMA(qt) model at time
point t.

The total maximum log-likelihood value at all the time points (t = 0, 1, · · · , T ) of the TVMA(qt)
model can be expressed as follows:

l({θ̂k,t}, θ̂2
0,t) = −n(T + 1)

2
(log 2π + 1)− n

2

T∑
t=0

log θ̂2
0,t

There are
T∑

t=1

qt +T +1 parameters at all the time points in the TVMA(qt) model. The AIC(qt)

of the TVMA(qt) model at the all time points can be obtained by Equation (13):

AIC(qt) = −2l({θ̂k,t}, θ̂2
0,t) + 2

T∑
t=1

qt + 2(T + 1) = κ + n
T∑

t=0

log θ̂2
0,t + 2

T∑
t=1

qt (13)

where κ = n(T + 1)(log 2π + 1) + 2(T + 1). If qt could be selected up to t, even if t > T/2, the
AIC(qt) of the TVMA(qt) model should be the minimum among the AIC values for the three
TVMA models proposed above.

4 Simulation

A real, original zero mean nonstationary time series, shown at the right bottom in Fig. 1, has
been analyzed through the above three TVMA models, and 1500 time series have been simulated
through the three TVMA models respectively. The experimental results verified that the autoco-
variances of time series simulated by the TVMA(T ) model are almost completely equal to those
of the original time series as shown in Fig. 2, and therefore, the TVMA(T ) model is appropriate
for describing this type of time series with finite length.

AIC analysis is carried out for TVMA(q) and TVMA(T ). The AIC values are shown in Table
1. If the order of the TVMA(q) model can only be selected from 1 to T/2, we suggest that
TVMA(6) should be selected. Otherwise, if the order of the TVMA(q) model can be selected
from 1 to T (= 19), we suggest that TVMA(T ) should be selected. 1500 time series have been
simulated through the TVMA(6) model. The autocovariances of the simulated time series are
shown in Fig. 3.

Table 1: AIC(q) of TVMA(q)

q 1 2 3 4 5 6 7 8 · · · 16 17 18 19

AIC −45 0.6 48 105 22 −109 −11 110 · · · −62 −185 −462 −1.05×103
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Fig. 3: The autocovariance of simulated time series by TVMA(q = 6)

AIC analysis is also carried out for TVMA(qt). Table 2 indicates the AIC values if the order
qt can be only selected within the numbers listed on the first row. If the order of the TVMA(qt)
model can only be selected from 1 to T/3 from Table 2, we suggest the order qt ≤ 4 should be
selected. The autocovariances of time series simulated by TVMA(qt ≤ 4) are shown as Fig. 4,
and the orders qt in the TVMA(qt) are shown in Table 3.

Table 2: AIC(qt) of TVMA(qt)

qt ≤ 1 2 3 4 5 6 7 8 9 10 11 · · · 19

AIC −45 −32 −103 −340 −289 −151 −291 −342 −353 −345 −345 · · · −345

Table 3: The orders qt of TVMA(qt ≤ 4)

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

qt 1 2 3 4 4 1 4 1 1 1 4 3 3 3 4 4 1 1 1

According to the AIC analysis indicated in Table 1 and Table 2 for a zero mean nonstation-
ary time series shown at the right bottom in Fig. 1, the TVMA(T ) model with the minimum
AIC specifies it as the best among these three TVMA models, followed by TVMA(qt ≤ 4) and
TVMA(q = 6).

5 Discussion

The TVMA orders q and qt affect the separation between the time points t and τ of the autoco-
variance ct,τ of the simulated time series. The greater the TVMA orders, the longer the relevant
separation.

Although analytical results are verified by simulations on some real time series, it should be
noted that the objective time series in this study are zero mean autocovariance nonstationary
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Fig. 4: The autocovariance of simulated time series by TVMA(qt ≤ 4)

time series which are repeatedly sampled from some univariate stochastic process, differing from
the panel data. The TVMA models presented above are effective only on clusters of zero mean
autocovariance nonstationary time series but should rarely be used to analyze some single time
series sampled only once from univariate stochastic processes.

For simulation of zero mean autocovariance nonstationary time series through learning the
original series and obtaining the corresponding parameters θk,t, simulation can be carried out
using the TVMA(T ) model. 1500 time series have been successfully simulated using TVMA(T ).
The results verified that the autocovariances of simulated time series are almost completely equal
to those of the original time series.

The AIC values of the TVMA models in Table 1 are greater than those of the TVPAR models
[14], for example, the AIC(6) of TVMA(6) (−109) is greater than the AIC(3) of TVPAR(3)
(−4.302×103), and the AIC(T ) of TVMA(T ) (−1.05×103) is also greater than that of TVPAR(T )
(−6.362×103). According to Akaike information criterion, the TVMA models proposed here are
probably not as good as the TVPAR models. That is to say, the autocovariance error between
the original and the simulated (by the TVMA models) size series of cocoon filament is probably
greater than that by the TVPAR models. Nevertheless, in the analysis of nonstationary time
series, the TVMA model is still a good choice besides the TVPAR model.

6 Conclusion

1. The TVMA models proposed above can be applied to analyze nonstationary time series in
statistical analysis and practical engineering.

2. When selecting moving average orders for the above TVMA models according to the above
AIC analysis in practical engineering, for convenience, the constant K in Equation (8), (9),
and (13) can be ignored. The selection result will remain invariable. For the same cluster
of zero mean autocovariance nonstationary time series, n and T are invariable in the three
AIC calculation formulas, but the variances θ̂2

0,t are usually different.
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3. For selecting one TVMA model from the above three models to analyze zero mean auto-
covariance nonstationary time series according to analysis, calculation and experience, it is
suggested that: if the time series length is not too long, the TVMA(T ) model should be
selected for precise simulation; if the length is too long, the TVMA(qt) model should be
selected; and generally, the TVMA(q < T ) model should not be selected unless analyzing
an autocovariance stationary time series.
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