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A NUMERICAL ALGORITHM FOR SET-POINT REGULATION

OF NON-LINEAR PARABOLIC CONTROL SYSTEMS

EUGENIO AULISA AND DAVID GILLIAM

Abstract. In this paper we hope to draw attention to a particularly simple and extremely flexible

design strategy for solving a wide class of “set-point” regulation problems for nonlinear parabolic
boundary control systems. By this we mean that the signals to be tracked and disturbances to be

rejected are time independent. The theoretical underpinnings of our approach is the well known

regulator equations from the geometric theory of regulation applicable in the neighborhood of an
equilibrium. The most important point of this work is the wide applicability of the design method-

ology. In the examples we have employed unbounded sensing and actuation but the method works

equally well for bounded input and output operators and even finite dimensional nonlinear control
systems. Our examples include: multi-input multi-output regulation for a boundary controlled

viscous Burgers’ equation; control of a Navier-Stokes flow in two dimensional forked channel; con-

trol problem for a non-Isothermal Navier-Stokes flow in two dimensional box domain. Along the
way we provide some discussion to demonstrate how the method can be altered to provide many

alternative control mechanisms. In particular, in the last section we show how the method can be

adapted to solve tracking and disturbance rejection for piecewise constant time dependent signals.

Key words. Boundary Control System, Center Manifold, Regulator Equations.

1. Introduction

In control theory, regulation of a control system is a fundamental problem that
has received considerable attention in the engineering literature. Specific examples
of regulation problems include the design of control laws that achieve tracking and
disturbance rejection. Our interest in this paper is to present a straightforward
methodology for numerical implementation of a strategy (based on the geometric
theory of regulation) for solving a wide variety of regulation problems for linear
and nonlinear distributed parameter systems with quite general control and sens-
ing, including boundary control and sensing. In the geometric theory of regulation,
problems of output regulation include asymptotic tracking of reference signals and
rejection of unwanted disturbances. This methodology was first studied by B. Fran-
cis [8] and many others in the finite dimensional linear case. In a series of tremen-
dously inspiring papers in the early 1990s, C. I. Byrnes and A. Isidori [11, 12, 13]
extended the geometric theory to nonlinear finite dimensional systems. Byrnes and
Isidori’s work was based on center manifold theory and reduced the design prob-
lem to solving a pair of nonlinear operator equations referred to as the Regulator
Equations. These equations are also often called the FBI equations after Francis,
Byrnes and Isidori. Until recently, a major obstacle to the practical implementation
of the method was the inherent difficulty in solving the Regulator Equations. In
this area we have made significant progress toward obtaining approximate numeri-
cal solutions by developing methods for solving the nonlinear regulator equations.
Our techniques have lead to the ability to design control laws even for such compli-
cated systems as the two dimensional Boussinesq approximation of non-isothermal
incompressible flows.
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The explicit examples presented in this work (Section 4 and Section 5) are con-
cerned with applications from distributed parameter control in which the plant
is given in terms of a nonlinear parabolic partial differential equation. The main
reason for our choice of examples is that they provide the most challenging types
of examples. In particular, for systems governed by partial differential equations
it is not only possible for the state operator to be unbounded but also the input
and output maps as well. Here, the expression unbounded means discontinuous.
For example, output mappings defined by point evaluation at points or on lower
dimensional hypersurfaces either inside the spatial domain or on the boundary of
this domain provide discontinuous (unbounded) mappings in the standard L2 ener-
gy Hilbert space. Indeed, in the terminology of functional analysis such operators
may not even be closable. Similarly, control inputs that enter through the bound-
ary or inside the spatial domain at points or on lower dimensional hypersurfaces
are also described by distributional operators which are unbounded mappings in
the standard L2 Hilbert space.

It would have been easier to include examples with bounded input and output
maps and even examples from finite dimensional control theory since the basic
methodology described in this work applies equally well to linear or nonlinear reg-
ulation control problems for these types of systems. We hope that the interested
reader can easily adapt the roadmap presented here to solve problems for other
types of set point control problems.

As we have already mentioned this paper is concerned with set-point regulation
problems. These are problems in which the reference signs to be tracked and distur-
bances to be rejected are independent of time. We focus on this particular class of
problems since our numerical algorithm for solving the regulator equations in this
case requires a considerably different and much simpler approach than is needed
in the more general case of tracking and rejecting time varying signals. The more
general case will be the subject of a forthcoming paper [1].

As a disclaimer, in this work we do not investigate the main mathematical prop-
erties of the pde models appearing in our application examples. In our opinion
such a diversion would seriously detract from the main point of the work which is
to exhibit the utility of the design methodology and its numerical implementation.
So, for example, we do not go into any details concerning such things as Hilbert
space formulations of weak solutions, Sobolev spaces and elliptic estimates needed
to guarantee existence and regularity of solutions. To do so would require us to
significantly limit the number of examples presented and is not the main point in
the work.

The paper is organized as follows. In Section 2 we present the necessary notation
and definitions for the general abstract control problem. We briefly discuss the
issues related to bounded and unbounded formulations (i.e., boundary type control)
and remark that their equivalence have been examined in works such as [15, 16].
In Section 3 we describe the main problem of interest in this work, Problem 3.1.
This subsection also contains the details of the design strategy, which derive from
the geometric theory of regulation. Our main assumptions, based on the geometric
theory of regulation, are captured in Assumptions 3.1 and 3.2. Providing these
assumptions are satisfied for a particular control model, it is clear that Problem
3.1 is solvable (at least locally). Section 4 begins with what we consider the most
important part of this work, the numerical examples that exhibit the utility of the
design strategy presented in Section 3. In Section 5 we provide a general method for
tracking and rejecting piecewise constant time dependent signals. The method is
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based on the ideas developed in Section 3. We reiterate that this paper is primarily
concerned with tracking and disturbance rejection for time independent reference
signal. The examples given in Section 5 are intended to show that it is possible to
adapt the set-point methodology to handle this slightly more complicated situation.
Here we note that the the most important change is prompted by the fact that the
controls uj described in Problem 3.1 now must be time dependent and therefore
the steady state system (21)-(22) must now be replaced by the time dependent
system. The resulting system is a DAE that requires regularization. The particular
regularization employed is necessary in solving the system (152)-(154), Eq. (156),
and the coupling condition (160). In particular for our example it was found that
multiplying the time derivative term in Eq. (156) by 0.95 produces a system that is
numerically stable. For general time dependent reference and disturbance signals
some type of numerical regularization is required. The algorithm and technical
details are somewhat more involved and dramatically different from the set point
case. As we have already mentioned the general time dependent case will be the
subject of a separate paper.

Although all examples have been solved numerically using the finite element soft-
ware Comsol, for each problem we provide a detailed description of the algorithm,
so that its numerical solution can be found by using any alternative PDE package
solver. Our choice of using Comsol is motivated by its flexibility for solving coupled
multi-physics problems.

