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SECOND-ORDER TWO-SCALE ANALYSIS METHOD FOR

DYNAMIC THERMO-MECHANICAL PROBLEMS IN PERIODIC

STRUCTURE

ZIHAO YANG, JUNZHI CUI, YATAO WU, ZIQIANG WANG, AND JIANJUN WAN

Abstract. In this paper, we develop the second-order two-scale (SOTS) analysis method and
numerical algorithm for dynamic thermo-mechanical problems of composite materials with 3-D

periodic configuration. In the problem considered, there exists a mutual interaction between
the displacement and temperature fields. By the asymptotic expansion of temperature and dis-

placement fields, the cell problems, effective thermal and mechanical parameters, homogenized

equations and SOTS formulas of temperatures and displacements are obtained. The numerical
algorithm based on the SOTS method is given. Finally, some numerical examples are shown.

The numerical results show that the SOTS method is feasible and valid to predict the dynamic

thermo-mechanical behaviors of periodic composite materials.

Key words. Composites with 3-D periodic configuration, dynamic thermo-mechanical problems,

the SOTS analysis method, numerical algorithm.

1. Introduction

With the rapid advance of materials science and technology, composite materials
have been widely used to a variety of industrial fields owing to the advantageous
physical and mechanical properties. With the appearance of complex and extreme
service environments, composite structures usually work under multi-physical fields
coupled circumstances. And it is important to understand the thermo-mechanical
responses of them in engineering applications. Up to now, some research has
been performed on thermo-mechanical problems of periodic composites. However,
some studies were devoted to one-way thermo-mechanical coupling problems [1-4],
namely, the thermal effects affect the mechanical filed but not vice versa. Other
studies have focused on developing different types of micromechanical models with
simplified microstructures [5-8] and various numerical modeling approaches [9-11]
to obtain the effective thermal and mechanical properties or homogenized behav-
iors. But in many engineering applications, the understanding of the local fluc-
tuation of temperature and displacement fields is much more important. Besides,
in some situations, such as the thermal shock phenomena, the dynamic thermo-
mechanical problem should be considered. And the fully coupled analysis will lead
to more accurate results. So it is significant and meaningful to study dynamic
thermo-mechanical problems of periodic composites. In this field, Francfort [12]
and Parnell [13] have given the homogenized procedure for the dynamic problems
with different periodic configurations.

The dynamic thermo-mechanical problem is strongly coupled by hyperbolic and
parabolic equations, so the transient displacement and temperature fields must be
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solved simultaneously. Thus, it is difficult to apply analytical methods to study it.
As for numerical solutions, due to the sharply varying of material coefficients, in
order to capture the local fluctuation behaviors of temperature and displacement
fields and their derivatives, the mesh size must be very small while employing the
traditional finite element method (FEM) and finite difference method (FDM). So
it leads to tremendous amount of computer memory and CPU time. It is needed
to develop new effective method for predicting the physical and mechanical perfor-
mances.

Based on the homogenization methods [14-16], various multi-scale methods have
been proposed [22, 23]. They only considered the first-order asymptotic expansions.
In recent years, Cui et al. introduced the Second-Order Two-Scale (SOTS) analysis
method [17-19] to predict the physical and mechanical behaviors of composites. By
the second-order correctors, the microscopic fluctuation of physical and mechanical
behaviors inside the materials can be captured more accurately. Feng et al. [20]
studied the two-scale analysis for the static thermo-mechanical coupling problem of
periodic composites. After that, Wan [21] studied the dynamic thermo-mechanical
problem by two-scale analysis method and gave the numerical results of 1-D. In
this paper, we study the SOTS’s numerical method on dynamic thermo-mechanical
problems of 3-D periodic composites (Fig.1) which is much more popular in engi-
neering practice. In 3-D case, temperatures, displacements, temperature gradients
and stresses are calculated.

The reminder of this paper is outlined as follows. In section 2, the SOTS as-
ymptotic analysis for the dynamic thermo-mechanical problem is presented briefly.
Section 3 describes the algorithm procedure. And some numerical results are shown
in section 4. Finally the conclusions are given.

For convenience, we use the Einstein summation convention on repeated indices
throughout the paper. For simplicity, we do not give the definitions of the associated
Sobolev spaces in this paper, and we refer the reader to some classical books [26,
27].

 

 

  ▄ 
Y 

Figure 1. Macroscopic and Microscopic structure.
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2. Setting of the problem and second-order two-scale formulation

Consider the dynamic thermo-mechanical problems with mixed initial-boundary
conditions for the composite structure with periodic configuration as follows
(1)

ρε(x)cε(x)
∂T ε(x, t)

∂t
+ T̃ βεij(x)

∂

∂t

(
∂uεi (x, t)

∂xj

)
− ∂

∂xi

(
kεij(x)

∂T ε(x, t)

∂xj

)
= h

in Ω× (0,
^

t )

ρε(x)
∂2uεi (x, t)

∂t2
− ∂

∂xj

(
Cεijkl(x)

∂uεk(x, t)

∂xl
− βεij(x)

(
T ε(x, t)− T̃

))
= fi

in Ω× (0,
^

t )

T ε(x, t) = T̂ (x, t) on ΓT × (0,
^

t )

uε(x, t) = û(x, t) on Γu × (0,
^

t )

nik
ε
ij(x)

∂T ε

∂xj
= q̄(x, t) on Γq × (0,

^

t )

nj

(
Cεijkl(x)

∂uεk(x, t)

