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Abstract. A boundary condition-implemented immersed boundary-lattice Boltzmann
method (IB-LBM) is presented in this work. The present approach is an improvement
to the conventional IB-LBM. In the conventional IB-LBM, the no-slip boundary condi-
tion is only approximately satisfied. As a result, there is flow penetration to the solid
boundary. Another drawback of conventional IB-LBM is the use of Dirac delta func-
tion interpolation, which only has the first order of accuracy. In this work, the no-slip
boundary condition is directly implemented, and used to correct the velocity at two
adjacent mesh points from both sides of the boundary point. The velocity correction
is made through the second-order polynomial interpolation rather than the first-order
delta function interpolation. Obviously, the two drawbacks of conventional IB-LBM
are removed in the present study. Another important contribution of this paper is
to present a simple way to compute the hydrodynamic forces on the boundary from
Newton’s second law. To validate the proposed method, the two-dimensional vor-
tex decaying problem and incompressible flow over a circular cylinder are simulated.
As shown in the present results, the flow penetration problem is eliminated, and the
obtained results compare very well with available data in the literature.
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1 Introduction

Nowadays, one of the most challenging issues in computational fluid dynamics is the
simulation of incompressible flows around complex geometries or moving boundaries.
One approach that has been proven particularly effective in handling a variety of these
problems is the immersed boundary method (IBM).

IBM was originally developed by Peskin [1] in 1970s to simulate the blood flow in a
two-dimensional model of heart. It uses a fixed Cartesian mesh for the flow field, which
is composed of Eulerian nodes. Meanwhile, the physical boundary immersed in the fluid
is represented by a set of Lagrangian points. The basic idea of IBM is that the boundary is
treated as deformable but with high stiffness. The deformation or moving of the bound-
ary will yield a force that tends to restore the boundary to its original shape or position.
The restoring force on the boundary is then distributed into the surrounding nodes (Eu-
lerian nodes) as the body force. Subsequently, the governing equation of flow field with
a body force is solved over the whole fluid domain including both inside and outside of
the boundary.

Based on the work of Peskin [1], various modifications and refinements have been
made. As a result, a number of variants of this approach were proposed and applied. A-
mong the remarkable works, Goldstein et al. [2] proposed a model named virtual bound-
ary method which permits simulations with complex geometries. They employed feed-
back forcing to represent the effect of solid body. The feedback force, which can be easily
computed via the velocities of fluid and boundary, is added to the momentum equation
to bring the fluid velocity to zero at the desired points. The main drawback of virtual
boundary method is that it contains two user-defined parameters that need to be tuned
according to the flow. Lai and Peskin [3] presented a second-order accurate immersed
boundary method to simulate the flow past a circular cylinder. The interaction between
the fluid and the immersed boundary is modeled using a well-chosen discretized ap-
proximation to the Dirac delta function. However, this method does not truly have the
second-order of accuracy due to the use of first-order Dirac delta function. Tseng et al. [4]
proposed a ghost-cell immersed boundary method for flow in complex geometry. This
approach imposes the specified boundary condition by extrapolating the variable to a
ghost node inside the body. High-order extrapolation is used to preserve the overall ac-
curacy. Lima E Silva et al. [5] proposed a version named physical virtual model, which
is based on the conservation laws, and simulated an internal channel flow and the flow
around a circular cylinder. In this model, the restoring force is calculated by applying the
momentum equations at the boundary points and then distributed to the surrounding
Eulerian grid.