2. Regulation of Nonlinear Parabolic Control Systems

In this work we are primarily interested in tracking and disturbance rejection for
nonlinear parabolic control systems in the form

zt(x, t) = Az(x, t) + F (z(x, t)) +

nd∑
j=1

(Bdj
dj)(x, t) +

nin∑
j=1

(Binjuj)(x, t),(1)

z(x, 0) = z0(x), z0 ∈ Z = L2(Ω),(2)

yi(t) = (Ciz)(x, t), i = 1, . . . , nc,(3)

with x ∈ Ω, an open bounded subset of Rn with piecewise C2 boundary, and t ≥ 0.
Here z(x, t) is the state variable and it can be either a scalar or a vector. The terms

(Bdjdj)(x, t) = Θj(x) dj(t), j = 1, . . . , nd,(4)

(Binjuj)(x, t) = Φj(x)uj(t), j = 1, . . . , nin,(5)

represent disturbances and control inputs, respectively. Note that in Eqs. (4)-(5)
each term is a multiplicative operator between a space dependent function and the
corresponding input function which is considered to be time dependent only. The
expressions Θj(x) and Φj(x) are assumed to be known functions, and may also be
unbounded (e.g., for example, in the case of boundary control they typically are
given by delta functions supported on a portion of the boundary). In general Bdj

refers to a disturbance input operator and Binj refers to a control input operator.
In this paper the state operator A is assumed to be a linear differential operator

in an infinite dimensional Hilbert state space Z = L2(Ω). It is assumed that the
operator A defined on a dense domain D(A) generates an exponentially stable
C0 semigroup in Z. In our intended applications the operators Ci in Eq. (3) are
typically point evaluation or a weighted integral of the solution z(x, t) in some part
of the domain Ω or its boundary. Therefore these operators are generally densely
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defined and not usually bounded in the the state space Z. The most common
situation is that −A is an accretive operator that generates a Hilbert scale of spaces
Zα for α ∈ R and the domain of Ci, denoted by D(Ci), is contained in some Zα0

for some α0 > 0. So we assume that Ci : D(Ci)→ R for each i (see, e.g., [10, 14]).
We assume that the boundary of Ω, denoted by ∂Ω, is piecewise C2 and is

represented by the union of (n− 1) dimensional connected hypersurfaces Sj , which
are subsets of ∂Ω and whose interiors are pairwise disjoint.

Here the nonlinear function F is a smooth function with F (0) = 0 so that the
uncontrolled plant has the origin in Z as an exponentially stable equilibrium.

Remark 2.1. Stability of the the origin for the uncontrolled nonlinear problem,
i.e., the problem with all uj = 0 and dj = 0, is a critical component of the theoretical
development (see [12, 13, 4]) of the geometric approach to regulation based on center
manifold theory. Here by stability we mean that for all sufficiently small initial data
z0 ∈ Z, say ‖z0‖ ≤ δ, there exists positive constants M and α (depending on δ) so
the solution of

zt(x, t) = Az(x, t) + F (z(x, t)),

z(x, 0) = z0(x),

satisfies

‖z(·, t)‖ ≤Me−αt for all t ≥ 0.

If the operator A is not stable, (does not generate a stable semigroup) then we
must first introduce a feedback mechanism that stabilizes the plant. The problem
of finding such a feedback law is the stabilization problem and is not the same
as the regulator problem considered here. Since our interest is with tracking and
disturbance rejection and not stabilization we assume that the plant in question is
already stable in order to avoid the extra layer of complication.

2.1. Standard Control Systems Form. The vast majority of the distributed
parameter control results are stated in what is often referred to as standard system
form. Introducing a few new notations allows us to write the control system (1)-(3)
in the standard system theoretic state space form. Namely, let us define

(6) D =


d1

d2

...
dnd

 , U =


u1

u2

...
unin

 , Y =


y1

y2

...
ync

 , Yr =


yr,1
yr,2

...
yr,nc

 .
With this notation we can write our control problem as

dz

dt
= Az + F (z) +BdD +BinU,(7)

Y = Cz.(8)

Here we have written the input, disturbance and output terms in matrix form as

BdD =

nd∑
j=1

Θj(x) dj(t), BinU =

nin∑
j=1

Φj(x)uj(t), Y = Cz =


C1(z)
C2(z)

...
Cnc(z)

 ,
where Bd and Bin are disturbance input and control input operators respectively,
and C denotes the output operator.
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2.2. Formulation for Boundary Control Systems. In situations involving dis-
tributed parameter systems governed by partial differential equations it very often
happens that the control inputs and the disturbances influence the system through
the boundary.

In the several explicit examples presented in this paper some of the operators
Binj and Bdj in the system (1)-(3) correspond to boundary control operators. That
is to say they correspond to controls or disturbances that enter through boundary
conditions on the hypersurfaces Sj or at points or on hypersurfaces inside the do-
main. In system (1)-(3) the boundary conditions are included in the input operators
Bdj and Binj , for some set of indices. Let the sequences Bdj and Binj be ordered so

that the first nbd and nbin elements correspond to boundary operators Bdj and Binj

defined on the hypersurfaces Sdj and Sinj respectively. Then the control system (1)
can be written in the equivalent form

zt(x, t) = A0z(x, t) + F (z(x, t)) +

nd∑
j=nb

d+1

(Bdjdj)(x, t)(9)

+

nin∑
j=nb

in+1

(Binjuj)(x, t),

(Bdjz)(x, t) = ϑj(x) dj(t), x ∈ Sdj , j = 1, . . . , nbd,(10)

(Binjz)(x, t) = ϕj(x)uj(t), x ∈ Sinj , j = 1, . . . , nbin.(11)

where z = z(x, t), (10), (11) are boundary disturbance and control input terms
which replace the homogeneous boundary conditions which are hidden in the defi-
nition of D(A).

We note that in this case the functions ϑj(x) in (10) and ϕj(x) in (11) are not
the same as the distributional functions Θj and Φj given in (4) and (5). Indeed, the
functions ϑj(x) and ϕj(x) are typically smooth functions, not distributions. The
reformulation of problem (1)-(5) into the form (9)-(11) is discussed in [2, 15, 16]. In
particular, it is well known that under suitable assumptions there exist operators
Bdj and Binj so that system (9)-(11) can be written in the form (1) (cf. [2, 15,
16]). Here the operator A0 is typically a linear elliptic partial differential operator
engendered with only a partial set of boundary conditions. We denote the dense
domain of A0 in Z by D(A0).

The operator A is the same linear elliptic partial differential operator A0 with
domain, denoted by D(A), given by

(12) D(A) = {ϕ : Bdjϕ = 0 (j = 1, . . . , nbd), Binjϕ = 0 (j = 1, . . . , nbin)}∩D(A0).

The structure of the boundary operators depends on the structure of the operator
A and other physical properties of the particular problem. Generally speaking
the boundary operators Bdj and Binj can represent any of the classical boundary
conditions, including Dirichlet, Neumann and Robin, etc. The explicit examples in
this work provide a clear description of the general types of boundary conditions
that can be handled with this methodology.

As a simple example, consider a control system modeled by a one dimensional
heat equation on a unit interval, e.g., 0 < x < 1. With temperature at x at time
t denoted by z(x, t), suppose that the left end of the rod is held at a constant
temperature d (a constant disturbance) and we are able to control the flow of heat
into or out of the the rod at the right end of the rod (a flux boundary control).
This system, with initial temperature distribution z0(x) would normally be written
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as an initial boundary value problem in the Hilbert state space Z = L2(0, 1) as

zt(x, t) = zxx(x, t),(13)

z(0, t) = d,(14)

zx(1, t) = u,(15)

z(x, 0) = z0(x).(16)

An example of a set point control problem would be to find a control u in order
to drive the temperature at a given point, 0 < x0 < 1, to a constant value M .
In this case our measured output would be z(x0, t) and our reference signal would
be yr = M . The “boundary control” system (13)-(16) can be transformed in an
equivalent form as the system

zt(x, t) = Az(x, t) +
dδ0
dx

d+ δ1u,(17)

z(x, 0) = z0(x),(18)

where δj for j = 0, 1 denote the Dirac delta function supported at x = 0 and x = 1
respectively. In this form the system now looks like a system written in standard
system form as (7)-(8), where

Bd =
dδ0
dx

and Bin = δ1,

and

A =
d2

dx2
with domain D = {ϕ ∈ H2(0, 1) : ϕ(0) = 0, ϕ′(1) = 0}.

The mathematical problem (17), (18), must be studied in a space of distributions
rather than the more desirable space L2(0, 1).