∂xl
− βεij(x)

(
T ε(x, t)− T̃

))
= σ̄i(x, t) on Γt × (0,

^

t )

T ε(x, 0) = T̃ ,uε(x, 0) = ũ(x),
∂uε

∂t
(x, 0) =

^
u(x) in Ω

where Ω is a bounded domain with Lipschitz continuous boundary as shown in Fig.1;
i, j, k, l = 1, 2, 3; T ε(x, t) and uε(x, t) denote the temperature and displacement
vector; ρε(x) and cε(x) are the mass density and specific heat, βεij(x), Cεijkl(x) and

kεij(x) are the thermal modulus, elastic tensor and thermal conductivity, and they
are periodic functions with small period ε; h(x, t) and fi(x, t) are the internal heat
source and the body force; û(x, t) is the prescribed displacements on the boundary

Γu, T̂ (x, t) is the prescribed temperature on the boundary ΓT ; q̄(x, t) is the heat
flux prescribed normal to the boundary Γq, σ̄i(x, t) is the prescribed tractions on

the boundary Γt, ni and nj are the normal direction cosine of Γq and Γt; T̃ (x),

ũ(x) and
^
u(x) are the initial temperature, displacement and velocity field. Besides,

there holds

ΓT ∩ Γq = ∅, Γu ∩ Γt = ∅, ΓT ∪ Γq = Γu ∪ Γt = ∂Ω

Let y = x/ε be the local coordinates of unit cell Y , and then

ρε(x) = ρ(x/ε), cε(x) = c(x/ε), kεij(x) = kij(x/ε)

Cεijkl(x) = Cijkl(x/ε), βεij(x) = βij(x/ε)

where ρ(y), c(y), kij(y), Cijkl(y) and βij(y) are 1-periodic functions, respectively.
At first, we make following assumptions:
(A) ρ(y), c(y), kij(y), Cijkl(y) and βij(y) are bounded measurable functions,

and ρ, c, βij , Cijkl, kij ∈ L∞(Y ).

(B) kij(y), Cijkl(y) and βij(y) are symmetric, and there exist two positive con-
stant τ1 and τ2 independent of ε such that

kij = kji, τ1γiγi 6 kij(y)γiγj 6 τ2γiγi

Cijkl = Cjikl = Cklij , τ1ηijηij 6 Cijkl(y)ηijηkl 6 τ2ηijηij

βij = βji, τ1γiγi 6 βij(y)γiγj 6 τ2γiγi
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where {ηij} is an arbitrary symmetric matrix and {γi} is an arbitrary vector with
real elements.

Now we briefly derive the SOTS computation formula for the dynamic thermo-
mechanical problem of periodic composites. Firstly we assume that T ε(x, t) and
uε(x, t) can be formally expanded as follows

(2)
T ε(x, t) = T0(x, y, t) + εT1(x, y, t) + ε2T2(x, y, t) + · · ·
uε(x, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + · · ·

where ui(x, y, t) = (ui1, ui2, ui3). Inserting (2) into (1), taking account of the chain
rule

∂

∂xi
→ ∂

∂xi
+

1

ε

∂

∂yi

and equating the coefficients of the same powers ε, we have

(3) O(ε−2) :


∂

∂yi

(
kij(y)

∂T0

∂yj

)
= 0

∂

∂yj

(
Cijkl(y)

∂u0k

∂yl

)
= 0

(4) O(ε−1) :



T̃ βij(y)
∂2u0i

∂t∂yj
− ∂

∂yi

(
kij(y)

(
∂T1

∂yj
+
∂T0

∂xj

))
− ∂

∂xi

(
kij(y)

∂T0

∂yj

)
= 0

∂

∂yj
(βij(y)T0)− ∂

∂yj

(
βij(y)T̃

)
− ∂

∂xj

(
Cijkl(y)

∂u0k

∂yl

)
− ∂

∂yj

(
Cijkl(y)

(
∂u0k

∂xl
+
∂u1k

∂yl

))
= 0

(5)

O(ε0) :



T̃ βij(y)

(
∂2u1i

∂t∂yj
+
∂2u0i

∂t∂xj

)
− ∂

∂yi

(
kij(y)

(
∂T2

∂yj
+
∂T1

∂xj

))
+ρ(y)c(y)

∂T0

∂t
− ∂

∂xi

(
kij(y)

(
∂T1

∂yj
+
∂T0

∂xj

))
= h

ρ(y)
∂2u0i

∂t2
+

∂

∂yj
(βij(y)T1)− ∂

∂xj

(
Cijkl(y)

(
∂u0k

∂xl
+
∂u1k

∂yl

))
− ∂

∂yj

(
Cijkl(y)

(
∂u1k

∂xl
+
∂u2k

∂yl

))
+

∂

∂xj

(
βij(y)T0 − βij(y)T̃

)
= fi

From (3) we can acquire that T0 and u0 are independent of the microscale y,
namely

(6) T0 = T0(x, t), u0 = u0(x, t)

Refer to [20, 21], from (4) and (6), T1 and u1 can be defined as follows

(7) T1(x, y, t) = Mα1
(y)

∂T0

∂xα1

(x, t)

(8) u1(x, y, t) = Nα1
(y)

∂u0

∂xα1

(x, t)−P0(y)
(
T0(x, t)− T̃

)
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where Nα1
(y) are matrix-valued functions and P0(y) are vector-valued functions

defined on unit cell Y . Mα1
(y), Nα1

(y) and P0(y) are the solutions of following
cell problems

(9)