Due to its simplicity and efficiency, the lattice Boltzmann method (LBM) has been
broadly used to simulate complex flows as an alternative to the Navier-Stokes (N-S)
equations-based solvers. It is a particle-based numerical technique, which studies the
dynamics of fictitious particles. Same as the IBM, the Cartesian mesh is usually used in
the standard LBM. This common feature motivates the coupling of two methods, which
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is called the immersed boundary-lattice Boltzmann method (IB-LBM). The first attempt
was made by Feng and Michaelides [6, 7]. They used the penalty method [6] or the di-
rect forcing method [7] to compute the restoring force on the boundary. Applying the
IB-LBM, they successfully simulated both the two-dimensional and three-dimensional
rigid particle motion. However, the methods of computing the restoring force are either
inaccurate or inefficient. For the penalty method [6], which is also named the Hook’s law
and employed in Peskin’s work [1], a user-defined spring constant is needed. The selec-
tion of the spring parameter may affect the accuracy of solution. For the direct forcing
method [7], which was first proposed by Fadlun et al. [8], the N-S equations are required
to be solved on the boundary points, which may spoil the merits of LBM. Recently, Niu
et al. [9] presented a momentum exchange-based immersed boundary-lattice Boltzman-
n method where a simple way was proposed for computing the force at the boundary
point. In their work, based on the LBM, the forcing term is calculated by the momentum-
exchange of the boundary particles. As compared to the work of Ladd [10], the force
computation of Niu et al. [9] is simpler and more convenient because one does not need
to care the details of the boundary position and mesh points.

In the conventional IBM, the major drawback is that the no-slip boundary condition
is not enforced in its solution process. As a consequence, there is penetration of some
streamlines to the solid body. Another drawback is the low order of accuracy near the
boundary. That is because of the use of Dirac delta function interpolation near the bound-
ary, which only has the first-order of accuracy. To remove these drawbacks, one has to im-
prove the way of implementing the boundary condition. For example, Kim et al. [11] de-
veloped a new immersed boundary method for simulating flows in complex geometries.
They used both mass sources/sinks and momentum forcing to satisfy the no-slip bound-
ary condition on the immersed boundary and also to satisfy the mass conservation for
the cell containing the immersed boundary. Nevertheless, the complexity is introduced
in the computation. Recently, Shu et al. [12] proposed a new immersed boundary-lattice
Boltzmann method based on the idea of velocity correction. In this work, they found that
unsatisfying of no-slip boundary condition in IBM is due to the pre-calculated restoring
force. Using the fractional step technique, they concluded that, adding a body force in the
momentum equation is equivalent to making a correction in the velocity field. Therefore,
there is no calculation of restoring force in this method. The fluid velocity at the bound-
ary point is modified to be equal to the boundary velocity, which may create a series of
velocity corrections at all boundary points. By distributing these velocity corrections in-
to the surrounding Eulerian mesh points, the fluid velocity field is corrected. Since the
no-slip boundary condition is satisfied, the streamline penetration is avoided. However,
this method only has the first-order of accuracy due to the use of linear interpolation.
At the same time, the computation of drag and lift forces by using the control volume
method is quite tedious. Following the idea of Shu et al. [12], Wu et al. [13] proposed an
implicit velocity correction-based immersed boundary-lattice Boltzmann method. In this
wok, the velocity correction is considered as unknown, which is determined in such a
way that the velocity at the boundary point interpolated from the corrected velocity field
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satisfies the no-slip boundary condition. However, this method still uses the Dirac delta
function interpolation near the boundary, which only has the first-order of accuracy.

In this work, we present a new approach to directly enforce the no-slip boundary con-
dition, which is inspired from the idea of Shu et al. [12]. Our approach is very simple and
straightforward. First, the basic velocity field is obtained by LBM on the Cartesian mesh.
After that, the velocity at the boundary point is directly used to modify the velocity at
two adjacent Eulerian mesh points from both sides of the boundary through the second-
order Lagrange interpolation. The current method to compute the velocity correction is
different from the work of Shu et al. [12] and Wu et al. [13]. To effectively consider the
body force in the lattice Boltzmann equation (LBE), we use the model proposed by Guo
et al. [14]. In this model, the fluid velocity consists of two parts. One is from the densi-
ty distribution function, and the other is from the body force. Through the relationship
between the velocity correction and body force, we can directly calculate the drag and
lift forces from the obtained velocity correction. To validate the presented method, its
application to simulate the steady and unsteady two-dimensional flows past a circular
cylinder is performed. The obtained numerical results basically agree well with available
data in the literature. Since the no-slip boundary condition is accurately satisfied, there
is no any streamline passing through the solid body.

2 Methodology

The boundary condition-implemented immersed boundary-lattice Boltzmann method
(IB-LBM) is developed from the conventional immersed boundary method (IBM). In the
following subsection, we will briefly describe the conventional IBM first. After that, our
proposed approach, which directly enforces the no-slip boundary condition, will be in-
troduced in detail.

