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NUMERICAL ANALYSIS OF A FINITE ELEMENT,
CRANK-NICOLSON DISCRETIZATION FOR MHD FLOWS AT
SMALL MAGNETIC REYNOLDS NUMBERS

GAMZE YUKSEL AND ROSS INGRAM

Abstract. We consider the finite element method for time dependent MHD flow at small magnetic
Reynolds number. We make a second (and common) simplification in the model by assuming the
time scales of the electrical and magnetic components are such that the electrical field responds
instantaneously to changes in the fluid motion. This report gives a comprehensive error analysis
for both the semi-discrete and a fully-discrete approximation. Finally, the effectiveness of the
method is illustrated in several numeral experiments.
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1. Introduction

Magnetohydrodynamics (MHD) is the theory of macroscopic interaction of elec-
trically conducting fluid and electromagnetic fields. Many interesting MHD-flows
involve a viscous, incompressible, electrically conducting fluid that interacts with
an electromagnetic field. The governing equations for these MHD flows are the
Navier-Stokes (NS) equations (NSE) coupled with the pre-Maxwell equations (via
the Lorentz force and Ohm’s Law). The resulting system of equations (see e.g.
Chapter 2 in [21]) often requires an unrealistic amount of computing power and
storage to properly resolve the flow details. A simplification of the usual MHD
equations can be made by noting that most terrestrial applications involve small
R,,; e.g. most industrial flows involving liquid metal have R,, < 10~2. Moreover, it
is customary to solve a quasi-static approximation when an external magnetic field
is present R,, is small since the time scale of the fluid velocity is much shorter than
that of the electromagnetic field [3]. We provide herein a stability and convergence
analysis of a fully discrete finite element (FE) discretization for time-dependent
MHD flow at a small Re,, and under a quasi-static approximation. Magnetic
damping of jets, vortices, and turbulence are several applications, [3,18,20,22].

Let Q be an open, regular domain in R? (d = 2 or 3). Let R,, = UL/n > 0
where U, L are the characteristic speed and length of the problem, > 0 is the
magnetic diffusivity. The dimensionless quasi-static MHD model is given by: Given
time T > 0, body force f, interaction parameter N > 0, Hartmann number M > 0,
and domain Qr := (0,7] x ©Q, find velocity u : Q7 — RY, pressure p : Q7 — R,
electric current density j : Q7 — R, magnetic field B : Q7 — R?, and electric
potential ¢ : Q7 — R satisfying:

Nl(uw+u-Vu) = f+M2Au-Vp+jxB, V-u = 0
(1) -Vé+uxB = j, Vi =0
VxB = Ry,j V-B = 0

Received by the editors October 8, 2010 and, in revised form, December 6, 2011.
This work was partially supported by National Science Foundation Grant Division of Mathematical
Sciences 080385.

74



FECN ANALYSIS OF SMALL R,, FLOWS 75

subject to boundary and initial conditions

u(x,t) =0, V(x,t) € 90 x (0,7
(2) o(x,t) =0, V(x,t) € 92 x (0,7
u(x,0) = up(x), Vxe

where ug € V and V-ug = 0. When R,, << 1, then j and V x B in (1)(3a)
decouple. Suppose further that B is an applied (and known) magnetic field. Then
(1) reduces to the simplified MHD (SMHD) system studied herein: Find u, p, ¢
satisfying

N-t(u+u-Vu) = f+M 2Au-Vp+BxVo+(uxB)xB
(3) Vu = 0
“A$+V-(uxB) = 0.

subject to (2). This is the time dependent version of the model first proposed by
Peterson [19].

We provide a brief overview of previous applications and analyses of MHD flows
(high and low R,,) in Section 1.1. In Section 2, we present notation and a weak
formulation of (3) required in our stability and convergence analysis. In this report
we prove stability estimates for any solution u, p, ¢ to a semi-discrete and fully
discrete approximation of (3) in Propositions 3.2, 4.2 respectively. We use these
estimates to prove optimal error estimates in two steps:

e Semi-discrete (FE in space), Section 3
e Fully-discrete (FE in space, Crank-Nicolson time-stepping), Section 4

Let h > 0 and At > 0 be a representative measure of the spatial and time dis-
cretization. We investigate the interplay between spatial and time-stepping errors.
We prove that the method is unconditionally stable and, for small enough At, the
errors satisfy

error(u, p,¢) < O(h" + At?) = 0, as h,At — 0

where 7 is the order of the FE approximation. See Theorems 3.3, 4.3 and Corollaries
3.4, 4.5.

1.1. Overview of MHD models. Applications of the MHD equations arise in
astronomy and geophysics as well as numerous engineering problems including lig-
uid metal cooling of nuclear reactors [2,7], electromagnetic casting of metals [16],
controlled thermonuclear fusion and plasma confinement [8, 23], climate change
forecasting and sea water propulsion [15]. Theoretical analysis and mathematical
modeling of the MHD equations can be found in [3,10]. Existence of solutions to
the continuous and a discrete MHD problem without conditions on the boundary
data of u is derived in [24]. Existence and uniqueness of weak solutions to the
equilibrium MHD equations is proven by Gunzburger, Meir, and Peterson in [6].
Meir and Schmidt provide an optimal convergence estimate of a FE discretization
of the equilibrium MHD equations in [17]. To the best of our knowledge, the first
rigorous numerical analysis of MHD problems was conducted by Peterson [19] by
considering a small R,,, steady-state, incompressible, electrically conducting fluid
flow subjected to an undisturbed external magnetic field. Further developments
can be found in [1,12,13].
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2. Problem formulation

We use standard notation for Lebesgue and Sobolev spaces and their norms. Fix
p > 1. Let LP(Q2) denote the linear space of all real Lebesgue-measurable functions
bounded in the usual norm denoted by ||-||z»(q). Let (-, -)q and ||-||q be the standard

L?(2)-inner product and norm. Fix k € R. The Sobolev space W]f () is equipped
with the usual norm denoted by \|~||W5(Q). Identity ||-||x p.0 == ||~||W§(Q), HF(Q) =
WE®Q), || ko =] - lweq) with | - [0 the corresponding semi-norm. Let the
context determine whether ij (2) denotes a scalar, vector, or tensor function space.
For example let v : 2 — R%. Then, v € H!(Q) implies that v € H*(Q)? and Vv €
H'(Q) implies that Vv € H'(Q)?*?. Define H}(Q) := {v € H(Q) : v|sa =0}.
The dual space of H}(Q) is denoted W, 1(Q) := (H(R))" and equipped with the
norm

<EvEwiioxmie

Ifll 1= sup
0AVEHL (D) V]1,0
For brevity, omit € in the definitions above. For example, (-,-) = (-, )q, =
HY(Q), and V = V(). Fix time T > 0 and m > 1. Let W;(0,T; Wy )) denote
the linear space of all Lebesgue measurable functions from (0,7") onto equlpped

with and bounded in the norm

Il o vty = ( / Z 10, 0)5 ).

Write W;”(Wz’f) = qu(o,T; WE(Q)) and C™(W}) = C™([0, T]; W} (). Define
={qel?: (¢, 1) =0}, X:=H}Q)" S:=H;Q).

