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NUMERICAL ANALYSIS OF A FINITE ELEMENT,

CRANK-NICOLSON DISCRETIZATION FOR MHD FLOWS AT

SMALL MAGNETIC REYNOLDS NUMBERS

GAMZE YUKSEL AND ROSS INGRAM

Abstract. We consider the finite element method for time dependent MHD flow at small magnetic

Reynolds number. We make a second (and common) simplification in the model by assuming the

time scales of the electrical and magnetic components are such that the electrical field responds
instantaneously to changes in the fluid motion. This report gives a comprehensive error analysis

for both the semi-discrete and a fully-discrete approximation. Finally, the effectiveness of the

method is illustrated in several numeral experiments.
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1. Introduction

Magnetohydrodynamics (MHD) is the theory of macroscopic interaction of elec-
trically conducting fluid and electromagnetic fields. Many interesting MHD-flows
involve a viscous, incompressible, electrically conducting fluid that interacts with
an electromagnetic field. The governing equations for these MHD flows are the
Navier-Stokes (NS) equations (NSE) coupled with the pre-Maxwell equations (via
the Lorentz force and Ohm’s Law). The resulting system of equations (see e.g.
Chapter 2 in [21]) often requires an unrealistic amount of computing power and
storage to properly resolve the flow details. A simplification of the usual MHD
equations can be made by noting that most terrestrial applications involve small
Rm; e.g. most industrial flows involving liquid metal have Rm < 10−2. Moreover, it
is customary to solve a quasi-static approximation when an external magnetic field
is present Rm is small since the time scale of the fluid velocity is much shorter than
that of the electromagnetic field [3]. We provide herein a stability and convergence
analysis of a fully discrete finite element (FE) discretization for time-dependent
MHD flow at a small Rem and under a quasi-static approximation. Magnetic
damping of jets, vortices, and turbulence are several applications, [3, 18,20,22].

Let Ω be an open, regular domain in Rd (d = 2 or 3). Let Rm = UL/η > 0
where U , L are the characteristic speed and length of the problem, η > 0 is the
magnetic diffusivity. The dimensionless quasi-static MHD model is given by: Given
time T > 0, body force f , interaction parameter N > 0, Hartmann number M > 0,
and domain ΩT := (0, T ] × Ω, find velocity u : ΩT → Rd, pressure p : ΩT → R,
electric current density j : ΩT → Rd, magnetic field B : ΩT → Rd, and electric
potential φ : ΩT → R satisfying:

(1)
N−1 (ut + u · ∇u) = f +M−2∆u−∇p+ j×B, ∇ · u = 0
−∇φ+ u×B = j, ∇ · j = 0

∇×B = Rmj, ∇ ·B = 0
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subject to boundary and initial conditions

(2)
u(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T ]
φ(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T ]
u(x, 0) = u0(x), ∀x ∈ Ω

where u0 ∈ V and ∇ · u0 = 0. When Rm << 1, then j and ∇ × B in (1)(3a)
decouple. Suppose further that B is an applied (and known) magnetic field. Then
(1) reduces to the simplified MHD (SMHD) system studied herein: Find u, p, φ
satisfying

(3)
N−1 (ut + u · ∇u) = f +M−2∆u−∇p+ B×∇φ+ (u×B)×B

∇ · u = 0
−∆φ+∇ · (u×B) = 0.

subject to (2). This is the time dependent version of the model first proposed by
Peterson [19].

We provide a brief overview of previous applications and analyses of MHD flows
(high and low Rm) in Section 1.1. In Section 2, we present notation and a weak
formulation of (3) required in our stability and convergence analysis. In this report
we prove stability estimates for any solution u, p, φ to a semi-discrete and fully
discrete approximation of (3) in Propositions 3.2, 4.2 respectively. We use these
estimates to prove optimal error estimates in two steps:

• Semi-discrete (FE in space), Section 3
• Fully-discrete (FE in space, Crank-Nicolson time-stepping), Section 4

Let h > 0 and ∆t > 0 be a representative measure of the spatial and time dis-
cretization. We investigate the interplay between spatial and time-stepping errors.
We prove that the method is unconditionally stable and, for small enough ∆t, the
errors satisfy

error(u, p, φ) < O(hr + ∆t2)→ 0, as h,∆t→ 0

where r is the order of the FE approximation. See Theorems 3.3, 4.3 and Corollaries
3.4, 4.5.