3. The Set-Point Control Problem

In this part of the paper we discuss a general strategy intended to deliver control
laws capable of solving a wide variety of set point regulation problems, i.e., track-
ing/disturbance rejection problems for time independent reference signals yri ∈ R,
i = 1, . . . , nc, and disturbances, dj(t) = dj ∈ R, i = j, . . . , nd. In Section 5 we
discuss a methodology for solving tracking and disturbance rejection problems for
signals that are time dependent but piecewise constant over specified time interval-
s. We show that for these very special time dependent signals the corresponding
tracking problems can be solved with a slight modification of the results of this
section. As we have already mentioned, for more general time dependent reference
signals and disturbances we refer the reader to a forthcoming paper on the general
time dependent case [1].

Problem 3.1. Our design objective is to find a set of time independent controls
uj(t) = γj , j = 1, . . . , nin, for the system (1)-(3) so that the error defined by

(19) e(t) = ‖Y (t)− Yr‖∞ = sup
1≤i≤nc

|yi(t)− yri |,

satisfies

(20) e(t)
t→∞−−−→ 0.

while the state of the closed loop plant remains bounded for all time.

The methodology for solving Problem 3.1 is based on two main assumptions:
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Assumption 3.1. There exist constants γj , j = 1, . . . , nin, and a classical solu-
tion z(x) ∈ Z of the non-linear elliptic boundary value problem (21) satisfying the
constraints given in (22) :

0 = Az(x) + F (z(x)) +

nd∑
j=0

θj(x)dj +

nin∑
j=0

φj(x)γj ,(21)

Ciz = yri , i = 1, . . . , nc.(22)

Assumption 3.2. For sufficiently close initial data

‖z0(x)− z(x)‖ < δ,

the solution z(x, t) of the system (1)-(3) with controls uj = γj, i.e.,

zt(x, t) = Az(x, t) + F (z(x, t)) +

nd∑
j=0

θj(x)di +

nin∑
j=0

φj(x)γj ,(23)

z(x, 0) = z0(x),(24)

satisfies

(25) lim
t→∞

∣∣Ciz(·, t)− Ciz(·)∣∣ = 0, i = 1, . . . , nin.

Clearly the condition in (25) implies the asymptotic error condition (20), i.e.,
under Assumptions 3.1 and 3.2, it is obvious that

yi(t) = Ciz
t→∞−−−→ Ciz = yri , i = 1, . . . , nin.

Thus the solution of our set-point control problem is uj = γj , j = 1, . . . , nin,
which is obtained, along with z, by solving the system (21)-(22).

Remark 3.1. The output operators Ci are often given as point evaluation or as the
weighted average of the state z(x, t) on a hypersurface Si inside or on the boundary
of Ω, i.e.,

(26) yi(t) = Ciz =
1

|Si|

∫
Si
z(x, t) dσx,

where by dσx we denote the natural hypersurface measure on Si. For example it
could be that Si is one of the boundary patches Sj . We note that the operators
Ci are well defined in our setting since in a typical parabolic problem the state
z(·, t) for t > 0 is contained in C∞(Ω) so that the trace on the boundary of Ω is a
continuous function.

Assumptions 3.1 and 3.2 are motivated by the development of C.I. Byrnes and
A. Isidori [11, 12, 13] for finite dimensional nonlinear equations. Their approach
is based on invariant manifold theory in a neighborhood of an equilibrium, and
requires solving a pair of operator equations referred to as the regulator equations.
It is further assumed that the disturbances dj(t) and signals to be tracked yri(t)
are generated as outputs of a neutrally stable, finite dimensional exogenous system.
The case of set point control, where all the dj and yri are time independent, satisfies
this requirement. In particular the exo-system in this case is given by

(27)
dw

dt
= Sw, w(0) = w0,

where w = [w1, w2, · · · , wnc+nd
]ᵀ ∈ W = Rnc+nd , S is the (nc + nd) × (nc + nd)

zero matrix, and

(28) w0 = [yr1 , · · · , yrnc
, d1, · · · , dnd

]ᵀ.
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Clearly the solution to the initial value problem (27) is the constant vector
w(t) = w0 for all times.

In the geometric theory we seek controls uj as a feedback of the state of the exo-
system, i.e., uj = γj(w), which we will often denote simply by γj . So in particular
in this case we seek controls that are time independent. In matrix form we have

U =

 u1

...
unin

 =

 γ1

...
γnin

 .
By assumption A is the generator of an exponentially stable semigroup and

therefore its spectrum lies in the strict left half complex plane.
In this case the closed loop system, consisting of (1)-(3) coupled with (27) and

controls uj = γj(w), is given in the state space Z×W as

zt = Az + F (z) +

nd∑
j=0

Bdj
dj(w) +

nin∑
j=0

Binj
γj(w),(29)

dw

dt
= Sw,(30)

z(x, 0) = ϕ(x), w(0) = w0.(31)

The linearization of this problem has spectrum consisting of the spectrum of A
together with the spectrum of S. So there are nd + nc eigenvalues at zero (on the
imaginary axis) and the remainder of the spectrum is in the left half complex plane.
In the terminology of dynamical systems, the problem has an infinite dimensional
stable manifold and a nd + nc dimensional center manifold. Further, solutions
beginning in a sufficiently small neighborhood of the origin in Z × W converge
exponentially to a solution on the nd + nc dimensional center manifold. In the set
point case this solution is a point on the center manifold corresponding to the single
point w0.

In order to obtain the controls γj , C.I. Byrnes and A. Isidori [11, 12, 13] approach
involves finding a so-called error zeroing center manifold. In the mathematical
terminology of invariant manifolds we seek an invariant manifold for the dynamics
of the closed loop system on which the error, defined in (20), is identically zero.
We note that it is possible that such an invariant manifold may not exist. But if
it does then we can solve the corresponding regulator problem as follows. We seek
a mapping z(w) : W → Z that expresses the invariance of the z dynamics of the
closed loop system. At least locally, i.e., in a neighborhood W0 of the origin in W,
the center manifold Σ is given as the graph of a function in Z×W space, i.e.,

Σ =

{(
z(w)
w

)
: w ∈W0

}
,

for some neighborhood W0 of the origin in R3.
First we note that, by the chain rule, (30), and since S = 0,

zt =
∂z

∂w
wt = 0.

So we obtain from (29)

(32) 0 = Az(w) + F (z(w)) +

nd∑
j=0

Bdj
dj(w) +

nin∑
j=0

Binj
γj(w),
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which is precisely (21). The requirement that the invariant manifold be error zeroing
means, in addition, that z must satisfy

(33) Ciz(w)− wi = 0, i = 1, .., nc,

for all w in a neighborhood of the origin. Recall that by our choice of initial
conditions in (28), we have wi = yri . We conclude that equations (32) and (33)
are precisely equations (21) , (22) and we see that the Assumptions 3.1 and 3.2
are simply the requirements of the existence of an error zeroing attractive invariant
manifold.

3.0.1. Solution Strategy. To determine the γj that satisfy (21)-(22) we proceed
in the following way. First we solve the nin linear boundary value problems given
by

(34) 0 = AXj(x) + Φj(x), j = 1, . . . , nin and x ∈ Ω.

Notice that as long as the coefficients in these elliptic boundary value problems
are sufficiently smooth the solution Xj will also be smooth by elliptic regularity so
that Xi ∈ D(Cj).

With this we can assemble the matrix Gnc×nin
, whose entries are

(35) gij = CiXj , i = 1, . . . , nc, j = 1, . . . , nc.

Each component Xj belongs to Z, and it is the response of the linear operator A
to the input Φj , namely

(36) Xj = −A−1Φj .

We rewrite Eq. (21) as

(37) z(x) = −A−1

F (z(x)) +

nd∑
j=0

Θj(x)dj

+

nin∑
j=0

(
−A−1Φj(x) γj

)
,

and let z̃(x) be the solution of

(38) 0 = Az̃ + F (z(x)) +

nd∑
j=0

θj(x)dj .

Here, z̃ is the response of the linear operator A to the sum of the nonlinear term
F (z(x)) and all the disturbances Θj , namely

(39) z̃ = −A−1

F (z) +

nd∑
j=0

θj(x)dj

 .