Let X’, S’ denote the dual space of X, S respectively. Then a weak formulation

of (3), (2)is: findu: (0,7] = X, p: (0,T] —» Q, and ¢ : (0,T] — S for ¢t € (0,7

satisfying

d
Nt —(u,v)+ N '(u-Vu,v) + M 3(Vu,Vv) — (p,V - v)

dt
4) +(-Vé+uxB,vxB)=(f,v), VWweX
(5) (V-u,q) =0, Yqe@
(6) (Vé—uxB,Vep) =0, WpeS
(7) u(x,0) =up(x), a.e. x €.

We obtain (4) from (3)(a) by applying the following identities.

Lemma 2.1. For allu,ve L? BeL®, ¢ € H,

(8) (uxB)xB,v)=—(uxB,vxB), (BxV¢u)=(uxB,Vg).

Proof. Follows from scalar triple product identities, see e.g. [11]. (I
Herein we write B := ||B|[ e (L=). We assume that (u, @) is a strong solution of

the SMHD model satisfying (4), (5), (6), (7) and u € L*(0,7;V) N L>=(0,T; L?),
¢ € L*(0,T;89), u; € L?(0,T; X'), and u(x,t) — up(z) € V as t — 0F. Restrict
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v € Vin (4), (5), (6), (7): ind u: (0,7] =V and ¢ : (0,T] — S a.e. t € (0,7]
satisfying (6), (7), and
d
N_l%(u, v)+ N '(u-Vu,v) + M~ ?(Vu, Vv)

9) +(-Vép+uxB,vxB)=(f,v), VWweVl.
Solving the problem associated with (9), (6), (7) is equivalent to (4), (5), (6), (7).

Fix h > 0. Let 7" be a family of subdivisions (e.g. triangulation) of Q C R?
satisfying Q = gy E so that diameter(E) < h and any two (closed) elements
in 7" are either disjoint or share exactly one face, side, or vertex. For example,
T consists of triangles for d = 2 or tetrahedra for d = 3 that are nondegenerate
as h — 0. Let X" ¢ X, Q" ¢ Q, and S" C S be a conforming velocity-pressure-
potential mixed FE space. We assume that X" x Q" x S" satisfy the following:

Assumption 2.2. The FE spaces X" x Q" satisfy:
Uniform inf-sup (LBB) condition:

h h
V-
(10) inf  sup % >C>0
¢"eQh yrexn [VP1 |lg"|

FE-approximation:

jnf l[u—v"|; < Ch¥ul[rs1
vhexh
. o h r
(11) o (e e
it ="l < ChHipllosn.
qLth
for some fived k,7 > 0, s > —1 when u € H'Nn X, p € HT' N Q,
bec H1nS.

Error estimates for the elliptic projection (17) in L? and W, ! require regularity
of solutions to the following auxiliary problem.

Assumption 2.3. Given 6 € W{l, find (wo,wp) € X x Q satisfying
(VW97VV) - (w9av ! V) - (v ' W97Q) = (67V), v(an) €X X Q

This problem is well-known to be well-posed. Suppose further that (wg,rg) €
H™2 x ™ satisfy

(12) [[Wollm+2 + llwellm+1 < Cl[0]|m
when 6 € HJ* (with HY = L?).
Indeed, (12) is true if Q is smooth enough.

2.1. Fundamentals Inequalities. Denote by C' > 0 a generic constant indepen-
dent of h, At, and v. We use the fact that ||V - v|| < v/d|v|; throughout without
further reference. The following estimates are used frequently in the analysis herein
(for proofs see e.g. [4], Chapter II, and references therein). Fix ¢, ¢’ > 1 so that
g+ (1/q) =1
1 0
Young: ab< ——a?+ —b7 Va, b, 6 >0
qd4/4 q

Holder :  |(v,w)| < ||v] 0 VveLl we LY.

0.4/[W]
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Furthermore, we have
Poincaré: ||v|| < Clv]; Vv e X
Sobolev:  |[V]|o.0o + [|V]]1.3 < C|v||2 Vv € H?.

Let VI := {v e Xl fQ qV-v=0 Vqe Qh}. Note that in general V" ¢ V. We
use the explicitly skew-symmetric convective term:

1
(13) b*(u,v,w) := 3 (u-Vv,w) — (u-Vw,v))
so that
b*(u,v,v) =0, VYue H' veH.
Note that (u-Vv,v) # 0 in general. The following estimates of the convective term

are derived using the previous inequalities. See [14] for a compilation of associated
estimates. For u, v, w € H',

b*(u,v,w) = (u-Vv,w), VYueV
If, on the other hand, u € X,

" bav.w) < Oyl vhiwl
b*(u,v,w) < Clali|vlivIwl|] [w]i.

Moreover,

(15) b (u,v,w) < C|ul| [[v]z|w]i, Vv e H?

b*(u,v,w) < Cluj|vllz||w]|], ¥YveH?"

We define the elliptic for approximating H'-functions in X" and S". Estimate
(16) is necessary since the discrete pressure is eliminated from the error analysis for
velocity by testing with functions in the discretely divergence free space V" (proved
e.g. in [5], see intermediate estimate (1.16) in Theorem II.1.1).

Lemma 2.4. Suppose that the FE space satisfies Assumption 2.2. Then, for any
u €V, there exists a constant 0 < C' < oo depending on (10) so that

(16) inf |u—vh‘|1 <C inf |u—wh|1.
v’LGV" WheXh

The elliptic projection is given by P; : V — V" so that @" := P;(u) satisfies
(17) / Vu—a"):Vvv=0, vveVh
Q

We similarly define the scalar elliptic projection P; : S — S” so that ¢" := Py(¢))
satisfies

(18) / V(6— ") : V=0, WueSh
Q
We present an error estimate for P, and Ps.

Lemma 2.5. Fizu € X and ¢ € S. Suppose that FE space satisfies Assumption
2.2. Then Py, Py given by (17) and (18) are well-defined and satisfy

(19) llu— Pi(u)||—m < CA™! inf |u—v"|;
vheXxh
(20) lp — Pa(9)||s < C inf |p— oy
¢h'€Xh'

form = —1. Suppose further that Assumption 2.3 is satisfied. Then (19) also holds
form =0, 1.
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Proof. For m = —1, apply Céa’s Lemma to get [u — v"|; < 2infyncyn [u — vP;.

To recover infimum over all v € X" in (19), apply estimate (16). Similarly, Céa’s
Lemma directly gives (20). To recover estimates for mm = 0 and 1, follow the
procedure in [5] (e.g. Theorem I1.1.9). O

3. Semi-discrete approximation

We first state the semi-discrete formulation of (4), (5), (6), (7). Suppose that
feX', BeCL>).

Problem 3.1 (Semi-discrete FE-approximation). Find u® : ([0,7] — X", p" :
(0, 7] = Q", " : (0,T] — S satisfying

N7l v) + N1*(u", u", v) + M~2(Vu", Vv) - (p", V- v)

(21) 4+ (~Vo¢" +u" x B,v x B) = (f,v), VveX"
(22) (V-u",q)=0, VgeQ"

(23) (Vo —u" x B, V) =0, Vo eS"

(24) u"(x,0) = ug(x)

for some ult € V1.