1.1. Overview of MHD models. Applications of the MHD equations arise in
astronomy and geophysics as well as numerous engineering problems including liq-
uid metal cooling of nuclear reactors [2, 7], electromagnetic casting of metals [16],
controlled thermonuclear fusion and plasma confinement [8, 23], climate change
forecasting and sea water propulsion [15]. Theoretical analysis and mathematical
modeling of the MHD equations can be found in [3, 10]. Existence of solutions to
the continuous and a discrete MHD problem without conditions on the boundary
data of u is derived in [24]. Existence and uniqueness of weak solutions to the
equilibrium MHD equations is proven by Gunzburger, Meir, and Peterson in [6].
Meir and Schmidt provide an optimal convergence estimate of a FE discretization
of the equilibrium MHD equations in [17]. To the best of our knowledge, the first
rigorous numerical analysis of MHD problems was conducted by Peterson [19] by
considering a small Rm, steady-state, incompressible, electrically conducting fluid
flow subjected to an undisturbed external magnetic field. Further developments
can be found in [1, 12,13].
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2. Problem formulation

We use standard notation for Lebesgue and Sobolev spaces and their norms. Fix
p ≥ 1. Let Lp(Ω) denote the linear space of all real Lebesgue-measurable functions
bounded in the usual norm denoted by ||·||Lp(Ω). Let (·, ·)Ω and ||·||Ω be the standard

L2(Ω)-inner product and norm. Fix k ∈ R. The Sobolev space W k
p (Ω) is equipped

with the usual norm denoted by ||·||Wk
p (Ω). Identify ||·||k,p,Ω := ||·||Wk

p (Ω), H
k(Ω) :=

W k
2 (Ω), || · ||k,Ω := || · ||Wk

2 (Ω) with | · |k,Ω the corresponding semi-norm. Let the

context determine whetherW k
p (Ω) denotes a scalar, vector, or tensor function space.

For example let v : Ω→ Rd. Then, v ∈ H1(Ω) implies that v ∈ H1(Ω)d and ∇v ∈
H1(Ω) implies that ∇v ∈ H1(Ω)d×d. Define H1

0 (Ω) :=
{
v ∈ H1(Ω) : v|∂Ω = 0

}
.

The dual space of H1
0 (Ω) is denoted W−1

2 (Ω) := (H1
0 (Ω))′ and equipped with the

norm

||f ||−1,Ω := sup
06=v∈H1

0 (Ω)

< f ,v >W−1
2 (Ω)×H1

0 (Ω)

|v|1,Ω
.

For brevity, omit Ω in the definitions above. For example, (·, ·) = (·, ·)Ω, H1 =
H1(Ω), and V = V (Ω). Fix time T > 0 and m ≥ 1. Let Wm

q (0, T ;W k
p (Ω)) denote

the linear space of all Lebesgue measurable functions from (0, T ) onto W k
p equipped

with and bounded in the norm

||u||Wm
q (0,T ;Wk

p ) := (

∫ T

0

m∑
i=0

||∂(i)
t u(·, t)||q

Wk
p
dt)1/q.

Write Wm
q (W k

p ) = Wm
q (0, T ;W k

p (Ω)) and Cm(W k
p ) = Cm([0, T ];W k

p (Ω)). Define

Q :=
{
q ∈ L2 : (q, 1) = 0

}
, X := H1

0 (Ω)d, S := H1
0 (Ω).

Let X ′, S′ denote the dual space of X, S respectively. Then a weak formulation
of (3), (2) is: find u : (0, T ] → X, p : (0, T ] → Q, and φ : (0, T ] → S for t ∈ (0, T ]
satisfying

N−1 d

dt
(u,v) +N−1(u · ∇u,v) +M−2(∇u,∇v)− (p,∇ · v)

+ (−∇φ+ u×B,v ×B) = (f ,v), ∀v ∈ X(4)

(∇ · u, q) = 0, ∀q ∈ Q(5)

(∇φ− u×B,∇ψ) = 0, ∀ψ ∈ S(6)

u(x, 0) = u0(x), a.e. x ∈ Ω.(7)

We obtain (4) from (3)(a) by applying the following identities.