2.1 Conventional immersed boundary method

In the concept of immersed boundary method, the body forcing term is used in the fluid
solver to represent the influence of boundary on the surrounding flow field. Generally,
the immersed boundary should comprise a large number of boundary points in order to
accurately represent the geometry of the physical boundary.

For the two-dimensional domain Ω containing an immersed boundary in the form
of a simple closed curve Γ, as shown in Fig. 1, the immersed boundary is given in the
parametric form of X(s,t), 0≤ s≤ Lb , X(0,t)=X(Lb,t), where s tracks a material point of
the immersed boundary and Lb is the length of Γ. The governing equations for flow field
can be written as:

ρ
(∂u

∂t
+u·∇u

)

+∇p=µ∆u+f, (2.1a)

∇·u=0, (2.1b)
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f(x,t)=
∫ Lb

0
F(s,t)δ(x−X(s,t))ds, (2.1c)

∂X(s,t)

∂t
=u(X(s,t),t)=

∫

Ω
u(x,t)δ(x−X(s,t))dx, (2.1d)

F(s,t)=S(X(s,t),t). (2.1e)

Here, x = (x,y) is the Eulerian coordinate, u is the fluid velocity vector having compo-
nents u and v, p is the fluid pressure and f(x,t) is the force density acting on the fluid,
respectively. X(s,t) and F(s,t) are the Lagrangian coordinate and boundary force density.
Eqs. (2.1a) and (2.1b) are the familiar Navier-Stokes equations of a viscous incompressible
fluid. Eq. (2.1c) distributes the restoring force from Lagrangian points on the boundary
to Eulerian points in the flow domain. Eq. (2.1d) interpolates the velocity from Eulerian
points in the flow domain to Lagrangian points on the boundary. They describe the in-
teraction between the immersed boundary and the fluid flow by a Dirac delta function
δ(x−X(s,t)) interpolation. Eq. (2.1e) states that the boundary force on the segment is de-
termined by the boundary configuration at time t, where S is a function of the boundary
deformation. For elastic materials, it satisfies a generalized form of Hook’s law.

Figure 1: Flow domain Ω with an immersed boundary Γ. The solid points are used to represent the Lagrangian
points and the Eulerian points are represented by the intersection points of mesh lines.

In conventional IBM, the force density f is calculated in advance. As a consequence,
the no-slip boundary condition is only approximately satisfied. This may induce the phe-
nomenon of streamline penetration to the solid boundary. Based on the idea of velocity
correction [12], we propose an improved version of IB-LBM, which enforces the no-slip
boundary condition.

2.2 A boundary condition-implemented immersed boundary-lattice
Boltzmann method

In order to represent Eqs. (2.1a) and (2.1b) in the lattice Boltzmann framework, an exter-
nal forcing term should be added to the standard LBE. The modified lattice Boltzmann
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equation is [6, 7]

fi(x+ei∆t,t+∆t)− fi(x,t)=− 1

τ

(

fi(x,t)− fi
eq(x,t)

)

+Fi∆t. (2.2)

Here, fi is the density distribution function, f
eq
i is its corresponding equilibrium state, τ is

the single relaxation parameter, ei is the lattice velocity and f is the external force density.
Fi is the discrete force distribution function. Considering the two-dimensional situation,
the popular D2Q9 lattice velocity model is used [15]. Here, D2 means two-dimension
and Q9 denotes 9 discrete lattice velocities. The velocity set is given by

ei =











(0,0), i=0,
(

cos[(i−1)π/2],sin[(i−1)π/2]
)

, i=1,2,3,4,
(
√

2cos[(i−5)π/2+π/4],
√

2sin[(i−5)π/2+π/4]
)

, i=5,6,7,8.