Restrict v € VP in (21), (22), (23), (24): find u” : (0,7] — V" and ¢" : (0,T] —
Sh satisfying (23), (24), and

N~ v) + N~1p*(u" u”, v)
(25) + M72(Vu", Vv) + (—-V¢" +u" x B,v x B) = (f,v), VYveV

Solving the problem associated with (25), (23), (24) is equivalent to (21), (22), (23),
(24). Define

j = —-Ve¢" +u" x B.
This definition makes sense in L? as we show in Proposition 3.2. We provide proofs

of the a priori estimate (Proposition 3.2) and of the convergence estimate (Theorem
3.3).

Proposition 3.2. Any solution (u”,p", ") of (21), (22), (23), (24) satisfies u" €
L%(0,T; X) N L>®(L?), ¢ € L>=(0,T; H'(2)) so that

N7 [ g2y + M2 VU 2212
52 Ar— . _
(26)  +B NV |[Fee (12 + 203" T2 02y < NG + M7
Proof. See Proposition 3.1. O

Fix k, r > 0, s > —1, and ¥’ = max{2,k}. For the convergence estimate,
introduce

F' = Grh* [ ug k1 + Gr MNE|pl| L2 ares1y + G MNR ||| L2 (grm41)
(27) 4+ GpN~V/2pY el 2 v 1y + GrMNT2RE ||| Lo gy [0l | 2 (priesn

where G = Cexp(CN3M° fOT lu(-,t)|3dt). Note that F* — 0 as h — 0 for
smooth enough u, p, ¢. This is made precise in Corollary 3.4.
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Theorem 3.3. Let (u,p,¢) solve (4), (5), (6), (7) and (u",p", ¢") solve (21),
(22), (23), (24). Suppose that Assumption 2.3 is satisfied and the FE-space satisfies
Assumption 2.2. Fiz k, r > 0, s > —1, and k' = max{2,k}. Suppose that u €
L2(HMYNL®(HFNV), uy € L2(HF 1Y), p € L2(H*T'NQ), and ¢ € L2(H™'NS).
If [Ju} — wg|| < aF" for some a > 0, then

(28) lu—u"||poe(2) < F" + Ch¥||ul| oo ey

(29) IV (u—u")||p2(r2) < MNTV2E" 4 CR¥||uf| 2 (i)

(30) 1§ = §"llz2(z2) < N~Y2FE" + CBR¥||ul| g2 gesy + CR7 (]| L2 (a1
(31) IV (¢ — ¢")l|12(22) < BF" + CBR*||ul| g2y + CR ||| p2crrsn)

and, if ¢ € L>®(HF1),

(32) IV(¢ = 6")l|L=(z2) < BF" + CBR*(|ul| oo iy + Ch||@]| oo (141
where F" is given in (27).

Proof. See Section 3.2. (]

Corollary 3.4. Under the assumptions of Theorem 3.3, suppose further that k =
r=s+1>2and ¢ € L>°(H**). Then

Hu — uhHLx(Lg) + ||V(u — uh)HLQ(LQ)
(33) + 15 =3"llz2 ) + IV (¢ = ")l 22y < FR®
where F' > 0 is independent of h — 0.

Proof. See Section 3.2. O

3.1. Proof of Proposition 3.2. Set v =u”", ¢ = ¢" in (25), (23) to get

(39) gl M+ (V6" B x B) = ()
(35) (=V¢" +u" x B, V") = 0.
Add (34) and (35) to get

1 d
2N dt

Duality estimate on Hj x Wy ! and Young give

[a"[]? + M 72" 4[] = (F,u”).

N+ M2t 22 < A2,
Integrate over [0,T] to get
N7 "B 2y + M72[VUP T2 (e
(36) + 205"l 72 22y < NGl + MPIENT 4y,
Apply Cauchy-Schwarz to (35) and simplify to get
[¢"[1 < Blju"|].
Together with (36), we prove (26).
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3.2. Proof of Theorem 3.3. Decompose the errors

Eu = Uh -, Uh = uh - i:lhv no o= u- i:lh
B, = oh—( 0" — " —gh, ¢ = -
E, = J'—y, Jt* = -VO"+U"xB, y = —-V(+nxB.
Let @, ¢" be the elliptic projections defined in (17), (18) respectively. Fix " € Q™.

Note that (p",V -v) =0 for any v € V. Write
R(v) := N7 (u", u",v) — N71p*(u,u, v).
Subtract (9) from (25), test with v = U, and apply (17) to get

%%HU’“LHQ + M2 U2 + (-V®" + U" x B,U" x B)
=—(p—q".V-U")+ N~ (n,, U")
(37) + (=V¢ + 71 x B,U" x B) — R(U").
Subtract (6) from (23) and test with ¢ = ®" to get
(38) (-Vo" + UM x B,Vo") = (-V( + 7 x B,Voh).
Subtract (37) and (38) to get
o1 UM+ M =2[UM + 137
(39) =N, U") = (p— ", V- U") + (x,3") - R(U").

Fix &’ > 0 to be the Young’s inequality constant to be prescribed later. Note that
the generic constant C' depends on &’. Apply the duality estimate on H} x W, L
Cauchy-Schwarz, and Young to get
|N71(77t7Uh) - (p - (jh7 V- Uh) + (X?‘]h)|
1
e’ M?

- _ 1 1
(40) < COM?|lp— ">+ CM*N?|jme?, + §||><||2 + U"T + §|\Jh||2-
It remains to bound the convective terms.

Lemma 3.5. Let u satisfy the regularity assumptions of Theorem 3.3. For any
g’ > 0 there exists C > 0 such that

1
|R(UM)| < mﬂjh%
(41) + CNT MO (|l + [ DT + CN72M2|[ul[F e 1) Il

Proof. First note that
R(U") = N~1p*(U" 0, U") — N~1p*(u",n, U") — N~1b*(n,u, U")
Then (14) and Young give
N=Hp* (U u, U") + b*(n,u, U")]|
1
2¢’ M?

(42) < ON72MP(lafi[nff + N72M 3| U?) + [U" 3.