Lemma 2.1. For all u, v ∈ L2, B ∈ L∞, φ ∈ H1,

(8) ((u×B)×B,v) = −(u×B,v ×B), (B×∇φ,u) = (u×B,∇φ).

Proof. Follows from scalar triple product identities, see e.g. [11]. �

Herein we write B := ||B||L∞(L∞). We assume that (u, φ) is a strong solution of

the SMHD model satisfying (4), (5), (6), (7) and u ∈ L4(0, T ;V ) ∩ L∞(0, T ;L2),
φ ∈ L∞(0, T ;S), ut ∈ L2(0, T ;X ′), and u(x, t) → u0(x) ∈ V as t → 0+. Restrict
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v ∈ V in (4), (5), (6), (7): find u : (0, T ] → V and φ : (0, T ] → S a.e. t ∈ (0, T ]
satisfying (6), (7), and

N−1 d

dt
(u,v) +N−1(u · ∇u,v) +M−2(∇u,∇v)

+ (−∇φ+ u×B,v ×B) = (f ,v), ∀v ∈ V.(9)

Solving the problem associated with (9), (6), (7) is equivalent to (4), (5), (6), (7).
Fix h > 0. Let T h be a family of subdivisions (e.g. triangulation) of Ω ⊂ Rd

satisfying Ω =
⋃
E∈T h E so that diameter(E) ≤ h and any two (closed) elements

in T h are either disjoint or share exactly one face, side, or vertex. For example,
T h consists of triangles for d = 2 or tetrahedra for d = 3 that are nondegenerate
as h → 0. Let Xh ⊂ X, Qh ⊂ Q, and Sh ⊂ S be a conforming velocity-pressure-
potential mixed FE space. We assume that Xh ×Qh × Sh satisfy the following:

Assumption 2.2. The FE spaces Xh ×Qh satisfy:

Uniform inf-sup (LBB) condition:

(10) inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

|vh|1 ||qh||
≥ C > 0

FE-approximation:

(11)

inf
vh∈Xh

||u− vh||1 ≤ Chk||u||k+1

inf
ψh∈Xh

||φ− ψh||1 ≤ Chr||φ||r+1

inf
qh∈Qh

||p− qh|| ≤ Chs+1||p||s+1.

for some fixed k, r ≥ 0, s ≥ −1 when u ∈ Hk+1 ∩ X, p ∈ Hs+1 ∩ Q,
φ ∈ Hr+1 ∩ S.

Error estimates for the elliptic projection (17) in L2 and W−1
2 require regularity

of solutions to the following auxiliary problem.

Assumption 2.3. Given θ ∈W−1
2 , find (wθ, ωθ) ∈ X ×Q satisfying

(∇wθ,∇v)− (ωθ,∇ · v)− (∇ ·wθ, q) = (θ,v), ∀(v, q) ∈ X ×Q.

This problem is well-known to be well-posed. Suppose further that (wθ, rθ) ∈
Hm+2 ×Hm+1 satisfy

(12) ||wθ||m+2 + ||ωθ||m+1 ≤ C||θ||m
when θ ∈ Hm

0 (with H0
0 = L2).

Indeed, (12) is true if Ω is smooth enough.

2.1. Fundamentals Inequalities. Denote by C > 0 a generic constant indepen-
dent of h, ∆t, and ν. We use the fact that ||∇ · v|| ≤

√
d|v|1 throughout without

further reference. The following estimates are used frequently in the analysis herein
(for proofs see e.g. [4], Chapter II, and references therein). Fix q, q′ ≥ 1 so that
1/q + (1/q′) = 1.