(2.3)

The corresponding equilibrium distribution function is taken as

f
eq
i (x,t)=ρwi

[

1+
ei ·u

c2
s

+
(ei ·u)2

2c4
s

− u2

2c2
s

]

, (2.4)

where wi is coefficient which depends on the selected lattice velocity model. For D2Q9
model used here, w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36.
cs=1/

√
3 is the sound speed of the model. Finally, the relationship between the relaxation

parameter and the kinematic viscosity of fluid is

ν=
2τ−1

6
∆t. (2.5)

In order to correctly recover the viscous and incompressible N-S equations involving
external force, the contribution of the body force to both momentum ρu and momentum
flux ρuu should be considered [14, 16]. He et al. [16] firstly proposed a form of forcing
term in LBE. Later, Guo et al. [14] presented a similar formulation with higher-order term
in u, which can be written as

fi =
(

1− 1

2τ

)

wi

(ei−u

c2
s

+
ei ·u

c4
s

·ei

)

·f. (2.6)

With the forcing term, the momentum can be computed by [14]

ρu=∑
i

ei fi+
1

2
f∆t. (2.7)

Furthermore, in the LBM framework, the density and pressure are calculated by

ρ=∑
i

fi, P= c2
s ρ. (2.8)
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It can be seen clearly from Eq. (2.7) that the velocity is contributed by two parts. One
is contributed from the density distribution function, while the other is from the force
density f. Similar to the work of Shu et al. [12], we can define the velocity from the
density distribution function as the intermediate velocity, and the velocity from the body
force as the velocity correction. That is, the intermediate velocity u∗ is defined as

ρu∗=∑
i

ei fi, (2.9)

and uc =u(x,t) is the correct velocity that satisfies the no-slip condition. Then Eq. (2.7)
can be written as

ρuc =ρu∗+
1

2
f∆t. (2.10)

So we can easily obtain the force density as

f=2ρ
(uc−u∗)

∆t
. (2.11)

To solve the unknown force density f, the procedure of current method is depicted as
follows. At first, we use Eq. (2.2) to obtain the density distribution function and thereby
compute the macroscopic variables using Eqs. (2.8) and (2.9) at Eulerian points. Note that
the obtained flow field may not satisfy the boundary condition. On the other hand, as
we know, the no-slip boundary condition is necessary for the viscous fluid flow. So, in
the second step, we need to implement the physical boundary condition. In the compu-
tational procedure of immersed boundary method, for every evolution time step, if the
velocity of fluid at the boundary point is equal to the velocity of boundary at the same
position, the no-slip boundary condition is strictly guaranteed. Inspired by this idea, we
directly use the wall velocity at the boundary point to correct the velocity at two adja-
cent Eulerian points on both sides of the boundary point by the second-order Lagrange
interpolation.

As shown in Fig. 2, it is supposed that the intersection point p between immersed
boundary and Eulerian mesh line only affects the velocity correction at two mesh points

Figure 2: Cartesian mesh lines, immersed boundary and their intersection points. ”◦” represents the intersection
points of solid boundary with horizontal mesh lines, ”�” represents the intersection points of solid boundary
with vertical mesh lines.
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A and B (horizontal mesh line), and the intersection point q only affects the velocity cor-
rection at two mesh points B(C) and D (vertical mesh line). Like the conventional IBM,
we limit the effect of intersection point in a local region of the flow domain. Since points
p and q are on the boundary, their velocity is given by the no-slip boundary condition
(up,vp) and (uq,vq).

Consider the horizontal mesh line first. To satisfy the boundary condition at point p,
we have to correct the velocity at its left and right adjacent Eulerian points A and B. With
the known velocities at the points A1, B1 and p, we can easily get the corrected velocity
at point A by the second-order Lagrange interpolation. The velocity at point A can be
calculated by

uc
A =

(xA−xA1)(xA−xB1)

(xp−xA1)(xp−xB1)
up+

(xA−xp)(xA−xB1)

(xA1−xp)(xA1−xB1)
uA1+

(xA−xA1)(xA−xp)

(xB1−xA1)(xB1−xp)
uB1, (2.12a)

vc
A =

(xA−xA1)(xA−xB1)

(xp−xA1)(xp−xB1)
vp+

(xA−xp)(xA−xB1)

(xA1−xp)(xA1−xB1)
vA1+

(xA−xA1)(xA−xp)

(xB1−xA1)(xB1−xp)
vB1. (2.12b)