− ∂

∂yi

(
kij(y)

∂Mα1
(y)

∂yj

)
=

∂

∂yi
(kiα1

(y)) y ∈ Y∫
Y

Mα1
(y)dy = 0, Mα1

(y) ∈ H1
per(Y )

(10)


− ∂

∂yj

(
Cijkl(y)

∂Nα1km(y)

∂yl

)
=

∂

∂yj
(Cijmα1

(y)) y ∈ Y∫
Y

Nα1m(y)dy = 0, Nα1m(y) ∈ H1
per(Y )

(11)


− ∂

∂yj

(
Cijkl(y)

∂P0k(y)

∂yl

)
=

∂

∂yj
(βij(y)) y ∈ Y∫

Y

P0(y)dy = 0, P0(y) ∈ H1
per(Y )

where

(12) H1
per(Y ) = {v|v ∈ H1(Y ), v is Y − periodic}

Introducing (7)-(8) into (5), integrating over both sides of each equation of (5)
in Y and using (9)-(11), following equations are obtained∫

Y

∂

∂yi

(
kij(y)

∂T2

∂yj

)
dy +

∂

∂xi

[
1

|Y |

∫
Y

(
kij(y) + kik(y)

∂Mj(y)

∂yk

)
dy
∂T0

∂xj

]
=

1

|Y |

∫
Y

(
ρ(y)c(y)− T̃ βij(y)

∂P0i(y)

∂yj

)
dy
∂T0

∂t

+T̃
1

|Y |

∫
Y

(
βij(y) + βkl(y)

∂Njki(y)

∂yl

)
dy
∂2u0i

∂t∂xj
− h

1

|Y |

∫
Y

ρ(y)dy
∂2u0i

∂t2
+

1

|Y |

∫
Y

(
βij(y) + Cijkl(y)

∂P0k(y)

∂yl

)
dy

∂

∂xj

(
T0 − T̃

)
− ∂

∂xj

[
1

|Y |

∫
Y

(
Cijkl(y) + Cijmα1(y)

∂Nlmk(y)

∂yα1

)
dy
∂u0k

∂xl

]
= fi +

∫
Y

∂

∂yj

(
Cijkl(y)

∂u2k

∂yl

)
dy

Thus the homogenized specific heat capacity Ŝ, thermal modulus β̂ij and ϕ̂ij , ther-

mal conductivity k̂ij , mass density ρ̂, and elastic tensor Ĉijkl can be defined as
follows

(13) Ŝ =
1

|Y |

∫
Y

(
ρ(y)c(y)− T̃ βij(y)

∂P0i(y)

∂yj

)
dy

(14) β̂ij =
1

|Y |

∫
Y

(
βij(y) + βkl(y)

∂Njki(y)

∂yl

)
dy

(15) k̂ij =
1

|Y |

∫
Y

(
kij(y) + kik(y)

∂Mj(y)

∂yk

)
dy



THE SOTS METHOD FOR DYNAMIC THERMO-MECHANICAL PROBLEM 149

(16) ρ̂ =
1

|Y |

∫
Y

ρ(y)dy

(17) Ĉijkl =
1

|Y |

∫
Y

(
Cijkl(y) + Cijmα1

(y)
∂Nlmk(y)

∂yα1

)
dy

(18) ϕ̂ij =
1

|Y |

∫
Y

(
βij(y) + Cijkl(y)

∂P0k(y)

∂yl

)
dy

According to (10)-(11), it is easy to prove that β̂ij = ϕ̂ij [21]. Moreover, the
homogenized problem associated with the original problem (1) can be defined as
follows
(19)

Ŝ
∂T0(x, t)

∂t
+ T̃ β̂ij

∂2u0i(x, t)

∂t∂xj
− ∂

∂xi

(
k̂ij

∂T0(x, t)

∂xj

)
= h in Ω× (0,

^

t )

ρ̂
∂2u0i(x, t)

∂t2
− ∂

∂xj

(
Ĉijkl

∂u0k(x, t)

∂xl
− β̂ij

(
T0(x, t)− T̃

))
= fi in Ω× (0,

^

t )

T0(x, t) = T̂ (x, t) on ΓT × (0,
^

t )

u0(x, t) = û(x, t) on Γu × (0,
^

t )

nik̂ij
∂T0(x, t)

∂xj
= q̄(x, t) on Γq × (0,

^

t )

ni

(
Ĉijkl

∂u0k

∂xl
− β̂ij

(
T0 − T̃

))
= σ̄j(x, t) on Γt × (0,

^

t )

T0(x, 0) =
^

T ,u0(x, 0) = ũ(x),
∂u0

∂t
(x, 0) =

^
u(x) in Ω

According to [12], it can be obtained

(20)

^

T = T̃ +
1

Ŝ

{(
T ε(x, 0)− T̃

)
· 1

|Y |

∫
Y

ρ(y)c(y)d y

+
∂ũi(x)

∂xj
· 1

|Y |

∫
Y

βkl(y)
∂Njki(y)

∂yl
dy

}
Furthermore, introducing (7), (8) and (19) into (5) and applying (6), following
equations are obtained

(21)

− ∂

∂yi

(
kij(y)

∂T2

∂yj

)
=

(
T̃ βij(y)

∂P0i(y)

∂yj
− ρ(y)c(y) + Ŝ

)
∂T0

∂t

+T̃

(
β̂α1α2

− βα1α2
(y)− βij(y)