Substituting Eqs. (36) and (39) in Eq. (37) yields

(40) z = z̃ +

nin∑
j=0

Xjγj .

Applying the operator Ci to each side of the above equation, and substituting Eqs.
(22) and (35) it follows that

(41) yri = Ciz = Ciz̃ +

nin∑
j=0

gijγj , i = 1, . . . , nc.

These equations can be written in matrix form as

(42) GΓ = Yr − Ỹ ,
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where

Γ = [γ1, γ2, · · · , γnin
]ᵀ, Yr = [yr1 , yr2 , · · · , yrnc

]ᵀ, Ỹ = [C1z̃, C2z̃, · · · , Cnc
z̃]ᵀ.

The matrix G is, in general, a rectangular matrix, and we choose Γ to be the
minimal solution of Eq. (42). Because of Assumption 3.1, system (42) is always
consistent, and the minimal solution is either the unique solution or, in case of
multiple solutions, the solution having the least Euclidean norm.

Each equation in (34) is decoupled from the others, thus can be solved individ-
ually. In contrast, Eqs. (21), (38) and (42) are fully coupled and should be solved
together.

4. Numerical Examples

In this section we present several prototypical examples of tracking and distur-
bance rejection for nonlinear parabolic boundary control systems. We have chosen
more complicated boundary control systems to emphasize how easily these more
challenging problems can be handled. Certainly the methodology described in Sec-
tion 3 can be applied to linear or nonlinear problems with bounded or unbounded
observation, actuation and forcing.

4.1. Burgers’ Equation. In our first example we consider a boundary controlled
viscous Burgers’ equation

(43) zt(x, t) = νzxx(x, t)− z(x, t)zx(x, t), 0 ≤ x ≤ 1,

with initial condition

(44) z(x, 0) = ϕ(x).

Here ν is a kinematic viscosity and is considered constant on the interval.
The equation (43) is supplemented with a non-homogeneous constant Dirichlet

boundary condition at x = 0,

(45) z(0, t) = d,

which we treat as a disturbance.
In addition we have a pair of measured outputs given by point evaluation at the

points x = 0.25 and x = 0.75, respectively

y1(t) = C1(z) = z(0.25, t),(46)

y2(t) = C2(z) = z(0.75, t).(47)

And, finally, we are given a pair of constant reference signals yr1 , yr2 ∈ R to be
tracked.

Our objective is to find two constant control inputs uj = γj with j = 1, 2 so
that the measured outputs yj track the reference signals yrj while rejecting the
disturbance d. The first control u1 enters as a point source in the domain at the
point x = 0.5, and the second control u2 enters through a Neumann boundary
condition at the right end of the interval. In particular we have the following
conditions

[z(x, t)]x=0.5 = 0,(48)

[νzx(x, t)]x=0.5 = u1,(49)

νzx(1, t) = u2,(50)

where the notation [ϕ]x=x0
denotes the jump at x0 defined by

[ϕ]x=x0
= ϕ(x+

0 )− ϕ(x−0 ).
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Here we have used the notation x±0 for the limit from the right (+) and the limit
from the left (−) at x0.

The above description of the problem is illustrated in the Figure 1.

Figure 1. Burgers’ example domain.

Let us define A0 = νd2/dx2 in L2(0, 1) with domain D(A0) = H2(0, 1). With
this, the problem formulated as in Eqs. (9)-(11) can be written using the boundary
operators

Bd1
z = z(0, t) = d,(51)

Bin1z =

{
[z(x, t)]x=0.5 = 0

[νzx(x, t)]x=0.5 = u1

,(52)

Bin2
z = νzx(1, t) = u2.(53)

The same problem can be formulated in state space form as in Eqs. (1)-(3) by
introducing the equivalent distributional terms

Bd1d =
dδ0
dx

d,(54)

Bin1
u1 = −δ0.5 u1,(55)

Bin2
u2 = δ1 u2,(56)

where δx0
is the Dirac delta distribution supported at x = x0.

For this example the nonlinear term in (1) is F (z) = −z zx.

Remark 4.1. It should be noticed that the boundary operators in (51) and (53)
produce the classical Dirichlet and Neumann boundary conditions, and the operator
(51) imposes a jump in the first derivative of the solution. The operators (54)-(56)
are their equivalent distributional counterpart. When solving a partial differential
equation with finite element methods it is generally easier to deal with the Dirichlet
boundary operator (51) rather than (54); in case of Neumann boundary conditions
(53) and (56) result in the same forcing term; to force the jump in the solution first
derivative it is straightforward to use (55) rather then (52). In the rest of the paper
we will consider the operators that are more convenient, keeping in mind that there
always exist these alternative counterparts.

From here the problem is solved numerically by proceeding exactly as described
in the Section 3. First we must solve for Xj , j = 1, 2, but rather than solving the
equations as written in (34) we solve

ν
d2X1

dx2
= δ0.5, for 0 < x < 1(57)

X1(0) = 0, ν
dX1

dx
(1) = 0,(58)
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for X1, and

ν
d2X2

dx2
= 0, for 0 < x < 1,(59)

X2(0) = 0, ν
dX2

dx
(1) = 1,(60)

for X2. These still produce the desired functions

(61) X1 = (−A)−1Bin1
and X2 = (−A)−1Bin2

,

and the entries of the 2× 2 matrix

(62) G =

(
C1X1 C1X2

C2X1 C2X2

)
.

With this, we now solve the steady state coupled system

0 = ν
d2z

dx2
− z dz

dx
− δ0.5γ1, for 0 < x < 1,(63)

z(0) = d, ν
dz

dx
(1) = γ2,(64)

0 = ν
d2z̃

dx2
− z dz

dx
, for 0 < x < 1,(65)

z̃(0) = d, ν
dz̃

dx
(1) = 0,(66)

Γ =

[
γ1

γ2

]
= G−1

[
−C1z̃ + yr1
−C2z̃ + yr2

]
.(67)

Finally, we use the inputs γ1 and γ2 in (48)-(50) to obtain the controlled plant
(43)-(50)

zt = νzxx − zzx − δ0.5γ1, for 0 < x < 1 and 0 < t ≤ T(68)

z(0, t) = d, νzx(1, t) = γ2,(69)

z(x, 0) = ϕ(x).(70)

For this example we have chosen the parameters ν = 0.2, d = 0.75, yr1 = 0.5
and yr2 = 1.

After following step-by-step the procedure in Eqs. (57)-(67), and evaluating the
inputs parameters, γ1 and γ2, we solve the closed loop system (68)-(70) on the time
interval 0 < t ≤ T with T = 10 and initial data ϕ(x) = 0. The numerical solution
of the weak formulation of the above three systems is obtained using the predefined
PDE Coefficient tool of the COMSOL Multiphysics 3.5a package. The geometry is
discretized with 128 quadratic Lagrange elements. No stabilization method is used
for the advection term. In Figure 2, we display both the steady state solution z(x)
and the solution of the closed loop system z(x, t) at t = 10. As expected the two
graphs nearly perfectly overlap, since z(x) serves as a local attractor for z(x, t). In
Figure 3, the quantities C1z(t) and C2z(t) are given for all times. The asymptotic
convergence of C1z(t) to yr1 = 0.5 and C2z(t) to yr2 = 1 is evident.
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Figure 2. Steady state solution z(x) and closed loop solution
z(x, t) at t=10. As we anticipate, by time t = 10 the two solu-
tions cannot be distinguished and appear to be identical.

Figure 3. C1z(t) = z(0.25, t) (dashed line) and C2z(t) =
z(0.75, t) (continuous line) for 0 ≤ t ≤ 10.

In Figure 4 we display the solution profile z(x, t) both in space and time.
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Figure 4. Solution z(x, t) for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 10.

In Figure 4 we note that at x = 0 the numerical solution satisfies z(0, t) = 0.75
and, as seen in Figure 3, z(0.25, t) and z(0.75, t) rapidly approach 0.5 and 1 as
required.