Rewrite the remaining convective term to get

b*(u",n, U") = b*(u, 7, U") +b*(U",n, U") — b"(n,n, U").
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Then (14) and Young give
N7Hb (u,n, U") +b* (1,7, U") + 0°(U", n, U")|

(43) < ON“2M (il + fnl? + N-2M i [UM2) + 5o UM

Estimates (42), (43) prove (41). O
Note that

(44) X1 < [Ch + Bl

Apply (19), (20), (11) along with (40), (41), (44) to (39). Pick &’ = 4. Fix k, r > 0,
s> —1, and k¥’ = max{2,k}. Then
d
O [[2 + MZ2NTU" 4 N[
— ’ _ 2

<SONT'RF |}y + CMPNEPF(N?|ul} + B)|uli
(45) + CMPNR® 2| |p|[241 + CM2NR||¢][74 1 + ON 2 MC[uli][ U,
Write

t t
(46)  G(t) = exp( / A@)dt), A(t) = CN=3MS / (-, )|t
0 0
Multiply (45) by G(—t), integrate over [0, ¢], and multiply the result by G(t) to get
t t
0Ol + 202N [ UM eRde + N [l
0 0
< GOIU" (L 0) 12+ GONT B |12, o,
+ G(t)MQNfthkHuH%w(Hl)||u||2L2(ch+1)

(47) + GOMANE 2|l (3 o0y + GOMENE |Gl Lo (grren)
Apply the triangle inequality ||BEy|| < [[U"[| + ||n|| and ||E;|| < ||3"(] + [|x|| and
elliptic projection estimates (19), (20) to (47) to get (28), (29), (30). Start now
with (38). Apply (18) to get
(48) 2"} = —(E, x B,V®") < B|[E,|| [®"]:.
The triangle inequality ||E4|| < [|®"|| + ||¢|| along with estimates (19), (20), (28)

applied to (48) proves (32). Lastly, estimates (11), (19) applied to the results of
Theorem 3.3 prove Corollary 3.4.

4. Fully-discrete approximation

The semi-discrete model (Problem 3.1) reduces the SMHD equations to a stiff
system of ordinary differential equations. A time-discretization must be chosen
carefully to ensure stability and accuracy of the approximation scheme. We in-
vestigate a Crank-Nicolson (CN) time-stepping scheme of the SMHD equations by
following a similar analysis performed for the semi-discrete formulation (Section 3).
Let 0 =:ty <t; <...<tg:=T < oo be a discretization of the time interval [0, T]
for a constant time step At = t,, —t,_1. Write z, = 2(t,,) and z,,41/2 = %(zn—&—znﬂ)
for any function z on [0, 7. Define

(At 32, lanllf )M g €1, 00)

u . =
ol oo {maxm1<n<m2||un|k,p, ¢ = o0
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for any 0 <n =my,m +1,...,mg < K. Write |[ulljaqwsr) = |[ulliao,r;wp). We

say that u € 19(mq, mo; Wpf“) if the associated norm defined above stays finite as
At — 0.

Algorithm 4.1 (CN-FE). Givenug € V, find (uZH,pZH/z, ¢Z+1/2) € XMxQ"x
S" for eachn =0,1,..., K — 1 satisfying

uz — UZ 1% —
HT,V) =+ N 1b (uﬁ+1/2,u2+1/2,v) + M 2(Vu2+1/2,vv)

+ (_VQSZ—H/Q + uZ+1/2 X Bpy1/2,v X Bpyi)2)

N7

(49) - (PZ+1/27V v) = (f41/2,v), Yve X"

(50) (V- -upi1,0) =0, VgeQ"

(51)  (Vri1ja —uhyyjo X Briiye, Vi) =0, Vo e 5"
(52) uh(x7 0) = ug(x).

Restrict v € V" in (49), (50), (51), (52): find (a1, 0}t )0, Phyyjg) € VI %
Q" x Sh for each n =0,1,..., K — 1 satisfying (51), (52), and

uh _ uh
N_l(%,v) + N_lb*<u,2+1/2, u2+1/2,v) + M_2(Vu,2+1/2, VV)

(53) + (—V¢Z+1/2 —+ uZ+1/2 X Bn+1/2,V X Bn+1/2) = (fn+1/2,V), Vv € Vh.

Solving the problem associated with (53), (51), (52) is equivalent to (49), (50), (51),
(52). We prove that u’, ¢" solving (49), (50), (51), (52) are stable and converge
to u, ¢ solving (4), (5). (6). (7).

Proposition 4.2 (Stability). Suppose that (uﬁﬂ,pﬁﬂ/z, ¢Z+1/2) solve (49), (50),
(51), (52) for each n=10,1,...,K — 1. Then,

K-1
0|7 (1 gip2y + MT2NAE Z lullf
n=0
K-1 K—1
(54) +2NAL Y linypol? < gl + MPNAE Y |Ifag1 /2]
n=0 n=0
and
) K—1
(65)  _max 6] plf SB (Gl + MINAL Y Ifarryol20)-
- n=0

Proof. See Section 4.1. O
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Fix s > =1, k, » > 0, and ¥’ = max{2,k}. For the convergence estimate,
introduce
K—1
FR, = Grh*||uglle + Gk MNT2A2(>" B )2
n=0
K—1
+ G NY2AR(Y " BV 4+ G MN T2 [l g [l sy
n=0
+ G MNP0 w2 g -1y + G NYPRVBl [l sy
(56) + G MNY2R Y |pl |2 gty + G NY2R|[]12 sy

where Es_zl, Er(f_gl > 0 are given in (80), (88) respectively and Gk :=
exp(z:nK:0 172";5%), Ky 1= MGN_?’|u,H_1/2|‘1l + ||Bn+1/2||(2)’oo. Note that Fﬁt — 0
as h, At — 0 for smooth enough u, p, ¢. This is made precise in Corollary 4.5.

Theorem 4.3. Let (u,p,¢) solve (4), (5), (6), (7) and (uﬁ+1,p2+1/2,¢2+1/2)
solve (49), (50), (51), (52) for each n =0,1,..., K — 1. Suppose that Assumption
2.8 is satisfied and the FE-space satisfies Assumption 2.2. Fix s > —1 and k,
r >0, and k' = max {2,k}. Suppose further that u € I°(H?) N I2(H*1), u; €
1°(L%) N L2(H?) N L2(HY Y, uy € L2(L?), uyy € LE(W5Y), p € 2(HSHY), and
¢ € I?(H"Y). If B is not constant, require that B € L>(L>), B; € [*(H!), By €
L*(L?), ¢ € I°°(H?), ¢y € L*(H"), and ¢y € L*(L?). If At > 0 is small enough
(e.g. At < MON 73, 1/5[1 + [Bry12ll3 o for each n) and |[ug — uf|| < aFR,
for some a > 0, then

(57) lu— ") (1,5,22) < Chk”““loo(;qk) + Fh,
K-1
(58) (ALY [nsays — Wy o)V < CHM [l sy + FL,
n=0
K-1
(ALY lins1/2 = ipyr ol < CHI6]2 o)
n=0
(59) + CBh*|[ull;2 gy + FR,
and

h
ocx  [bnt1/2 = Oniayalt < ORIl i)

K-1
(60) + CBR*|[ul|joe ey + A BE) )2 + BFL,.
n=0

where F&,, E,(izl are given in (56), (88) respectively.
Proof. See Section 4.2. ([l

Remark 4.4. The regularity assumptions in Theorem 4.3 can be relaxed by re-
quiring instead, e.g., t uy € L*(L?), t? uy, € L2 (W', and when k > 2, s > 1,
th=2 w € P(HFY N L2(HY), 371 p € 12(H*TY). Relaved regularity assumptions
introduce a factor min(1,t~1) into the estimates of Theorem 4.3. Note that the re-
quirement u € L?(H") is a consequence of using the elliptic projection in the error
analysis to prove Theorem 4.3. This requirement is eliminated by proceeding instead
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with the L?-projection. The L?-projection requires more technical machinery and
does not provide an improved estimate in the case k > 2 (since here we pick k' = k
to preserve the optimal convergence rate) relative to the elliptic projection.