∂Nα2iα1
(y)

∂yj

)
∂2u0α1

∂t∂xα2

+

(
−k̂α1α2

+ kα1α2
(y) + kα2j(y)

∂Mα1(y)

∂yj

+
∂

∂yi
(kiα2

(y)Mα1
(y))

)
∂2T0

∂xα1
∂xα2



150 Z. YANG, J. CUI, Y. WU, Z. WANG, AND J. WAN

(22)

∂

∂yj

(
Cijkl(y)

∂u2k

∂yl

)
=
(
Ĉiα1mα2

− Ciα1mα2
(y)

−Ciα1kj(y)
∂Nα2km(y)

∂yj
− ∂

∂yj
(Cijkα2

(y)Nα1km(y))

)
∂2u0m

∂xα1∂xα2

−
(
β̂iα1

− βiα1
(y)− ∂

∂yj
(βij(y)Mα1

(y)) − Ciα1kl(y)
∂P0k(y)

∂yl

− ∂

∂yl
(Cilkα1

(y)P0k(y))

)
∂T0

∂xα1

− (ρ̂− ρ(y))
∂2u0i

∂t2

Then following [21] T2 and u2 can be defined as follows

(23) T2(x, y, t) = Mα1α2
(y)

∂2T0(x, t)

∂xα1
∂xα2

+Rα1α2
(y)

∂2u0α1
(x, t)

∂t∂xα2

+Q2(y)
∂T0(x, t)

∂t

(24) u2(x, y, t) = Nα1α2
(y)

∂2u0(x, t)

∂xα1
∂xα2

−Pα1
(y)

∂T0(x, t)

∂xα1

− F2(y)
∂2u0(x, t)

∂t2

where Nα1α2
(y), F2(y) are matrix-valued functions and Pα1

(y) are vector-valued
functions defined on unit cell Y . Mα1α2

(y), Rα1α2
(y), Q2(y), Nα1α2

(y), Pα1
(y)

and F2(y) are the solutions of following cell problems

(25)



− ∂

∂yi

(
kij(y)

∂Mα1α2
(y)

∂yj

)
= −k̂α1α2

+ kα1α2
(y) + kα2j(y)

∂Mα1
(y)

∂yj

+
∂

∂yi
(kiα2(y)Mα1(y)) , y ∈ Y∫

Y

Mα1α2
(y)dy = 0, Mα1α2

(y) ∈ H1
per(Y )

(26)



− ∂

∂yi

(
kij(y)

∂Rα1α2(y)

∂yj

)
= T̃

(
β̂α1α2 − βα1α2(y)

−βij(y)
∂Nα2iα1

(y)

∂yj

)
, y ∈ Y∫

Y

Rα1α2(y)dy = 0, Rα1α2(y) ∈ H1
per(Y )

(27)


− ∂

∂yi

(
kij(y)

∂Q2(y)

∂yj

)
= T̃ βij(y)

∂P0i(y)

∂yj
− ρ(y)c(y) + Ŝ, y ∈ Y∫

Y

Q2(y)dy = 0, Q2(y) ∈ H1
per(Y )

(28)



∂

∂yj

(
Cijkl(y)

∂Nα1α2km(y)

∂yl

)
= Ĉiα1mα2

− Ciα1mα2
(y)

−Ciα1kj(y)
∂Nα2km(y)

∂yj
− ∂

∂yj
(Cijkα2

(y)Nα1km(y)) , y ∈ Y∫
Y

Nα1α2m(y)dy = 0, Nα1α2m(y) ∈ H1
per(Y )
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(29)



∂

∂yj

(
Cijkl(y)

∂Pα1k(y)

∂yl

)
= β̂iα1

− βiα1
(y)− ∂

∂yj
(βij(y)Mα1

(y))

−Ciα1kl(y)
∂P0k(y)

∂yl
− ∂

∂yl
(Cilkα1

(y)P0k(y)) , y ∈ Y∫
Y

Pα1k(y)dy = 0, Pα1k(y) ∈ H1
per(Y )

(30)


∂

∂yj

(
Cijkl(y)

∂F2km(y)

∂yl

)
= δmi (ρ̂− ρ(y)) , y ∈ Y∫

Y

F2m(y)dy = 0, F2m(y) ∈ H1
per(Y )

Remark 2.1. Existence and uniqueness of the cell problems (9)-(11) and (25)-
(30) can be established based on suppositions (A)-(B), Lax-Milgram lemma and
Korn’s Inequalities [16]. The notation δmi is the Kronecker delta function, and if
m = i, δmi = 1, or δmi = 0. According to (23)-(30) there holds∫

Y

∂

∂yi

(
kij(y)

∂T2

∂yj

)
dy = 0,

∫
Y

∂

∂yj

(
Cijkl(y)

∂u2k

∂yl

)
dy = 0

Now we can define the two-scale approximate solutions of the problem (1) as
follows

(31)

_

T
ε

1(x, t) = T0(x, t) + εT1(x, y, t)
_

uε1(x, t) = u0(x, t) + εu1(x, y, t)
_

T
ε

2(x, t) = T0(x, t) + εT1(x, y, t) + ε2T2(x, y, t)
_

uε2(x, t) = u0(x, t) + εu1(x, y, t) + ε2u2(x, y, t)

where T0, u0 are the solutions of problem (19); T1, u1 and T2, u2 are defined by (7),