4.2. Navier-Stokes Flow in a Two Dimensional Forked Channel. In this
section, we consider the modeling and control of a two dimensional incompressible
Navier-Stokes flow in a region Ω described in Fig 5.

Figure 5. Forked Channel Domain.

The domain Ω consists of a main channel of length 1 and altitude 0.2 which forks
at the right extreme dividing into two equal branches of length 1 and altitude 0.1.
The branches are inclined at 30◦ with respect to the main channel. The channel is
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open on the left at Γ1 and on the right at Γ2 and Γ3. Walls are considered on the
remaining part of the boundary, denoted by Γw.

In the whole domain the incompressible Navier-Stokes system of equations is
considered for some initial data ϕ. There is a constant disturbance d entering
through a parabolic inflow profile on the boundary Γ1 and a boundary control u
entering through a normal stress on Γ2. Zero stress and zero velocity boundary
conditions are considered on Γ3 and Γw, respectively. We have a measured output
on Γ3 given by the average velocity in the outward normal direction. Namely

∂v

∂t
+
(
v · ∇

)
v = ∇ · (ν [(∇v) + (∇v)ᵀ])−∇p,(71)

∇ · v = 0,(72)

v(x, 0) = ϕ(x),(73)

v
∣∣
Γ1

=

[
f(s)d

0

]
,(74)

τ (z)
∣∣
Γ2

= unΓ2
,(75)

τ (z)
∣∣
Γ3

= 0,(76)

v
∣∣
Γw

= 0,(77)

y = C(z) =
1

|Γ3|

∫
Γ3

v · nΓ3
ds.(78)

Here z = (v, p) is the state variable, where v = [v1, v2]ᵀ denotes the velocity vector
field and p the pressure. We also use the notations of ν for the cinematic viscosity,

(79) f(s) = 4s(1− s)

for the parabolic inflow with maximum amplitude 1, where s is the arclength nor-
malized between 0 and 1, and τ for the surface stress on Γ given by

(80) τ (z) = (pI − ν [(∇v) + (∇v)ᵀ]) · nΓ,

with nΓ = [nx, ny]ᵀ the outward normal on the boundary Γ.
Again, in this example, our objective is to find a control input u so that the mea-

sured output y(t) tracks a given reference signal yr while rejecting the disturbance
d.

The controller u is found by following the algorithm outlined in Section 3. First
we solve the linear steady state Stokes problem for X = [V , P ]ᵀ, with homoge-
neous boundary condition everywhere except on Γ2, where a unit normal stress is
considered

0 = ∇ · (ν [(∇V ) + (∇V )ᵀ])−∇P,(81)

∇ · V = 0,(82)

V
∣∣
Γ1

= 0, τ (X)
∣∣
Γ3

= 0, V
∣∣
Γw

= 0,(83)

τ (X)
∣∣
Γ2

= nΓ2
.(84)

We note that X is the response of the homogeneous linear Stokes operator to the
unit normal stress input on Γ2 and produces the entry of the 1 × 1 matrix (i.e., a
scalar in this case)

(85) G =
(
C(X)

)
.
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With this we solve the coupled non-linear steady-state systems with unknowns
z = [v, p], z̃ = [ṽ, p̃] and γ

0 = ∇ · (ν [(∇v) + (∇v)ᵀ])−
(
v · ∇

)
v −∇p,(86)

∇ · v = 0,(87)

v
∣∣
Γ1

=

[
f(s)d

0

]
, v
∣∣
Γw

= 0,(88)

τ (z)
∣∣
Γ2

= γ nΓ2
, τ (z)

∣∣
Γ3

= 0,(89)

(90)

0 = ∇ · (ν [(∇ṽ) + (∇ṽ)ᵀ])−
(
v · ∇

)
v −∇p̃,(91)

∇ · ṽ = 0,(92)

ṽ
∣∣
Γ1

=

[
f(s)d

0

]
, ṽ

∣∣
Γw

= 0,(93)

τ (z̃)
∣∣
Γ2

= 0, τ (z̃)
∣∣
Γ3

= 0,(94)

γ = G−1(yr − C(z̃)) =
1

C(X)
(yr − C(z̃)).(95)

Finally we set u = γ and solve the IBVP (71)-(77) – the closed loop system. Under
Assumptions 3.1 and 3.2 we expect z → z, for t → ∞, in such a way that the
desired tracking y(t) = C(z)→ C(z) = yr takes place.

For our specific numerical example we have chosen the following parameters:
ν = 0.002, d = 1 and yr = 2. Accordingly, the maximum Reynolds number occurs
in the lower branch and is

Re =
yr D

ν
= 100.

The initial data in our simulation is ϕ(x) = 0 and the transient solution z(x, t) is
evaluated between t = 0 and t = 5.

Figure 6. Vector field v and its magnitude ‖v‖ at T = 5.
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Figure 7. Cz(t) for 0 ≤ t ≤ 5.

The numerical solution of the weak formulation of the above three systems is
obtained using the predefined Navier-Stokes incompressible model of the COMSOL
Multiphysics 3.5a package. Lagrange elements P 2-P1 are used for velocity and
pressure in order to satisfy the LBB condition. Stabilization of the advection term
is obtained using streamline diffusion (GLS) and crosswind diffusion with coefficient
Ck = 0.1. These are predefined parameters [7]. The geometry is discretized with a
mesh of 17408 triangular elements. In Figure 6 a screen-shot of the vector field v
and its magnitude ‖v‖ is given at time T = 5. The time evolution of Cz is given in
Figure 7 for 0 ≤ t ≤ 5. The asymptotic convergence of Cz(t) to yr = 2 is evident.

Remark 4.2. From a physical point of view the velocity vector field v is gener-
ated by the difference between the normal stress components on Γ2 and Γ3. Any
combination of two control inputs u1 and u2 such that

τ (z)
∣∣
Γ2

= u1 nΓ2
,(96)

τ (z)
∣∣
Γ3

= u2 nΓ3 ,(97)

u1 − u2 = γ,(98)

would give exactly the same velocity vector field v, while a shift of u2 in the
pressure profile would occur. Consequently Cz(t) would not change. Among all
the possible combinations of u1 and u2 satisfying constraint (98), the one having
the least Euclidean norm is, clearly,

(99) u1 = −u2 =
γ

2
.

Let us reconsider the same control problem described in Eqs. (71)− (78), where
the boundary conditions (75) and (76) on Γ2 and Γ3 are replaced with Eqs. (96)
and (97), respectively. The resulting system has now two control inputs and one
measured output.

The controls u1 and u2 are found by following again the procedure described in
Section 3. We want to show that in case of multiple solutions this procedure will
return the solution having the least Euclidean norm, namely Eq. (99).
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First we determine X1 and X2 as the responses of the homogeneous linear S-
tokes operator to unit normal stresses on Γ2 and Γ3. Note that X1 is exactly the
solution X = [V , P ]ᵀ previously evaluated by solving system (81) − (84), while
X2 = [V2, P2]ᵀ solves

0 = ∇ · (ν [(∇V2) + (∇V2)ᵀ])−∇P2,(100)

∇ · V2 = 0,(101)

V2

∣∣
Γ1

= 0, τ (X2)
∣∣
Γ2

= 0, V2

∣∣
Γw

= 0,(102)

τ (X2)
∣∣
Γ3

= nΓ3
.(103)

According to Remark 4.2 and the linearity of the problem, we must have X2 =
−[V, P − 1]ᵀ. In this case the new 1× 2 matrix G is given by

(104) G = (CX1, CX2) = CX (1, −1) .