Corollary 4.5. Under the assumptions of Theorem 4.3, pick s = k — 1, k' =
max {2,k}, and r = k. Then

h h 2
e =i iz + ) max [bnr1sz = Pnpapoli

K—1
(61) + Z (ltns1y2 = uZ+1/2ﬁ +lint1/2 *J'Z+1/2||2) < C(h* + At?)
n=0

for some C > 0 independent of h, At — 0.
Proof. See Section 4.2. O

The discrete Gronwall inequality is essential in proving Theorem 4.3, Corollary
4.5.

Lemma 4.6. Let D > 0 and k,,, A,, Bn, Cn > 0 for any integer n > 0 and satisfy

K K K
Ay +AtZBn < Ath”An—s—AtZCn—&—D, VK > 0.
n=0 n=0 n=0
Suppose that for all n
Atk, <1

and set N\, = (1 — Atr,)~ L. Then,

K K K
A +AtY B, <exp(At Y Aykn)(AtY Cn+ D), VK >0.

n=0 n=0 n=0

Lemma 4.6 is proved in Lemma 5.1 of [9]. The estimates in (62), (63), (64) are
used in Corollary 4.5: For any n =0,1,..., K — 1, k > —1

tni1
Up41 — U1 _
(62) R < At [ ol
tn
tn+1
(63) Wng1/2 = u( tagaya)lf < CAtS/ [ (-, £)[[7dt
tn
tnt1
Un —Un n
(64) B = )2 < A [ o)

when u;, € L?(H*), uy(-,t) € L2(H*), uu(-,t) € L?*(H*). Each estimate (62),
(63), (64) is a result of a Taylor expansion with integral remainder, see Appendix
A. Write o(¢) := min{1,¢}. In the case that the prescribed regularity is not
attainable, (63), (64) are replaced by

(2]
14172 = u( g y) i < CAt30(tn+1/2)’2/ o (t)?|lar (- 1) Rt

n

tnt1
uy, —uy, ? -
||+1T — ()" M2} < CAE o (tyi1)2) 2/ o (t)?[Jwee (-, 1) |[7dt

for 12 uy(-,t) € L2(H*), t? wyy(-,t) € L2(H*). See Appendix A.
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4.1. Proof of Proposition 4.2. Recall j -]n+1/2 V¢Z+1/2 + u2+1/2 X B2
Set v = unﬂ/2 in (53) to get

1
sy (Ml = b)) + 2 2fu ol

(65) + (-]n+1/2’ nt+1/2 X Boi1)2) = (fn+1/27un+1/2)'
Set ¢ = ¢l 1 in (51) to get
(66) ~(ins1/2: Vony1/2) = 0.

Add (65) and (66), apply duality estimate H} x W, *, and Young’s inequality.
Absorb like-terms from right to left-hand-side. Multiply by At and sum from n = 0
ton =K —1 to get

K—1 K—1

1
Sl + 5 zv}jhwﬂph+At§ijﬂﬂ
n=0
K—-1

._2Nnu|ﬁ+~—fAt§me+uﬂ|1

Multiply by 2N to get (54). Set ¢ = ¢7i+1/2 in (51), apply Cauchy-Schwarz, and
simplify to get

(67) (601201 < M0k y1 0 X Bugayall < B[l jol| < Bl[u[i=(12).

Apply (54) to (67) to prove (55).

4.2. Proof of Theorem 4.3, Corollary 4.5. Define j,11/2 == —Vu, 12 +
W,11/2 X Bpy1/o and Jn+1/2 = VunH/2 + un+1/2 X Bpt1/2. For any v € X,
Y € S, write
68) V)= N (s - )+ 200 ED(W)
1
7 (v) = LN Zb (Wntis Ungiy V) — %b*(un—ﬁ—l/%un—kl/%v)
=0
. 1<
727(11)(") P 9 Z(jnJmV x Bpti) — (jn+1/2,V X Bn+1/2)
_01
(69) 3 Z (Wngi X Bryi, V) + (Wpg1/2 X Bygy2, V).
=0

Then sum (4), (6) at t = ¢,, and ¢,41 and divide by 2 to get

Uy — Up 1% —
V) N T (W W2, V) M (Vg V)

N7
(70)  — (Pnt1/2, V- V) + (ng1/2,V X Byg1y2) = (fogr/2,v) — rD(v), WwevV
(7)) = Gnt1/2, V) = 1P (¥), V€S
Decompose the velocity, potential, and current density errors:
E,., = UZ—nn, UZ = uh—uh M = Uy uh

Ed’,n = (I)Z - Cna (I)Z = ¢Z na Cn ¢n ¢Z
Ej”ﬂ JZ - Xn>» J'Z = —V‘I’Z + U'Z X an Xn _VC’I’L + Mn X Bn
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Let @, ¢ be the elliptic projection defined in (17), (18). Fix ¢ € Q". Note that
(p", V- v) =0 for any v € V. Write

RZ(V) N~ ( Upyi/2,0 Z+1/27V) —N_lb*(un+1/2,un+1/2,v)
Subtract (70) and (71) from (53) and (51) respectively. Set v = UZ+1/2> P =

<I>Z 4172 to get the error equations
1
INAL (102 LI = [OR1?) + M2 Ul +1/2|1 (JZ+1/2,UZ+1/2 X Bpt1/2)
—1/Tn+1 Tn
=N 1(T Un+1/2) (Xn+1/2,UZ+1/2 X Bpt1/2)

(72) + (§2+1/2 — Pnt1/2, V- Un+1/2> - RZ(UZH/z) - T’I’(Ll)<U’Z+1/2)7
(73) ( n+1/2> V(I)n+1/2) —(Xn+1/2, V®Z+1/2) + 77(12)(‘1)Z+1/2)~
Add (73) to (72) and combine terms to get

1

2N At (

_ 77n+1 - nn ~
=N I(Ta UZ+1/2) + (q2+1/2 — Pnt1/2, V- UZ+1/2)

1052l = IURIP) + M 7205 polf+ 135 ol

(74) + (Xnt1/25 JZ+1/2) - RZ(UZH/Q) - TT(ll)(UZ+1/2) + 752)(‘I>Z+1/2)~

Note that (73) can be written

(75) |‘I>n+1/2|1 = (UZ+1/2 X Brt1/2 = Xn+1/2s V(I’Z_H/z) + 77(L2)(‘I)Z+1/2)-
Add (75) to (74) to get
1
sy (0T 12 = ([ULIR) + M 210N o+ 19l 100 o

—1,Mn+1 Tin
=N 1(+T Un+1/2) (QZ+1/2 —pn+1/2,V'UZ+1/2)

+ Otnt1/2: 1 72) + (U1 o X Bugaya = Xnt1/2, VO 41 o)
(76) - RZ(UZ+1/2) - Tél)(UZ+1/2) + 27—722)((1%4-1/2)-

Let €/, €” > 0 be Young’s inequality constants to be fixed later. Apply duality
estimate on H} x W, ! and Cauchy-Schwarz with Young to get