(8) and (23), (24), respectively.
_

T
ε

1(x, t),
_

uε1(x, t) are called as first-order two-scale

(FOTS) approximate solutions,
_

T
ε

2(x, t),
_

uε2(x, t) second-order two-scale (SOTS)
approximate solutions. Moreover, let

(32) T ε1∆ (x, t) = T ε(x, t)−
_

T
ε

1(x, t), uε1∆ (x, t) = uε(x, t)− _

uε1(x, t)

(33) T ε2∆ (x, t) = T ε(x, t)−
_

T
ε

2(x, t), uε2∆ (x, t) = uε(x, t)− _

uε2(x, t)

To compare
_

T
ε

s(x, t),
_

uεs(x, t) (s = 1, 2) with the original solutions T ε(x, t),
uε(x, t), taking T ε1∆ (x, t), uε1∆ (x, t) into (1), according to assumption (B) and using
(9)-(11), (19), we have

(34)

ρ(y)c(y)
∂T ε1∆ (x, t)

∂t
+ T̃ βij(y)

∂

∂t

(
∂uε1∆i(x, t)

∂xj

)
− ∂

∂xi

(
kij(y)

∂T ε1∆ (x, t)

∂xj

)
= F0 + εF1

ρ(y)
∂2uε1∆i(x, t)

∂t2
+

∂

∂xj

(
βij(y)T ε1∆ (x, t)

)
− ∂

∂xj

(
Cijkl(y)

∂uε1∆k(x, t)

∂xl

)
= S0i + εS1i
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where

F0 =

(
Ŝ − ρ(y)c(y) + T̃ βij(y)

∂P0i(y)

∂yj

)
∂T0(x, t)

∂t

+ T̃

(
β̂ij − βij(y)− βkl(y)

∂Njki(y)

∂yl

)
∂2u0i(x, t)

∂t∂xj

+

(
kij(y) + kiα1

(y)
∂Mj(y)

∂yα1

− k̂ij
)
∂2T0(x, t)

∂xi∂xj

+
∂

∂yα1

(
kα1i(y)Mj(y)

) ∂2T0(x, t)

∂xi∂xj

F1 =
(
T̃ βij(y)P0i(y)− ρ(y)c(y)Mj(y)

) ∂2T0(x, t)

∂t∂xj

+ kij(y)Mα1
(y)

∂3T0(x, t)

∂xi∂xj∂xα1

− T̃ βij(y)Nα1ik(y)
∂3u0k(x, t)

∂t∂xj∂xα1

S0i = (ρ̂− ρ(y))
∂2u0i(x, t)

∂t2
+

∂

∂yα1

(
Cα2α1il(y)Njα2k(y)

) ∂2u0k(x, t)

∂xj∂xl

+

(
β̂ij − βij(y)− Cijkl(y)

∂P0k(y)

∂yl

)
∂T0(x, t)

∂xj

− ∂

∂yl

(
Cijkl(y)P0k(y) + βij(y)Ml(y)

) ∂T0(x, t)

∂xj

+

(
Cijkl(y) + Cα2α1il(y)

∂Njα2k(y)

∂yα1

− Ĉijkl
)
∂2u0k(x, t)

∂xj∂xl

S1i = −
(
βij(y)Ml(y) + Cijkl(y)P0k(y)

) ∂2T0(x, t)

∂xj∂xl
+ ρ(y)P0i(y)

∂2T0(x, t)

∂t2

+ Cijkl(y)Nα1
(y)

∂3u0k(x, t)

∂xj∂xl∂xα1

− ρ(y)Nα1
(y)

∂3u0i(x, t)

∂t2∂xα1

From (34), we obtain that the residuals of T ε1∆ (x, t) and uε1∆ (x, t) are of order O(1)
nearly everywhere inside Ω. So the FOTS approximate solutions are not accepted
by the engineers since they are not approximate enough to capture the micro-scale
fluctuations of temperatures, displacements and their gradients.

Then taking T ε2∆ (x, t), uε2∆ (x, t) into (1) and using assumption (B) and (9)-(11),
(19), (25)-(30) we have

(35)

ρ(y)
∂2uε2∆i(x, t)

∂t2
+

∂

∂xj

(
βij(y)T ε2∆ (x, t)

)
− ∂

∂xj

(
Cijkl(y)

∂uε2∆k(x, t)

∂xl

)
= εHi + ε

∂

∂xj
Eij

ρ(y)c(y)
∂T ε2∆ (x, t)

∂t
+ T̃ βij(y)

∂

∂t

(
∂uε2∆i(x, t)

∂xj

)
− ∂

∂xi

(
kij(y)

∂T ε2∆ (x, t)

∂xj

)
= εG0 + ε

∂

∂xi
Gi
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where

(36)

Hi = −
(
βij(y)Ml(y) + Cijkl(y)P0k(y, ω)

) ∂2T0(x, t)

∂xj∂xl

+ρ(y)P0i(y)
∂2T0(x, t)

∂t2
+ Cijkl(y)Nα1km(y, ω)

∂3u0m(x, t)

∂xj∂xl∂xα1

−ρ(y)Nα1im(y)
∂3u0m(x, t)

∂t2∂xα1

+ Cijkl(y)
∂Nα1α2km(y)

∂yl

∂3u0m(x, t)

∂xα1
∂xα2

∂xj

−Cijkl(y)
∂Pα1k(y)

∂yl

∂2T0(x, t)

∂xα1∂xj
− Cijkl(y)

∂F2km(y)

∂yl

∂3u0m(x, t)