We now obtain z and z̃ by solving the system (86)-(95), where Eqs. (89) and (95)
are replaced by

τ (z)
∣∣
Γ2

= γ1 nΓ2
, τ (z)

∣∣
Γ3

= γ2 nΓ2
,(105)

Γ =

[
γ1

γ2

]
= G+(yr − Cz̃) =

1

CX

[
0.5
−0.5

]
(yr − Cz̃),(106)

respectively. Here G+ is the pseudoinverse of G. It is not difficult to see that the
solution of this new system is given by z = [v, p− γ2]ᵀ, z̃ = [ṽ, p̃]ᵀ and γ1 = −γ2 =
γ/2, where the quantities v, p, ṽ, p̃ and γ were previously evaluated solving the
original system (86)-(95). Finally we choose u1 = γ1 and u2 = γ2 for the closed
loop system. This is exactly Eq. (99). According to Remark 4.2 the time dependent
solution z is given by z = [v, P−γ/2]ᵀ, thus Cz remains the same. With this simple
example, we have shown that the use of the pseudoinverse in Eq. (106) returns, as
expected, the solution having the least Euclidean norm. The numerical solution of
the modified system is identical to the original one, with the only exception that,
as expected, the original pressure has been shifted of −γ/2.

4.3. Non-Isothermal Navier-Stokes Flow in a Two Dimensional Box Do-
main. In this section, we consider the modeling and control of a two dimensional
non-isothermal Navier-Stokes flow in the region Ω described in Fig 8. The mo-
tivation for considering this example comes from discussions with researchers at
Virginia Tech University actively engaged in research directed in part at control
problems in the design of energy efficient buildings.
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Figure 8. Two Dimensional Box Domain.

The domain Ω consists of a main square box with side length 1. Inlet and outlet
square regions, of side length 0.1, are located on the upper-right and and lower-left
sides of the main box, respectively. The boundary of the region Ω consists of an
inflow boundary Γ1, an outflow boundary Γ2 and a hot wall Γ3. Insulated walls are
considered on the rest of the boundary Γw. A solid interior wall boundary is also
considered at Γ4.

The physical model governing this problem consists of the non-isothermal incom-
pressible Navier-Stokes equations in the entire domain. In the momentum equation
we use the Boussinesq approximation to describe the buoyancy force. There is a
boundary control u entering through a distributed heat flux on Γ1, and a distur-
bance d entering on the wall Γ3 through a constant given temperature. A parabolic
inflow profile is considered for the fluid velocity on Γ1. Zero stress and zero flux
boundary conditions are considered on Γ2, while zero velocity and zero flux are
considered on Γw. The wall Γ4 is an interior boundary only in the momentum
equation; it is part of the domain in the temperature equation. In other words,
since the thickness of Γ4 is considered to be zero, the wall effects on Γ4 enter in the
temperature equation through the advection term only, rather then as boundary
conditions or sink/source terms. We have a measured output on Γ4 given by the
average temperature.

Formulating the above within a mathematical framework we have,

∂v

∂t
+
(
v · ∇

)
v = ∇ · (ν [(∇v) + (∇v)ᵀ])−∇p+ βT,(107)

∇ · v = 0,(108)

∂T

∂t
+
(
v · ∇

)
T = α∆T,(109)

with initial data

v(x, 0) = ϕ(x), T (x, 0) = φ(x),(110)



AN ALGORITHM FOR SET-POINT REGULATION OF NON-LINEAR SYSTEMS 73

boundary conditions

v =

[
f(s)

0

]
and q = unΓ1

on Γ1,(111)

τ = 0 and q = 0 on Γ2,(112)

v = 0 and T = d on Γ3,(113)

v = 0 and q = 0 on Γw,(114)

v = 0 on Γ4,(115)

and measured output

y = C(z) =
1

|Γ4|

∫
Γ4

T ds.(116)

Here z = (v, p, T ) is the state variable, where v = [v1, v2]ᵀ denotes the velocity
vector field, p the pressure and T the temperature. We also use the notations
of ν for the cinematic viscosity, α for the thermal diffusivity, β for the buoyancy
coefficient, and

(117) f(s) = 4s(1− s)

for the parabolic inflow with maximum amplitude 1, where s is the arclength nor-
malized between 0 and 1. The surface stress τ and the heat flux q on Γ are given,
respectively, by

τ (v, p) = (pI − ν [(∇v) + (∇v)ᵀ]) · nΓ,(118)

q(T ) = −α∇T · nΓ,(119)

with nΓ = [nx, ny]ᵀ the outward normal on the boundary Γ.
Again, in this example, our objective is to find a control input u so that the

measured output y(t) tracks a given (constant) reference signal yr while rejecting
the disturbance d. The controller u is found by proceeding as described in the
Section 3. We notice that the momentum equation is coupled to the temperature
only through the buoyancy term. We first determine the steady state velocity in
absence of buoyancy force by solving the isothermal Navier-Stokes equation(

V · ∇
)
V = ∇ · (ν [(∇V ) + (∇V )ᵀ])−∇P,(120)

∇ · V = 0,(121)

V =

[
f(s)

0

]
on Γ1,(122)

τ = 0 on Γ2,(123)

V = 0 on Γ3 ∪ Γw ∪ Γ4.(124)

for the variable V and P . Then we solve the linear energy equation for X, with
homogeneous boundary condition everywhere except on Γ1, where a unit heat flux
is considered

0 = α∆X −
(
V · ∇

)
X,(125)

q = 1nΓ1 on Γ1,(126)

q = 0 on Γ2 ∪ Γw,(127)

X = 0 on Γ3.(128)
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Here X is the response of the homogeneous energy equation to the unit input on
Γ1, and produces the entry of the 1× 1 matrix (i.e., a scalar in this case)

(129) G =
(
C(X)

)
.

Remark 4.3. In the previous system Eq. (125) is linear, since the advection ve-
locity V is given. In the energy equation we then consider the linear homogeneous
operator A applied to the state variable X to be given by α∆X−

(
V ·∇

)
X rather

then α∆X, only. Again we assume V to be so that A is always invertible. Here, of
course, the definition of the linear operator A is also supplemented by the homo-
geneous boundary conditions on the boundary of the domain Ω. The above choice
of A is motivated by the fact that in the current example we expect the flow to
be mostly driven by the inflow boundary condition rather than the buoyancy force.
Under this assumption we included in A what we expect to be a good approxima-
tion of the advection term. Thus, considering both diffusion and convection in the
linear operator gives a more realistic response than considering diffusion only.

With this we solve now the fully coupled non-linear steady-state system(
v · ∇

)
v = ∇ · (ν [(∇v) + (∇v)ᵀ])−∇p+ βT ,(130)

∇ · v = 0,(131) (
v · ∇

)
T = α∆T ,(132) (

(v − V ) · ∇
)
T = α∆T̃ −

(
V · ∇

)
T̃ ,(133)

with boundary conditions

v =

[
f(s)

0

]
, q(T ) = γ nΓ1

and q(T̃ ) = 0 on Γ1,(134)

τ (v, p) = 0 , q(T ) = 0 and q(T̃ ) = 0 on Γ2,(135)

v = 0 , T = d and T̃ = d on Γ3,(136)

v = 0 , q(T ) = 0 and q(T̃ ) = 0 on Γw,(137)

v = 0 on Γ4,(138)

and control

(139) γ = G−1(yr − C(T̃ )) =
1

C(X)
(yr − C(T̃ )).

Finally we set u = γ and solve the IBVP (107)-(115). Under Assumptions 3.1
and 3.2 we expect T → T , for t → ∞, so that, in addition, the desired tracking
y(t) = C(T )→ C(T ) = yr takes place.