Suppose that the mesh spacing is ∆x, that is, A1A = AB = BB1 = ∆x, and the distance
between points A and p is Ap=∆1, and the distance between points B and p is Bp=∆2,
then the above equations can be simplified as

uc
A =

2∆2
x

(∆x+∆1)(∆x+∆2)
up+

2∆1

3(∆x+∆1)
uA1−

∆1

3(∆x+∆2)
uB1, (2.13a)

vc
A =

2∆2
x

(∆x+∆1)(∆x+∆2)
vp+

2∆1

3(∆x+∆1)
vA1−

∆1

3(∆x+∆2)
vB1. (2.13b)

Similarly, the velocity at B can be interpolated by the velocity at points A1, B1 and p

uc
B
=

2∆2
x

(∆x+∆1)(∆x+∆2)
up−

∆2

3(∆x+∆1)
uA1+

2∆2

3(∆x+∆2)
uB1, (2.14a)

vc
B
=

2∆2
x

(∆x+∆1)(∆x+∆2)
vp−

∆2

3(∆x+∆1)
vA1+

2∆2

3(∆x+∆2)
vB1. (2.14b)

For the intersection points of immersed boundary with vertical mesh lines, we have to
correct the velocity at their upper (like point D in Fig. 2) and lower (like point C in Fig. 2)
adjacent Eulerian points. The velocity at point C can be computed by

uc
C =

(yC−yC1)(yC−yD1)

(yq−yC1)(yq−yD1)
uq+

(yC−yq)(yC−yD1)

(yC1−yq)(yC1−yD1)
uC1+

(yC−yC1)(yC−yq)

(yD1−yC1)(yD1−yq)
uD1, (2.15a)

vc
C =

(yC−yC1)(yC−yD1)

(yq−yC1)(yq−yD1)
vq+

(yC−yq)(yC−yD1)

(yC1−yq)(yC1−yD1)
vC1+

(yC−yC1)(yC−yq)

(yD1−yC1)(yD1−yq)
vD1. (2.15b)

Similarly, suppose that D1D=DC=CC1=∆y and Dq=∆3, Cq=∆4, then the velocities at
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points C and D can be calculated by

uc
C
=

2∆2
y

(∆y+∆3)(∆y+∆4)
uq−

∆4

3(∆y+∆3)
uD1+

2∆4

3(∆y+∆4)
uC1, (2.16a)

vc
C
=

2∆2
y

(∆y+∆3)(∆y+∆4)
vq−

∆4

3(∆y+∆3)
vD1+

2∆4

3(∆y+∆4)
vC1, (2.16b)

uc
D =

2∆2
y

(∆y+∆3)(∆y+∆4)
uq+

2∆3

3(∆y+∆3)
uD1−

∆3

3(∆y+∆4)
uC1, (2.16c)

vc
D =

2∆2
y

(∆y+∆3)(∆y+∆4)
vq+

2∆3

3(∆y+∆3)
vD1−

∆3

3(∆y+∆4)
vC1. (2.16d)

If the velocity at an Eulerian point is modified twice (like point B(C) in Fig. 2), we then
take their mean value

uc
B(C)=

1

2

(

uc
B+uc

C

)

, (2.17a)

vc
B(C)=

1

2

(

vc
B+vc

C

)

. (2.17b)

After obtaining the corrected velocity by Eqs. (2.13a)-(2.14b) and (2.16a)-(2.17b), the force
density at the fluid point can be simply calculated by Eq. (2.11).

Next, we solve the governing equations at all Eulerian points again with the force
density. We continue this process until the converged solution is obtained. To summarize,
the basic solution procedure of present approach can be outlined below,

1. Set initial flow field and input data.

2. Use Eq. (2.2) to obtain the density distribution function at time t= tn and compute
the macroscopic flow variables using Eqs. (2.8) and (2.9).

3. Use Eqs. (2.13a)-(2.14b), (2.16a)-(2.17b) to compute the corrected velocity at adjacent
Eulerian points around the boundary.