∂t2∂xj

−ε
[
ρ(y)Nα1α2im(y)

∂4u0m(x, t)

∂xα1∂xα2∂t
2
− ρ(y)Pα1i(y)

∂3T0(x, t)

∂xα1∂t
2

−ρ(y)F2im(y)
∂4u0m(x, t)

∂t4

]

(37)

Eij = −εβij(y)Mα1α2
(y)

∂2T0(x, t)

∂xα1
∂xα2

− εβij(y)Rα1α2
(y)

∂2u0α1
(x, t)

∂t∂xα2

− εβij(y)Q2(y)
∂T0(x, t)

∂t
+ εCijkl(y)Nα1α2km(y)

∂3u0m(x, t)

∂xα1
∂xα2

∂xl

− εCijkl(y)Pα1k(y)
∂2T0(x, t)

∂xα1
∂xl

− εCijkl(y)F2km(y)
∂3u0m(x, t)

∂t2∂xl

(38)

G0 = −T̃ βij(y)Nα1ik(y)
∂3u0k(x, t)

∂t∂xj∂xα1

+
(
T̃ βij(y)P0i(y)− ρ(y)c(y)Mj(y)

) ∂2T0(x, t)

∂t∂xj

+kij(y)Mα1
(y, ω)

∂3T0(x, t)

∂xi∂xj∂xα1

− T̃ βij(y)
∂Nα1α2im(y)

∂yj

∂3u0m(x, t)

∂xα1
∂xα2

∂t

+T̃ βij(y)
∂Pα1i(y)

∂yj

∂2T0(x, t)

∂xα1∂t
+ T̃ βij(y)

∂F2im(y)

∂yj

∂3u0m(x, t)

∂t3

+kij(y)
∂Mα1α2(y)

∂yj

∂3T0(x, t)

∂xα1
∂xα2

∂xi
+ kij(y)

∂Rα1α2(y)

∂yj

∂3u0α1(x, t)

∂t∂xα2
∂xi

+kij(y)
∂Q2(y)

∂yj

∂2T0(x, t)

∂t∂xi
− ερ(y)c(y)Mα1α2

(y)
∂3T0(x, t)

∂t∂xα1
∂xα2

−ερ(y)c(y)Rα1α2
(y)

∂3u0α1
(x, t)

∂t2∂xα2

− ερ(y)c(y)Q2(y)
∂2T0(x, t)

∂t2

−εT̃βij(y)Nα1α2im(y)
∂4u0m(x, t)

∂xα1
∂xα2

∂xj∂t
+ εT̃βij(y)Pα1i(y)

∂3T0(x, t)

∂xα1
∂xj∂t

+εT̃βij(y)F2im(y)
∂4u0m(x, t)

∂t3∂xj

(39)

Gi = εkij(y)Mα1α2
(y)

∂3T0(x, t)

∂xα1∂xα2∂xj
+ εkij(y)Rα1α2

(y)
∂3u0α1

(x, t)

∂t∂xα2∂xj

+εkij(y)Q2(y)
∂2T0(x, t)

∂t∂xj
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From (35), it is easy to see that the residuals of T ε2∆ (x, t) and uε2∆ (x, t) are of order
O(ε). It means that the SOTS solutions are equivalent to the solutions of original
problem (1) with order O(ε) in nearly pointwise sense. This is the reason for seeking
second-order two-scale expansions.

Summing up, one obtains following theorem
Theorem 2.1. The dynamic thermo-mechanical problem (1) of composite

materials with periodic configuration has SOTS approximate solutions as follows

(40)

T ε(x, t) ∼= T0(x, t) + εMα1
(y)

∂T0(x, t)

∂xα1

+ε2

(
Mα1α2

(y)
∂2T0(x, t)

∂xα1
∂xα2

+Rα1α2
(y)

∂2u0α1(x, t)

∂t∂xα2

+Q2(y)
∂T0(x, t)

∂t

)

(41)

uε(x, t) ∼= u0(x, t) + ε

(
Nα1(y)

∂u0(x, t)

∂xα1

−P0(y)
(
T0(x, t)− T̃

))
+ε2

(
Nα1α2(y)

∂2u0(x, t)

∂xα1∂xα2

−Pα1(y)
∂T0(x, t)

∂xα1

− F2(y)
∂2u0(x, t)

∂t2

)
where T0(x, t) and u0(x, t) are the solutions of the homogenized problem (19),
Mα1

(y), Nα1
(y) and P0(y) are one-order auxiliary functions defined by (9)-(11),

Mα1α2
(y), Rα1α2

(y), Q2(y), Nα1α2
(y), Pα1

(y) and F2(y) are second-order auxiliary
functions defined by (25)-(30), respectively.