_ 77n+1 - nn ~
N 1(T7UZ+1/2) + (Pnt1/2 — ‘124-1/2, V. UZ+1/2)
+ (Xn+1/27JZ+1/2) + (UZ+1/2 X B2, V(DZJrl/Q) — (Xn+1/2 V¢Z+1/2)|

_onMn Tn ~
< CM*N 2\|“Tt||2 + CM?||pusij2 — Gnyr ol P

1
+C||Xn+1/2||2+C|‘Bn+1/2||0c>o||U +1/2||2 ,MQ\UZH/QE
(77) \@ vaali 4 ||J hagall

The convective terms are bounded in a similar way as in the proof of Lemma 3.5
noting that R(v) is R?(v) with u, u”, n, U" replaced by W, 41/2, u2+1/27 Nnt1/25
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U” ., /- We conclude without further proof
R} (Un+1/2)| < CMPN 2 (|Wpg1/0]7 + g2l Dmng2l7
(78) o ’M2 U1 j2li + CMONT (w1 ot + 121U 41 ol

Bounding the time-consistency error remains.

Lemma 4.7. Let u satisfy the reqularity assumptions of Theorem 4.3. Then, for
any € > 0 and any integer n > 0

(79) (Ul o)l < 2|U’u1/2|1+cM2 2ALE,

where
1
EY, = C'Huttt||2LQ(tmtn+1;W;1) + Cllul [ oy sl T2, 00102

9.
+ CHut||l2‘>°(L2)||ut‘|i2(tn,t"+17H2) +CB ||Jtt\|2L2(t,,“t“+1;vv—1,2)
(80) + Clljllf (e |Beell72t, 60102y + ClBel i () llie

2
‘L2 (tn,tn+1;L2) N

Proof. Duality estimate on W, ! x H{ and Young give

4, Upy1 —u
1‘(% — ut(tn+1/2)a UZ+1/2)|

_ Uy, — Upn
< CM*N 2||+1T —w (s tugaya)|l-1

_ 1
(81) + CM?N2[Juy (s tny1/2) = (We)ngayll-1 + m\UZH/le-

For the remaining terms, details are provided in Appendix A. Taylor-expansion
about 2,41/ with integral remainder gives

1

1
§(Hn+1 . Vun+1,V) + =

2(un “Vup, v) = (u( tay1y2) - Vul, thyiye),v)

1 [t 2
3 f (=00 Va0,

82 1 n4+1/2 d2 d
(82) +2/tn (t—tn)ﬁ(u(-,t)-Vu(-,t),v) t.

Add/subtract (U412 - Vu(-,tny1/2),v) and apply (82) to get

(1
'r(z+)1(Un+1) = (11n+1/2 : V(11n-s-1/2 - u(‘,tn+1/2))aUZ+1/2)
+ un+1/2 —u(, n+1/2) Vu(, n+1/2) UZ+1/2)

tn+1
/ (thy1 — 1) /(utt -Vu+u-Vuy +2u; - V) - UZH/th
tny1/2

n+1/2
(83) / /(utt -Vu +u- Vutt + Qllt . Vllt) . UZ+1/2dt
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Majorize (83) with (15) and Holder’s inequality (in time) applied to (83) to get

(Ul 12)] < Cllullise a2y 104172 = 0ot 2) | U7 ol

CAt3/2 tnt1
+ CBTT g / (e 8)|de) /2|0 )y
Vint1/2 tn
CAt3/2 tn1
(84) + ti\lmllzow)(/ t (-, 1)|[3d8) 2 (UL, 5l
\ ‘n+1/2 tn

Similarly

1 .
1'(7,-‘21(Un+1) —(Jnt1/2, Brgiy2 = B(, thgi1/2)) X Un+1/2)
- (.]n+1/2 7.]('3tn+1/2)7B('7tn+1/2) x Un+1/2)

1 [t . .
+ 5/ (tn41 —1) /(Jtt B XxUp 1 5)+i-BuxUn, )
n+1/2
.+ th (Bt X Un+1/2))dt
1 [t . h . h
+ §/t (t—tn) /(Jtt (B x Un+1/2) +J- (B X Un+1/2)
(85) 20 (B x UL o))dt

Majorize (85) with duality estimate on H x W5 ' and Hélder’s inequality (in time
and space) to get

| n+1( n+1/2)| < CB||.]n+1/2 _.]( n+1/2)|| I‘Un+1/2|1
+ Clljllis (L) [Bry1/2 — B(, n+1/2)||—1|Un+1/2|1

CAt3/2 - tnt1 .
g / i (0|2 1de) V(UM
\/ n+1/2 tn

CAtB /2 tn+t1
HJIIzoo(um))(/ t|Bu (-, 0)[[*d)/*| UL 1 |y

4+
\/ tn—i—l/ tn

CAt/? et

S Bulliwamy ([ ¢ Uil 1Pt UL ol
thr 1/2 tn

Estimates (81), (82), (84), (86), along with Young’s inequality and application of

assumed regularity (to bring weighting factor ¢ outside of integrals) and estimates

(62), (63), (64) for u, j, and B prove (79). O

(86) +

Lemma 4.8. Let u satisfy the reqularity assumptions of Theorem 4.8. Then, for
any €’ > 0 and any integer n > 0

2
(87) [T D@k, )] < |<1> h ol + CAPED),

where

2 —2
EZ) = OB |lueel o0, o riz2y + Cllul P o [1Beel 2o i)

(88) + ClIBul[foe gy el F2 1, 1m0
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Proof. We estimate 72 (v) in a manner similar to 7(!)(v) in the proof of Lemma
4.7. Application of Taylor’s theorem with integral remainder gives

2
T7(7,+)1(¢’Z+1) = ((Bn+1/2 - B('»tn+1/2)) X un+1/27v‘1>z+1/2)
+ (B(stngr2) X (Wpg12 — Ul tur1y2)), VOL L )

1 tnt1
- */ (tn+1 —t) /((B X ) - VO! o+ (By x UM)-VO! o

tny1/2
2By xw) VO o )dt
1

tny1/2
_ 5/t (t—tn) /((B X ) VO + By x UM VO, )

(89) 2By xwy) - VOR L )dt

n

Majorize (89) with duality estimate on H} x W, ' and Hélder’s inequality (in time
and space) to get

9 _
|Tr(L+)1(‘I>Z+1/2)| < C’B||un+1/2 - u(-,tn+1/2)\| “I’Z+1/2|1

+ Cllulli (o) IBrs1s2 = BCstngay2)ll 1R0 5k

CAt3/2 - tnt1
L AT / b [ (1) Pde) /2| @ |y
Vint1/2 tn
CAt3/? b1
bl ([ B0 P 2@l
thi1/2 tn
CAt3/2 tnt1
(90) + SB[ IRl o
n+1/2 tn

Estimate (90), along with Young and application of assumed regularity (to bring
weighting factor ¢ outside of integrals) and estimates (63), (64) for u and B, proves
(87). O

Apply estimates (77), (78), (79), (87) to (76). Set &', ¢’ = 4 and absorb all
like-terms from the right into left-hand-side of (74). Approximation (11) gives
Innl1 < Clu,|3. Sum the resulting inequality on both sides fromn = 0ton = K —1.