4. Obtain the force density using Eq. (2.11).

5. Compute the equilibrium distribution function using Eq. (2.4).

6. Repeat Steps 2 to 5 until convergence criterion is reached.

It should be indicated that in the present approach, the no-slip boundary condition is
directly implemented while it is only approximately satisfied in the conventional IBM.
Meanwhile, no Dirac delta function is used, which only has the first-order of accuracy.
In this work, the velocity at the boundary point is directly used to modify the velocity
in the vicinity of the boundary point by the second-order Lagrange interpolation. This
idea was first used in the work of Shu et al. [12], where the velocity correction is made by
linear interpolation with only the first-order of accuracy. Another advantage of present
method is the simple calculation of the force. We can easily compute the force density by
Eq. (2.11).
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3 Numerical results and discussion

3.1 Numerical test of overall accuracy

In this work, LBM is used to obtain the basic flow field. As we all know, LBM has the
second-order of accuracy in time and space. The second-order Lagrange interpolation is
used to correct the velocity in the vicinity of the boundary point. Although it is only used
around the boundary, we have to consider its effect on the global accuracy of solution in
the whole region. On the other hand, we have to indicate that a theoretical analysis of
overall accuracy for present method is very difficult since the process is complicated. So
in the following, we take the decaying vortex problem to numerically examine the overall
accuracy. In the work of Chen et al. [17], it is used to access the numerical accuracy of
their model. The solution of the problem is expressed as

u(x,y,t)=−U0cos
( xπ

L

)

sin
(yπ

L

)

exp
[

−
(2π2U0t

(ReL)

)]

, (3.1a)

v(x,y,t)=U0 sin
( xπ

L

)

cos
(

yπL
)

exp
[

−
(2π2U0t

(ReL)

)]

, (3.1b)

ρ(x,y,t)=ρ0−
ρ0U2

0

4C2
s

[

cos
(2xπ

L

)

+sin
(2yπ

L

)]

exp
[

−
(4π2U0t

(ReL)

)]

. (3.1c)

Similar to the work of Chen et al. [17], the computational domain is set as [−L,L]×[−L,L],
where L=1 and the periodic boundary condition is applied. The single relaxation param-
eter is chosen as τ=0.65, the Reynolds number is Re=10. A circular cylinder with a radius
of 0.5 is immersed in the computational domain. The exact solution is used to provide
the initial condition at t=0 and the boundary condition on the immersed body.

As the simulation is time-dependent, all the computations are up to time U0t/L= 1.
Six different uniform grids [(N+1)×(N+1), N=20,40,80,160] are used in the test. The
numerical error of u is measured using L2 norm, which is defined as

Err=

√

√

√

√

∑
N∗N

((

u−uexact
)

/U0

)2

N×N
. (3.2)

Here u and uexact represent the numerical velocity and the exact velocity. The order of
accuracy can be computed by taking logarithmic for the ratio of two successive errors as

Order of accuracy= log2

ErrN

Err(2N)
, (3.3)

where ErrN denotes the error using the mesh size of (N+1)×(N+1).
The numerical error of the velocity component u versus mesh spacing in the log scale

is plotted in Fig. 3. Table 1 shows the numerical error for the decaying vortex problem
given by present method. As shown in Table 1 and Fig. 3, the present method approxi-
mately has the second-order of accuracy.
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Figure 3: Numerical error of the velocity component u versus mesh spacing in the log scale for decaying vortex
problem. The overall accuracy of this method is approximately 2.0.

3.2 Flows over a circular cylinder

To further examine the accuracy and efficiency of present method, numerical simulations
of viscous flows past a circular cylinder are carried out. Both the steady and unsteady
cases are considered. This problem has been studied extensively and there are many
theoretical, experimental, and numerical results available in the literature. The problem
is very attractive because the flow behavior depends on the Reynolds number

Re=
U∞D

υ
. (3.4)

Here, U∞ is the free stream velocity, D is the diameter of the cylinder, υ is the kinematic
viscosity.

To obtain the accurate solution while keep high efficiency, the non-uniform mesh is
used for the simulation, and the Taylor series expansion and least squares-based LBM
(TLLBM) [18] is applied to provide the basic flow field.