And then the strains and temperature gradient can be evaluated by the formulas

(42)

εεhk(x, t) =
1

2

(
∂uεh(x)

∂xk
+
∂uεk(x)

∂xh

)
=

1

2

(
∂u0h(x)

∂xk
+
∂u0k(x)

∂xh

)
+

1

2

(
∂Nα1hm(y)

∂yk
+
∂Nα1km(y)

∂yh

)
∂u0m(x)

∂xα1

+ε
1

2

(
Nα1hm(y)

∂2u0m(x)

∂xα1∂xk
+Nα1km(y)

∂2u0m(x)

∂xα1∂xh

)
−1

2

(
∂P0h(y)

∂yk
+
∂P0k(y)

∂yh

)(
T0(x)− T̃

)
−ε1

2

(
P0h(y)

∂T0(x)

∂xk
+ P0k(y)

∂T0(x)

∂xh

)
+ε

1

2

(
∂Nα1α2hm(y)

∂yk
+
∂Nα1α2km(y)

∂yh

)
∂2u0m(x)

∂xα1
∂xα2

−ε1

2

(
∂Pα1h(y)

∂yk
+
∂Pα1k(y)

∂yh

)
∂T0(x)

∂xα1

+ε2 1

2

(
Nα1α2hm(y)

∂3u0m(x)

∂xα1∂xα2∂xk
+Nα1α2km(y)

∂3u0m(x)

∂xα1∂xα2∂xh

)
−ε2 1

2

(
Pα1h(y)

∂2T0(x)

∂xα1
∂xk

+ Pα1k(y)
∂2T0(x)

∂xα1
∂xh

)
−ε1

2

(
∂F2hm(y)

∂yk
+
∂F2km(y)

∂yh

)
∂2u0m(x)

∂t2

−ε2 1

2

(
F2hm(y)

∂3u0m(x)

∂xk∂t2
+ F2km(y)

∂3u0m(x)

∂xh∂t2

)
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(43)

∂T ε(x, t)

∂xi
=
∂T0(x)

∂xi
+
∂Mα1

(y)

∂yi

∂T0(x)

∂xα1

+ εMα1(y)
∂2T0(x)

∂xα1∂xi

+ε
∂Mα1α2

(y)

∂yi

∂2T0(x)

∂xα1∂xα2

+ ε2Mα1α2(y)
∂3T0(x)

∂xα1∂xα2∂xi
+ ε

∂Q2(y)

∂yi

∂T0(x)

∂t

+ε2 ∂
2T0(x)

∂xi∂t
+ ε

∂Rα1α2
(y)

∂yi

∂2u0α1
(x)

∂t∂xα2

+ ε2Rα1α2(y)
∂3u0α1

(x)

∂xα1∂xα2∂xi

According to Hooker’s Law, the stresses are calculated by the formula

(44) σεij(x, t) = Cijhk(y)εεhk(x, t)− βij(y)
(
T ε(x, t)− T̃

)
3. Algorithms for SOTS analysis method

In this section, the algorithm procedure for the SOTS analysis method, based on
the finite difference method in time direction and finite element method in spatial
region, for predicting the dynamic thermo-mechanical behaviors is presented.

It can be observed that cell problems (9)-(11) and (25)-(30) are all elliptic bound-
ary value problems, and they can be solved by the standard finite element method
to get the FE solutions of the first-order and second-order auxiliary functions. And
then the homogenized parameters are evaluated by (13)-(17) based on the FE solu-
tions of first-order auxiliary functions. The homogenized problem (19) is dynamic
and strongly coupled by hyperbolic and parabolic equations. So the spatial region

Ω is divided by using the FE mesh first, then the temporal domain (0,
^

t ) is divided
by using the finite difference. And the heat equation is integrated in time using the
backward difference scheme [24], and the Newmark difference scheme [24] is used
for the dynamical equation. The algorithm procedure is presented as follows

1. Determine the composite materials and verify the material parameters of
basic configuration.

2. Solve problem (9)-(11) by the FEM to get the FE solutions of Mα1
(y), Nα1

(y)

and P0(y), respectively. And the homogenized parameters Ŝ, β̂ij , k̂ij , ρ̂ and Ĉijkl
can be calculated through (13)-(17), respectively.

3. With the homogenized parameters obtained in step 2, the homogenized solu-
tions T0(x, t) and u0(x, t) can be obtained by solving problem (19) using the FEM
and FDM.

4. Solve problems (25)-(30) by using the same FE meshes as in step 2 to get the
FE solutions of Mα1α2(y), Rα1α2(y), Q2(y), Nα1α2(y), Pα1(y) and F2(y), respec-
tively.

5. Solve the derivatives of the homogenized solutions T0(x, t) and u0(x, t) with
respect to spatial and temporal variables. The derivatives with respect to spatial
variable are evaluated by the average technique on relative elements [25] and the
derivatives with respect to temporal variable are evaluated using the difference
schemes in step 3.

6. The displacement and temperature fields can be calculated through (40)-(41),
and then from (42)-(44), the strain tensor, temperature gradient and stress tensor
are evaluated, respectively.

4. Numerical results

To illustrate to the effectiveness of the SOTS method for studying the dynamic
thermo-mechanical problem, some numerical results are given here. A brick domain
Ω with a 10mm side is considered here shown in Fig.2(a), the periodic cell Y is
shown in Fig.2(b), and ε = 1/5. The material properties are listed in Table 1. The
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brick is clamped on its bottom surface, and the temperature at the bottom surface
is kept at 100◦C. The initial temperature is at 100◦C and the internal heat source
h is taken as 500J

/
cm3s . The time step is chosen as ∆t = 0.1.

Since it is difficult to find the exact solutions of above problem, we have to take
T ε(x, t) and uε(x, t) to be their FE solutions in the very fine mesh for comparison.
The tetrahedron partition is implemented and the information of the FE meshes is
listed in Table 2. Set

eT0 = Te − T0e, eT1 = Te − T1e, eT2 = Te − T2e,

eu0 = ue − u0e, eu1 = ue − u1e, eu2 = ue − u2e

Terror0 =
|eT0|H1

|Te|H1

, T error1 =
|eT1|H1

|Te|H1

, T error2 =
|eT2|H1

|Te|H1

,

uerror0 =
|eu0|H1

|ue|H1

, uerror1 =
|eu1|H1

|ue|H1

, uerror2 =
|eu2|H1

|ue|H1

Here | · |H1 denotes the semi-norm, Te, ue are the FE solutions of problem (1) in the
very fine mesh, T0e, u0e are the FE solutions of the homogenized equations (19),
and T1e, u1e and T2e, u2e are the FOTS and SOTS FE solutions, respectively.