FECN ANALYSIS OF SMALL R,, FLOWS 91

Apply the estimate (79), (87), (11). Multiply by N to get

K-1 K-1
UK+ M 7TENALY (UL F + NAEY (1301l + (@04 00
n=0 n=0
K-1
< CAt Z (j\46]\/v78|un-§-1/2|41l + ||Bn+1/2||g,oo)||UZ+1/2||2
n=0
K1 .
_ +1—
+ OGP + CMP N~ At Z (||%H2—1 + ||u||2Loo(H1)|77n+1/2\2)
n=0
K-1 K-1
+CM?NAt Z ||QZ+1/2 — Pns1y2l + CNAE Z Xng1/2l?
n=0 n=0
K-1 K-1
(91) +MANTIAR ST B+ Nat ST B
n=0 n=0
Write
K K
Gr = b T ) o= MON T ol + 1B ol

Suppose that Atk, < 1. Apply Gronwall Lemma 4.6 to (91) to get

K-1 K-1
NAt
U1 + e Z |UZ+1/2\% + NAt Z (\|J2+1/2||2 + |@Z+1/2ﬁ)
n=0 n=0

K—-1 K—-1
< Gi|[UBI2 + GrM®N~1att ST B, + GeNatt Y EY),
n=0

n=0
K1, .
_ n+1 — IIn
+GrM?N At Z (||T||2—1 7 oo g1y g1 /21%)
n=0
K-1 K—-1
(92) + G M?NAt Z @) 412 = Prs1jell” + G NAE Z X121
n=0 n=0

Fix k > 0. Recall that (19), (11)(a) give
(93) nli < CR*[[ul]+1-

Fix k' > 2. Then together we estimate (62), we get

Nn+1 — Tln (2 2k’
4 _ < Ch*® A

Fix s > —1. Estimate (11)(b) gives

-1 2
t |‘Ut||L2(tn;tn+l§Hk/_l)'

(95) qhiggh 1Pnt1/2 = @rsayell € O pagajol s

Fix r > 0. Then estimates (19), (20), and (11)(a)(c)

(96) |\Xn+1/2|| < C(hr||¢n+1/2\|r+1 + th||11n+1/2\|k)~
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Apply estimates (93), (94), (95), (96) to (92) to get

NAt
1U%I” + Z U 12fi

K-1

(97) +NAEY ([0 1ol + 12010 0] < Grl[Buoll® + (FR)
n=0

where FR, is given in (56). The triangle inequality ||Eyn| < [[U?[| + ||na]l,
1Egnll < 11@511+11Call, B nll < [19%]1+1xn| along with estimates (19), (20), (11)
proves (57), (58), (59). Bound the right-hand-side of (73) with Cauchy-Schwarz,
Young, and estimate (87). Absorb like-terms into the left-hand-side to get

2)
(98) (@810} < CB[Buniajol P + Cléng ol + CEZ,.

Apply triangle inequality ||Ey.n|| < [|®%|| + ||¢a]| along with estimates (97), (19),
(20), (11) to prove (60).

Estimates (11) and (62), (63), (64) applied to the results in Theorem 4.3 prove
the estimate in Corollary 4.5.

5. Numerical results

We consider two distinct numerical experiments in this section. First, we confirm
the converge rate as h, At — 0 for the fully discrete, simplified MHD model (49),
(50), (51), (52). Second, we consider the effect of an applied magnetic field to a
conducting flow in a channel past a step by illustrating the damping effect of B # 0.

We use the FreeFem++ software for each of our simulations. We utilize Taylor-
Hood mixed FE’s (piecewise quadratics for velocity and piecewise linear pressure)
for the discretization. We apply Newton iterations to solve the nonlinear system
with a [Jul?) —uU=Y||; < 10~% as a stopping criterion.

Experiment 1 - Convergence Analysis: For the first experiment, Q = [0, 7]2,
to=0,T =1, Re =25, B=(0,0,1). The true solution (u,p, ¢) is given by

(99)
Y(z,y) = cos(2z)cos(2y), u(z,y,t) = (‘6%2?/)7%22@ 7

p(z,y,t) = 0, plz,yt) = (W(z,y)+2?—y?)e

We obtain f, u|pq from the true solution. We solve one large coupled system for
u, p, . A uniform triangular mesh is used. We set Re = 25 for this experiment.
Results are compiled in Tables 1 and 2 for M = 20, N = M?/Re = 16 and
M = 200, N = M?/Re = 1600 respectively . Write ||| - ||lo..o = max, || - || and
-Illo,2 = (AtY,, ||-]]?)'/2. The rates of convergence suggested in Table 1 correlate
with theoretical rate O(h% + At?) predicted in Corollary 4.5 for u corresponding
discrete norms. Note that the O(h3) convergence suggested in L? is expected and
can be shown by extension of the estimates in Theorem 4.3 via a duality argument.
Similar results are reported in Table 2 for different error-measures, including the
electric potential ¢.

Experiment 2: Flow in channel over a step is a classic benchmark test. It
is well-known that there exists a critical fluid Reynolds number Re, > 0 so that
the vortex developed in the wake of the step will detach from the step and be
carried downstream for any Re > Re.. In this test, we show how the SMHD
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TABLE 1. Convergence rate data for the first experiment, H = 20

h At |Eunlllo,cc rate |||VE, n11/2]|l0,2 rate
1/10  1/40 3.727e-2 —— 3.659¢-1 ——
1/20 1/80 4.477e-3 3.05 8.111e-2 2.17
1/40  1/160 4.498e-4 3.32 1.439¢-2 2.49
1/80 1/320 | 4.564e-5  3.30 2.789¢-3 2.36
1/160 1/640 4.805e-6 3.24 6.285e-4 2.15

h At |HEj,7L+1 2|||072 rate

1/10  1/40 5.471e-2 ——

1/20  1/80 1.295¢-2 2.08

1/40 1/160 | 3.326e-3 196
1/80 1/320| 845le-4 198
1/160 1/640 |  2.126e-4 1.9

TABLE 2. Convergence rate data for the first experiment, H = 200

h At [y pt1/2/llo2 rate [[[VEqy,11/[llo2 rate
1/10 17100 3550e-1 1.488¢-0 —
1/20  1/200 3.772-2 323 5.546¢-1 1.42
1/40  1/400 4.159e-3 3.18 2.311e-1 1.26
1/80  1/800 5.299%e-4 2.97 7.135e-2 1.69
1/160 1/1600 5.069e-5 3.39 1.424e-2 2.32

h At |HVE¢,n+1 2‘”072 rate

1710 1/100 3.575¢-1 —

1/20  1/200 3.873e-2 2.02

1/40  1/400 4.890¢-3 2.98

1/80  1/800 9.416e-4 2.37

1/160 1/1600 2.167e-4 2.12

model accurately models the damping effect of the magnetic field by suppressing
the shedding of these vortices.