In this work, the force can be directly computed from the velocity correction. The
drag coefficient is defined as

Cd=
FD

(1/2)ρU2
∞D

. (3.5)

Here FD is the drag force, which can be calculated by

FD =−
∫

Ω
fxdx, (3.6)

where fx is the x component of force density f. Similar to the drag coefficient, the lift
coefficient can be defined as

Cl =
FL

(1/2)ρU2
∞D

, (3.7)
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Table 1: Numerical error of velocity component u for the decaying vortex problem given by present method.

Mesh size dx (dx=dy) U0 Err/U0 Order of accuracy
41×41 0.05 0.025 3.74707535E-03 -
81×81 0.025 0.0125 9.24767769E-04 2.02

161×161 0.0125 0.00625 2.26095909E-04 2.03
321 ×321 0.00625 0.003125 5.57207403E-05 2.02

where FL is the lift force, which can be calculated by

FL =−
∫

Ω
fydx, (3.8)

fy is the y component of force density f.

3.2.1 Steady flow past a circular cylinder

For the numerical simulation, the initial fluid density is set as ρ=1.0 and the initial veloc-
ity is taken as free stream velocity U∞ = 0.1. The equilibrium distribution functions are
employed at far field boundaries.

For the simulation of steady flow, the Reynolds numbers of Re=20 and 40 are selected.
The computational domain is 60D×40D with mesh size of 501×351. The region around
the circular cylinder is 1.2D×1.2D with a uniform mesh size of 97×97. The cylinder is
located at (24D,20D).

Fig. 4 shows the streamlines when flows reach the steady state for the cases of Re=20
and 40. At the same time, the results using conventional IB-LBM proposed by Feng and
Michaelides [6] are plotted in Fig. 5. It can be seen clearly that using present method,
the streamlines, which are enclosed by the boundary of cylinder, do not penetrate the
cylinder surface. In contrast, the penetration of streamlines to the cylinder surface by the
conventional IB-LBM is obvious. The main reason is that the no-slip boundary condition
is strictly guaranteed in the present method while it is only approximately satisfied in the
conventional IBM.

(a) Re=20 (b) Re=40

Figure 4: Streamlines for the flow over a circular cylinder at Re=20 and Re=40 obtained by present method.
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(a) Re=20 (b) Re=40

Figure 5: Streamlines for the flow over a circular cylinder at Re= 20 and Re = 40 obtained by conventional
IB-LBM.

When the flow reaches steady state, there will be a pair of stationary recirculating
eddies behind the cylinder. The length of the recirculating region L, which is from the
nearest point of the cylinder to the end of the eddy, increases with the Reynolds number.
Usually, we define the non- dimensional recirculating region as 2L/D. In Table 2, we
compare the drag coefficient and length of recirculating region with the previous result-
s [19–21]. From the table, it can be seen that our numerical results agree well with those
in the literature.

Table 2: Comparison of drag coefficient Cd and recirculation length L for steady flow over a circular cylinder at
Re=20 and 40.

Case References Cd L

Re=20

Dennis and Chang [19] 2.045 1.88
Fornberg [20] 2.000 1.82

He and Doolen [21] 2.152 1.842
Present 2.072 1.86

Re=40

Dennis and Chang [19] 1.522 4.69
Fornberg [20] 1.498 4.48

He and Doolen [21] 1.499 4.49
Present 1.545 4.60

3.2.2 Unsteady flow past a circular cylinder

To further validate our approach, the unsteady flow around the cylinder at Reynolds
numbers of Re=100 and 200 is simulated. In this case, the initial perturbation in the flow
field would bring the vortices to form the well-known Karman vortex street. Finally, the
flow becomes periodically unsteady. The Strouhal number is defined as the dimension-
less frequency with which the vortices are shed behind the body

St=
fqD

U∞

, (3.9)
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t=0

t=1/4T

t=1/2T

t=3/4T

t=T

Figure 6: Vorticity contours and streamlines for the flow over a circular cylinder at Re=100 in a complete cycle.

where fq is the vortex shedding frequency.