Z

XY

Frame 001 ⏐ 22 May 2012 ⏐ tetrahedron_mesh_in_many_ellipsoidsFrame 001 ⏐ 22 May 2012 ⏐ tetrahedron_mesh_in_many_ellipsoids

(a)

Z

XY

Frame 001 ⏐ 12 Aug 2012 ⏐ tetrahedron_mesh_in_many_ellipsoidsFrame 001 ⏐ 12 Aug 2012 ⏐ tetrahedron_mesh_in_many_ellipsoids

(b)

Figure 2. (a) The whole domain Ω (b) The unit cell Y .

Table 1. Material properties of matrix and particles.

Property Particles Matrix

Young’s modulus(GPa) 117.0 66.2
Poisson’s ration 0.333 0.321

Thermal expansion coefficient(1/K) 7.11× 10−6 10.3× 10−6

Mass density(kg
/
m3) 5600 4410

Thermal conductivity(W/mK) 2.036 18.1
Specific heat(J/KgK) 615.6 808.3

Fig.3(a)-(c) show the evolution of relative errors in semi-norm between different
approximate solutions and FE solutions in the very fine mesh for temperatures and
displacements. Fig.4(a)-(h) show the results for T0e, T1e, T2e, Te and u0e, u1e, u2e,
ue at the intersection z = 0.5 at time t = 1.0 , respectively. Fig.5(a)-(c) show the
numerical results for ∂T1e/∂z, ∂T2e/∂z, ∂Te/∂z at the intersection x = 0.5 , and
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Table 2. Mesh information.

Original equation Unit cell Homogenized equation

Elements 793500 6348 93750
Nodes 141651 1403 17576
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Figure 3. (a) Terror0, Terror1 and Terror2 (b) uerror0 and uerror1
(c) uerror1 and uerror2.

Fig.5(d)-(f) show the results for the axial stresses σ1z, σ2z, σez corresponding to
u1e, u2e and ue at the intersection z = 0.5 at time t = 1.0, respectively.

From Table 2, it is clear that the mesh partition numbers of SOTS approxi-
mate solutions are much less than that of refined FE solutions. It means that the
SOTS method can greatly save computer memory and CPU time, which is very
important in engineering computation. From Fig.4 and Fig.5, we can see that the
homogenized, FOST and SOTS approximate solutions are in accordance with the
FE solutions in the very fine mesh. But Fig.3, Fig.4 and Fig.5 demonstrate that the
SOTS approximate solutions are much better than the homogenized solutions and
FOTS approximation solutions for temperatures, displacements and their gradient.
All the results show that the SOTS method is effective to predict the dynamic
thermo-mechanical behaviors of composite materials with periodic configurations.

5. Conclusions

This paper discussed the SOTS method and related numerical algorithm for the
dynamic thermo-mechanical problem of periodic composites. The SOTS solutions
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(h)

Figure 4. (a) T0e (b) T1e (c) T2e (d) Te (e) u0e (f) u1e (g) u2e (h) ue.



THE SOTS METHOD FOR DYNAMIC THERMO-MECHANICAL PROBLEM 159

0 0.2 0.4 0.6 0.8 1

Y

0

0.2

0.4

0.6

0.8

1

Z

Tz
677.854
632.663
587.472
542.28
497.089
451.898
406.706
361.515
316.323
271.132
225.941
180.749
135.558
90.3664
45.175

Frame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron DataFrame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron Data

(a)

0 0.2 0.4 0.6 0.8 1

Y

0

0.2

0.4

0.6

0.8

1

Z

Tz
851.537
793.176
734.814
676.453
618.092
559.73
501.369
443.007
384.646
326.284
267.923
209.562
151.2
92.8387
34.4772

Frame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron DataFrame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron Data

(b)

0 0.2 0.4 0.6 0.8 1

Y

0

0.2

0.4

0.6

0.8

1
Z

Tz
858.202
799.548
740.893
682.239
623.585
564.93
506.276
447.622
388.968
330.313
271.659
213.005
154.35
95.696
37.0417

Frame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron DataFrame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron Data

(c)

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

Frame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron DataFrame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron Data

(d)

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

Frame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron DataFrame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron Data

(e)

0

0.2

0.4

0.6

0.8

1

X

0

0.2

0.4

0.6

0.8

1

Y

Frame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron DataFrame 001 ⏐ 19 Mar 2013 ⏐ Example: FE-Volume Tetrahedron Data

(f)

Figure 5. (a) ∂T1e/∂z (b) ∂T2e/∂z (c) ∂Te/∂z (d) σ1z (e) σ2z (f) σez.

for the dynamic thermo-mechanical problems are presented. Numerical results
indicate that the local fluctuation of temperatures, displacements and their gradient
can be captured more precisely by considering the second-order correctors. And it
also concluded that the SOTS method is not only feasible, but also accurate and
efficient to study the dynamic thermo-mechanical problems of composite materials
with periodic configurations.
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