We consider here a [0,40] x [0,10] channel. The step is square with width 1.
The front of the step is located at x = 5. For velocity boundary conditions, let
ul,—o = 0.04y(10 — y) at the in-flow, do-nothing (=M ~2Vu - A + pi)|z=s0 = 0
at the out-flow, and no-slip u = 0 otherwise. For the potential, let ¢|y,=10 = 0
and V¢ -7 = 0 otherwise. We set Re = M?/N = 1800, M = 1000, so that
N = 555.6. We compute the SMHD solution with B = (0,0, 1) as well as the NSE
solution (B = 0) for comparison. We use At = 0.005 in both cases. Both problems
are solved on a non-uniform mesh generated with the Delaunay-Vornoi algorithm,
shown in Figure 1. Notice the mesh refinement along the step. The SMHD problem
contained 58046 degrees of freedom. We show the streamlines for the velocity field
for the corresponding NSE and SMHD solutions in Figures 2, 3 (domain restricted
to [0,20] x [0,4]). Notice that as time evolves, vortices are created and separate
for the NSE flow. As expected, the magnetic field suppresses this shedding for
the SMHD flow so that the vortex in the wake of the step is elongated without
separation.
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FIGURE 2. Experiment 2: Streamlines at ¢t = 40, Re = 1800 (top)
NS solution, B = (0,0, 0), (bottom) SMHD solution, B = (0,0, 1),
M = 1000.

6. Conclusions

We introduced a FE method for quasi-static MHD equation at small Re,,. We
decomposed the approximation into two parts. In the first part, we presented the
stability and error analysis of semi-discrete approximation. In the second part, we
presented the stability and error analysis of fully-discrete approximation, CN in-
time. We also conducted two numerical experiments to verify the effectiveness of
the proposed model. We confirm the theoretical rate of convergence derived in this
report in the first experiment. In the second experiment, we investigate how an
applied magnetic field affects the dynamics of the classic flow-past-a-step problem
in a channel. As expected, we show with the SMHD model that the magnetic field
suppresses the shedding so that the vortex in the wake of the step is elongated
without separation. For future work, note that we studied a fully coupled method
between fluid velocity and electric potential. To improve speed and assuage memory
requirements, we are investigating the existence and effectiveness of an uncoupled,
approximation of SMHD. Lastly, we are investigating the integration of LES models
to SMHD.
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FIGURE 3. Experiment 2: Streamlines at ¢ = 60, Re = 1800 (top)
NS solution, B = (0,0, 0), (bottom) SMHD solution, B = (0,0, 1),
M = 1000.
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Appendix A. Derivation of intermediate estimates

Proof of Estimate (62). Fix n > 0. Then, for k > 0

|un+1 _un|2 _
Atk

tn+1 tn+1 9 tn+1
< At—Z/ (/ dt/ | DM uy(-, 1)) dt) < At—l/ [ug (-, t)|2dt.
tn tn tn

Similar proof for k = —1 applied to definition of Wy L norm. O

tn+1 2
At? / DFuy (-, t)dt
t

Proof of Estimate (63). Fix n > 0 and k > 0. A Taylor-expansion with integral
remainder gives

2

tnt1/2
/ (t — tn) D ug (-, t)dt

t

W12 —u( tpprg)li < C/

tna1
/ (tns1 — t)D*uy (-, t)dt

tnt1/2

(100) +c/
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where, for any r € R,

/

tntl ) tnt1 9
< c/ (tns1 — 1) dt/ g (-, )| [5dt
tnt1/2

tny1/2

trnt1 . 2
/ (tnir — 1) DFugy (-, )t

tnt1/2

g [ 2
< CAt t7(t [lue (-, 0)[17) dt

tny1/2

CAt3 [t
[ et

(101) < —
(t”"rl/?) tny1/2

and similarly on the time interval (t,,t,1/2) when n > 0. If n = 0, then

At/2 2 At/2 At/2
/ / ¢ Du(- Hdt| < C / dt / 2 [ (-, 1)) 2dt
0 0 0

At)2
(102) <car [ a0t
0

Note that /%,1/2 = /At/2 when n = 0. Then estimates (101), (102) applied to
(100) give

CAt3 tnt1
(103 wsrga —uC b < o [ Pt

O

Proof of Estimate (64). Fix n > 0. First add/subtract u(-,¢,11/2) and apply the
triangle inequality to get

Up+1 — Up
||+T - (ut)7t+1/2||i
Up4+1 — Up
(104) < ||+T = (s g y2) i + (e tnga2) = (W) ntyolli
Following a similar method used to derive (100), we get
g , g
CAt3 tnt1 3
(105) (o tpsrye) = (@)nirpell} < ——— / 12 (|0 u(-, 1)) 3dt.
(tny1/2)? Je,
Additionally,
U,4+1 — 1
||% - ut('vtn+1/2)”z
tn+1/2 tn41 2
_ / (t = tn) (-, )t +/ (tsr — E) e (-, £)dt
tn tny1/2 b
CAt? [t
100) <o [T Pl o)
(tny1/2)? Je,
Apply (105) and (106) to (104) to get
U1 — Uy 9 CA? tnt1 9 9
(107) ”T — (W) ng1y2llk < [ [ (-, )|t
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([
Proof of Estimate (84). Fix n > 0. Then, for any r € R, and for either i =0 or 1,

trnt1
/ (tnt1 — t)(ug - Vu,v)dt < C'/

tnyi/2 tny1/2

tnt1
(tnt1 — t)l[ull2ffuse| 1| v]i

tn+1 tn+1
< Cllulluse e[ = 0202l v
tny1/2 tny1/2
CAt3/2 tn+1
< Gl ey (7 )2l
n+

tnt1/2

(108)

A similar estimate holds when time interval is shifted to (¢,,t,+1) except when
n = 0. In this case

At)2 At/2
/ Huge - Va,v)dt < C / #] ot il v]:
0 0
At)2 At)2
< Cllul| e 0.am / )3 / 2 (gl o) 2|,
0 0

At)2
(109) < CAtl/QIIUIlLoo(o,m;H?)(/O £ |yl |F_dt) 2 vl

Note that /%, 41/2 = \/At/2 when n = 0. Therefore, (108), (109) combine to give,
forn>0

tni1 tny1/2
/ (bosr — )y - Vi, v)dt + / (t = t) (gt - Vi, v)dt

tny1/2 tn

CAt3/? b1
(110) = IIU||Lw<tn,tn+1;H2>(/ £ (e sdt) /% v

tnt1/2 tn

Now recall that (u- Vuy,v) = —(u- Vv, uy) since V-u=0 and v = 0. Then
again a similar argument used to derive (109) proves

to1 tnt1/2
/ (tny1 —t)(u- Vuy, v)dt + / (t —tn)(u- Vuy, v)dt

tny1/2 2%

CAt3/2 tnt1
ay < [ T—— / £ [l 2_sdt) 2 v];.

tni1/2 t
Once again, following a similar argument used to derive (109) proves, for n > 0,

tnt1 tnyi/2
/ (toin —t)(ut~Vut,v)dt+/ (t — ) (s - Vuy, v)dt

tny1/2 tn

CAt3/2 tnt1
(12) < iz ([ ) v
n+1/2 tn
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