For our specific numerical example we have chosen the following parameters:
ν = 0.002, α = 0.01, β = 1., d = 1. and yr = 0.5. Accordingly, the maximum
Reynolds number occurs in the inlet region and is approximately Re ' 250. The
Prandtl and Grashof numbers are

(140) Pr =
ν

α
= 0.2, Gr =

βyrD
3

ν2
= 1.25× 105,

respectively. The initial data in our simulation are ϕ(x) = 0 and φ(x) = 0. The
transient solution z(x, t) is evaluated between t = 0 and t = 2000. The numerical
solution of the weak formulation of the above systems is obtained with the COMSOL
Multiphysics 3.5a package. The momentum and continuity equations are solved
using the predefined Navier-Stokes incompressible model. The energy equation is
solved by using the PDE coefficient model. In the Navier-Stokes model Lagrange
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elements P 2-P1 are used for velocity and pressure in order to satisfy the LBB
condition. Stabilization of the advection term is obtained using streamline diffusion
(GLS) and crosswind diffusion with coefficient Ck = 0.1. These are predefined
parameters [7]. In the PDE coefficient model Lagrange elements P2 are used for
the Temperature. No stabilization is used for the advection term. The geometry is
discretized with a mesh of 8976 triangular elements. In Figure 9 a screen-shot of
the velocity vector field v and the temperature profile T is given. In Figure 10 we
show the velocity magnitude ‖v‖ and streamlines at the final time t = 2000. The
time evolution of CT is given in Figure 11 for all time (solid line). The asymptotic
convergence of CT (t) to yr = 0.5 is again evident.

Remark 4.4. In this example we have used a flux boundary control on Γ1. A
Dirichlet boundary control can also be found to reach the desired output yr. For
example, a constant temperature value u on the inlet boundary

(141) T = u on Γ1,

can be obtained by proceeding as described in the Section 3.
Alternatively, a Dirichlet boundary control can be easily found by using the

information already gained solving the flux boundary control problem. In particular
the trace of T on the boundary Γ1 can be used in the closed loop system as a
Dirichlet controller

T = T on Γ1.(142)

The time evolution of CT (t) in this case is given by the dashed line in Figure 11.
The two transients are different, but the asymptotic values are clearly the same.

Figure 9. Velocity vector field v and temperature profile T
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Figure 10. Velocity magnitude profile ‖v‖ and velocity stream-
lines at t = 2000.

Figure 11. Time evolution of CT for the flux control case (solid
line) and the Dirichlet control case (dashed line) for all time.

5. The time dependent case

In this last section we briefly discuss a general strategy to track and reject piece-
wise constant time dependent signals, when the inertial terms are not negligible.
We will see that a slightly modification of the procedure described in Section 3
can be adopted to achieve the desired goals, however some numerical instabilities
occur and a certain approximation in the algorithm is required. A more general
and detailed description for the time dependent case, with no approximation, is the
focus of a forthcoming paper [1].

In this section, rather than treating constant reference signals and disturbances,
let us consider the more general problem

zt(x, t) = Az(x, t) + F (z(x, t)) +

nd∑
j=0

Θj(x) dj(t) +

nin∑
j=0

Φj(x) uj(t),(143)

z(x, 0) = z0(x), z0 ∈ Z = L2(Ω),(144)

yi(t) = (Ciz)(t), i = 1, . . . , nc.(145)
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Our goal is to find time dependent controllers uj(t) = γj(t), in order to track
and reject piecewise constant time dependent signals yri(t) and dj(t). As a first
approximation since yri(t) and dj(t) are piecewise constant in time, we could split
the time interval into sub-intervals 0 = t0, t1, . . . , tN , such that both yri(t) and
dj(t) are constant constant on each sub-interval, i.e.,

(146) yri(t) = yri,k and dj(t) = dj,k, for t ∈ [tk, tk+1).

Then, according to Section 3, for the kth sub-interval , we can find a set of con-
trollers γj,k, and build piecewise time dependent controllers

(147) uj(t) = γj,k , for t ∈ [tk, tk+1).

Using this procedure, we find that any time yri(t) or dj(t) changes a transient with

yri(t) 6= yi(t) = (Ciz)(x)

occurs. As long as the inertial terms remain small, the error is quickly reabsorbed.
However, if the inertial terms are not negligible then we needs to take into account
their effect in the controller evaluation strategy.

In the latter case, in order to determine the controllers γj(t) we proceed by
following a procedure similar to the one described in Section 3 with the exception
that we consider the auxiliary state variables z are z̃ to be now time dependent.

We use as initial data for z(x, 0) the steady state solutions Z(x) needed to solve
the set point control problem

Z(x, t) = AZ(x, t) + F (Z(x, t)) +

nd∑
j=0

Θj(x) dj,0 +

nin∑
j=0

Φj(x) γj,0,(148)

Z(x, 0) = z0(x),(149)

yi(t) = (CiZ)(t), i = 1, . . . , nc,(150)

where the disturbances and the signals to be tracked are

(151) dj,0 = dj(0) , yri,0 = yri(0),

respectively. Thus, they are time independent. Notice that to find Z(x), we follow
the strategy described in Section 3, and determine the solutions Xj , the matrix G
and the controllers uj,0 = γj,0, however there is no need to solve for the close loop
system (148)-(150).

Next we seek controllers uj(t) = γj(t) such that z(x, t) satisfy

zt(x, t) = Az(x, t) + F (z(x, t)) +

nd∑
j=0

Θj(x) dj(t) +

nin∑
j=0

Φj(x) γj(t),(152)

z(x, 0) = Z(x),(153)

yri(t) = (Ciz)(t), i = 1, . . . , nc,(154)

for all time. Notice that, because of the initial condition (153), Eq. (154) is
automatically satisfied for t = 0.

We rewrite Eq. (152) as

z(x, t) = −A−1

−zt(x, t) + F (z(x, t)) +

nd∑
j=0

Θj(x) dj(t)

(155)

+

nin∑
j=0

(
−A−1Φj(x) γj(t)

)
.
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Let z̃(x, t) be the solution of

(156) zt(x, t) = Az̃(x, t) + F (z(x, t)) +

nd∑
j=0

Θj(x)dj(t).

Here, z̃ is the response of the linear operator A to the sum of the nonlinear term
F (z(x)), the inertial term −zt(x, t) and all the disturbances Θjdj , namely

(157) z̃(x, t) = −A−1

F (z(x, t))− zt(x, t) +

nd∑
j=0

Θj(x)dj(t)

 .

Substituting Eqs. (36) and (156) in Eq. (155) yields

(158) z(x, t) = z̃(x, t) +

nin∑
j=0

Xjγj(t).

Applying the operator Ci to each side of the above equation, and substituting
Eqs. (154) and (35) it follows that

(159) (Ciz)(t) = (Ciz̃)(t) +

nin∑
j=0

gijγj(t) = yri(t), i = 1, . . . , nc.

The above equation in matrix form is equivalent to

(160) GΓ(t) = Yr(t)− Ỹ (t),

where Γ(t) = [γ1(t), γ2(t), · · · , γnin
(t)]ᵀ, Yr(t) = [yr1(t), yr2(t), · · · , yrnc

(t)]ᵀ, and

Ỹ (t) = [(C1z̃)(t), (C2z̃)(t), · · · , (Cnc
z̃)(t)]ᵀ.

The initial boundary value problem (152)-(154), Eq. (156), and the coupling
condition (160) should be solved together for all time. Once the controllers uj(t) =
γj(t) are known, they can be used in the closed loop system (143)-(145).

Remark 5.1. The system of equations (152)-(154), (156) represents a singular
DAE and we have observed that introducing the inertial term in Eqs. (152) and
(156) leads to numerical instabilities. Further, since there is no inertial term in-
volving z̃t(x, t) we see that although z̃ is time dependent the solution of (156) does
not require any initial data for z̃. In order to deal with the numerical instability we
have found that slightly reducing the inertial effects of zt(x, t) in (156) produces a
stable numerical system. Although this leads to an approximate solution for z(x, t),
and therefore to

(161) yri(t) ' (Ciz)(t), i = 1, . . . , nc,

in most of the cases this error is very small, and is immediately reabsorbed.
Replacing the coefficient of zt(x, t) by (1 − β), for small β > 0, the system

(152)-(154), (156) becomes

zt(x, t) = Az(x, t) + F (z(x, t)) +

nd∑
j=0

Θj(x) dj(t) +

nin∑
j=0

Φj(x) γj(t),(162)

(1− β)zt(x, t) = Az̃(x, t) + F (z(x, t)) +

nd∑
j=0

Θj(x)dj(t),(163)

z(x, 0) = Z(x),(164)

yri(t) = (Ciz)(t), i = 1, . . . , nc.(165)
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In our numerical simulation in the next section we have set β = .05 which seems
to work quite well. A detailed derivation of the errors for time dependent signals
will discussed in a forthcoming paper [1].