For the simulations at Re=100 and 200, the computational domain is 60D×40D with
the mesh size of 681×491. The region around the cylinder is 1.2D×1.2D with a uni-
form mesh size of 149×149. The cylinder is located at (24D,20D). Table 3 displays
the present time-averaged drag coefficient and Strouhal number together with results
from [22–25]. Good agreement is shown in this table. In particular, the Strouhal numbers
computed by present method are in excellent agreement with the experimental data by
Williamson [25]. The instantaneous vorticity contours of vortex shedding and the stream-
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t=0

t=1/4T

t=1/2T

t=3/4T

t=T

Figure 7: Vorticity contours and streamlines for the flow over a circular cylinder at Re=200 in a complete cycle.

lines in one complete cycle at Re=100 and 200 are plotted in Figs. 6 and 7. The Karman
vortex street of the flow over a circular cylinder can be clearly seen in these figures. Simi-
lar to the steady flow, the present results also do not show any streamline passing through
the cylinder. This further demonstrates that the no-slip boundary condition is accurately
satisfied in the present work.

Fig. 8 presents the periodic time evolutions of the drag and lift coefficients on the
surface of cylinder at Re = 100 and 200. It can be seen from this figure that the period
of drag coefficient is different from that of lift coefficient. The period of lift coefficient is



826 X. Wang, C. Shu, J. Wu and L. M. Yang / Adv. Appl. Math. Mech., 6 (2014), pp. 811-829

(a) Re=100 (b) Re=200

Figure 8: Evolution of drag and lift coefficients for flow over a cylinder at Re=100 and 200 computed by present
method.

about two times the period of drag coefficient.

3.2.3 Comparison of methods for force calculation

In the work of Shu et al. [12], they used the control volume method to calculate the drag
force and the lift force on the immersed body. Its process is quite tedious. In this study,
we can directly calculate the drag and lift forces from the obtained velocity correction
through the relationship between the velocity correction and the force density.

Fig. 9 shows the time evolution of the drag and lift coefficients on the surface of cylin-
der at Re = 100 and 200, which are calculated by the control volume method. Table 4
shows the Comparison of the drag coefficient Cd between the present method and con-

(a) Re=100 (b) Re=200

Figure 9: Evolution of drag and lift coefficients for flow over a cylinder at Re=100 and 200 computed by control
volume method.
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Table 3: Comparison of time-averaged drag coefficient Cd and Strouhal number St for unsteady flow over a
circular cylinder at Re=100 and 200.

Case References Cd St

Re=100

Braza et al. [22] 1.364 0.160
Liu et al. [23] 1.350 0.164

Ding et al. [24] 1.325 0.164
Williamson [25] - 0.166

Present 1.356 0.165

Re=200

Braza et al. [22] 1.40 0.20
Liu et al. [23] 1.31 0.192

Ding et al. [24] 1.327 0.196
Williamson [25] - 0.197

Present 1.345 0.195

Table 4: Comparison of time-averaged drag coefficient Cd computed by present method and control volume
method.

Case Reynolds number Cd (present method) Cd (control volume method)

Steady flow
Re=20 2.072 2.076
Re=40 1.545 1.551

Unsteady flow
Re=100 1.356 1.354
Re=200 1.345 1.349

trol volume method. We can see that although the present method is very simple, its
numerical results compare very well with those by the control volume method.

4 Conclusions

This paper presents a boundary condition-implemented immersed boundary-lattice
Boltzmann method (IB-LBM). It overcomes two major drawbacks of conventional IB-
LBM. The no-slip boundary condition is directly implemented in this work while it is
only approximately satisfied in the conventional IB-LBM. The first-order Dirac delta func-
tion interpolation often adopted in the conventional IB-IBM is not applied in this work.
Instead, the present work uses the second-order polynomial interpolation to implement
the physical boundary condition. Another advantage of present method is the simple
calculation of force on the boundary. It can be directly computed from the relationship
between the velocity correction and the force density.

The accuracy and efficiency of present method are examined by its application to
simulate two dimensional vortex decaying problem, steady and unsteady flows past a
circular cylinder. The obtained numerical results are in good agreement with available
data in the literature. In particular, the streamlines obtained by present method do not
show any flow penetration to the solid boundary, which is often appeared in the results
of conventional IB-LBM. The present method may have a great potential in simulation of
steady and unsteady flows.
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