5.1. A Numerical Example: Burgers’ Equation. In this section, we present
an example of tracking piecewise constant references for a one dimensional Burgers’
equation. This example is very similar to the Burgers’ example presented in Section
4.1.

Consider the following control problem

(166) zt(x, t) = νzxx(x, t)− z(x, t)zx(x, t) + δ0.5u1(t), 0 ≤ x ≤ 1,

with initial data

(167) z(x, 0) = ϕ(x),

boundary conditions

z(0, t) = d(t),(168)

νzx(1, t) + αz(1, t) = u2(t),(169)

and measured outputs given by

y1(t) = C1(z) = z(0.25, t),(170)

y2(t) = C2(z) = z(0.75, t).(171)

With respect to the example discussed in Section 4.1, the disturbance d(t) is now
a piecewise constant time dependent function, and the flux boundary condition
on the right of the domain has been replaced by a (more stable) mixed boundary
condition. Also the reference signals to track, yr1(t) and yr2(t), are now piecewise
constant time dependent functions.

Our objective is to find two control inputs uj(t) with j = 1, 2 so that the mea-
sured outputs yj(t) track the reference signals yrj (t) while rejecting the disturbance
d(t).

The above description of the problem is illustrated in the Figure 12.

0 0.25 0.5 0.75 1

y2(t)y1(t)

z(0, t) = d(t)

u1(t)

νzx(1, t) + αz(1, t) = u2(t)

Figure 12. Burgers’ example domain.

From here the problem is solved numerically by proceeding exactly as described
in the the first part of Section 5. First we must solve for Xj (j = 1, 2), in steady-
state problems

ν
d2X1

dx2
= δ0.5, for 0 < x < 1(172)

X1(0) = 0, ν
dX1

dx
(1) + αX1(1) = 0,(173)
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for X1, and

ν
d2X2

dx2
= 0, for 0 < x < 1,(174)

X2(0) = 0, ν
dX1

dx
(1) + αX1(1) = 1,(175)

for X2. These produce the entries of the 2× 2 matrix

(176) G =

(
C1X1 C1X2

C2X1 C2X2

)
.

Then, we solve the steady state coupled system

0 = ν
d2Z

dx2
− Z dZ

dx
− δ0.5γ1,0,(177)

Z(0) = d0, ν
dZ

dx
(1) + αZ(1) = γ2,0,(178)

0 = ν
d2Z̃

dx2
− Z dZ

dx
,(179)

Z̃(0) = d0, ν
dZ̃

dx
(1) + αZ̃(1) = 0,(180)

Γ =

[
γ1,0

γ2,0

]
= G−1

[
−C1Z̃ + yr1,0
−C2Z̃ + yr2,0

]
,(181)

where d0 = d(0), yr1,0 = yr1(t) and yr2,0 = yr2(t). With this, we now solve the
initial boundary value problem

zt = ν
d2z

dx2
− z dz

dx
− δ0.5γ1(t),(182)

z(x, 0) = Z(x),(183)

z(0, t) = d(t), ν
dz

dx
(1, t) + αz(1, t) = γ2(t),(184)

0.95 zt = ν
d2z̃

dx2
− z dz

dx
,(185)

z̃(0, t) = d(t), ν
dz̃

dx
(1, t) + αz̃(1, t) = 0,(186)

Γ =

[
γ1(t)
γ2(t)

]
= G−1

[
−(C1z̃)(t) + yr1(t)

−(C2Z̃)(t) + yr2(t)

]
,(187)

Finally, we set u1(t) = γ1(t) and u2(t) = γ2(t) and solve the close loop system
(166)-(171).

For this example we choose the parameters ν = 0.2 and α = 1000. Moreover, we
set

d(t) = 0.75 + 0.25 U(t− 50)− 0.25 U(t− 100),(188)

yr1(t) = 1− 0.25 U(t− 25) + 0.5 U(t− 75)− 0.25 U(t− 125),(189)

yr2(t) = 0.5− 0.25 U(t− 40) + 0.5 U(t− 90)− 0.25 U(t− 140),(190)

with U the Heaviside function defined by

(191) U(x− x0) =

{
0 for x < x0,
1 for x ≥ x0.
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For our numerical simulation we solve on the time interval 0 < t ≤ T with T = 150
and initial data ϕ(x) = 0. The numerical solution of the weak formulation of the
above systems is obtained using the predefined PDE Coefficient tool of the COM-
SOL Multiphysics 3.5a package. The geometry is discretized with 128 quadratic
Lagrange elements. No stabilization method is used for the advection term.

Figure 13. yr1(t) and (C1z)(t) for 0 ≤ t ≤ 150.

Figure 14. yr2(t) and (C2z)(t) for 0 ≤ t ≤ 150.

In Figures 13, we display the reference signals yr1(t) and yr2(t) and the quantities
(C1z)(t) and (C2z)(t) for all the time T . After a short transient C1z converges to
yr1 (on the left) and C2z converges to yr2 (on the right). Any time yr1 , yr2 or d
change, there are small spikes in the graphs of C1z and C2z that are immediately
reabsorbed. These spikes are due to the inertial approximation.
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Figure 15. u1(t) = γ1(t) for 0 ≤ t ≤ 150.

Figure 16. u2(t) = γ2(t) for 0 ≤ t ≤ 150.

In Figure 15, we display the controller u1(t) = γ1(t) and in Figure 16, we display
the controller u2(t) = γ2(t) for all time t. Near a time in which yr1 , yr2 or d change,
there is a short transient. After that, both graphs stabilize to a new value till a
new change occurs.

In Figure 17 we have plotted the solution surface z(x, t) for 0 ≤ x ≤ 1 and
0 ≤ t ≤ 150.

(1) At x = 0 (on the left side of the figure) we obtain the curve z(0, t) which
approximates d(t) in (188).

(2) At x = 0.25 the solution z(0.25, t) quickly approximates yr1(t) in (189).
(3) At x = 0.75 the solution z(0.75, t) quickly approximates yr2(t) in (190).
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Figure 17. solution surface z(x, t) for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 150.

Finally, we are going to show an example where the disturbance and the signals
to be tracked are all sinusoidal functions,

d(t) = 0.75 + 0.25 sin

(
4π

150
t

)
,(192)

yr1(t) = 1 + 0.25 sin

(
2π

150
t

)
,(193)

yr2(t) = 0.5− 0.25 sin

(
2π

150
t

)
,(194)

for 0 ≤ t ≤ 150. Here, the assumptions made on the structure of the exo-system
(27) do not hold at any time, consequently, applying the above procedure does not
produce signals C1z(t) and C2z(t) that converge to yr1(t) and yr2(t), respectively.
In order to isolate the magnitude of the errors ei(t) = yri(t)− Ciz(t) (i = 1, 2) we
chose as initial data for the state variable z the function ϕ(x) = Z(x), so that the
initial errors ei(0) are identically zero. In Figure 18 we show the time evolution of
both errors for the time interval 0 ≤ t ≤ 150. As previously stated the error do not
converge to zero, however their magnitudes remains small and the largest value is
below 2× 10−3.



84 E. AULISA AND D. GILLIAM

Figure 18. Errors e1 = yr1(t) − C1z(t) (solid line) and e2 =
yr2(t)− C2z(t) (dashed line) for 0 ≤ t ≤ 150.
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