Young : ab ≤ 1

qδq/q′
aq +

δ

q′
bq
′
∀a, b, δ > 0

Hölder : |(v,w)| ≤ ||v||0,q||w||0,q′ ∀v ∈ Lq, w ∈ Lq
′
.
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Furthermore, we have

Poincaré : ||v|| ≤ C|v|1 ∀v ∈ X
Sobolev : ||v||0,∞ + ||v||1,3 ≤ C||v||2 ∀v ∈ H2.

Let V h :=
{
v ∈ Xh :

∫
Ω
q∇ · v = 0 ∀q ∈ Qh

}
. Note that in general V h 6⊂ V . We

use the explicitly skew-symmetric convective term:

b∗(u,v,w) :=
1

2
((u · ∇v,w)− (u · ∇w,v))(13)

so that
b∗(u,v,v) = 0, ∀u ∈ H1, v ∈ H1.

Note that (u ·∇v,v) 6= 0 in general. The following estimates of the convective term
are derived using the previous inequalities. See [14] for a compilation of associated
estimates. For u, v, w ∈ H1,

b∗(u,v,w) = (u · ∇v,w), ∀u ∈ V.
If, on the other hand, u ∈ X,

(14)
b∗(u,v,w) ≤ C

√
||u|| |u|1|v|1|w|1

b∗(u,v,w) ≤ C|u|1|v|1
√
||w|| |w|1.

.

Moreover,

(15)
b∗(u,v,w) ≤ C||u|| ||v||2|w|1, ∀v ∈ H2

b∗(u,v,w) ≤ C|u|1||v||2||w||, ∀v ∈ H2 .

We define the elliptic for approximating H1-functions in Xh and Sh. Estimate
(16) is necessary since the discrete pressure is eliminated from the error analysis for
velocity by testing with functions in the discretely divergence free space V h (proved
e.g. in [5], see intermediate estimate (1.16) in Theorem II.1.1).

Lemma 2.4. Suppose that the FE space satisfies Assumption 2.2. Then, for any
u ∈ V , there exists a constant 0 < C <∞ depending on (10) so that

(16) inf
vh∈V h

|u− vh|1 ≤ C inf
wh∈Xh

|u−wh|1.

The elliptic projection is given by P1 : V → V h so that ũh := P1(u) satisfies∫
Ω

∇(u− ũh) : ∇v = 0, ∀v ∈ V h.(17)

We similarly define the scalar elliptic projection P2 : S → Sh so that φ̃h := P2(φ)
satisfies ∫

Ω

∇(φ− φ̃h) : ∇ψ = 0, ∀ψ ∈ Sh.(18)

We present an error estimate for P1 and P2.

Lemma 2.5. Fix u ∈ X and φ ∈ S. Suppose that FE space satisfies Assumption
2.2. Then P1, P2 given by (17) and (18) are well-defined and satisfy

||u− P1(u)||−m ≤ Chm+1 inf
vh∈Xh

|u− vh|1(19)

||φ− P2(φ)||1 ≤ C inf
φh∈Xh

|φ− φh|1(20)

for m = −1. Suppose further that Assumption 2.3 is satisfied. Then (19) also holds
for m = 0, 1.
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Proof. For m = −1, apply Céa’s Lemma to get |u − ṽh|1 ≤ 2 infvh∈V h |u − vh|1.
To recover infimum over all vh ∈ Xh in (19), apply estimate (16). Similarly, Céa’s
Lemma directly gives (20). To recover estimates for m = 0 and 1, follow the
procedure in [5] (e.g. Theorem II.1.9). �

3. Semi-discrete approximation

We first state the semi-discrete formulation of (4), (5), (6), (7). Suppose that
f ∈ X ′, B ∈ C0(L∞).

Problem 3.1 (Semi-discrete FE-approximation). Find uh : ([0, T ] → Xh, ph :
(0, T ]→ Qh, ψh : (0, T ]→ Sh satisfying

N−1(uht ,v) +N−1b∗(uh,uh,v) +M−2(∇uh,∇v)− (ph,∇ · v)

+ (−∇φh + uh ×B,v ×B) = (f ,v), ∀v ∈ Xh(21)

(∇ · uh, q) = 0, ∀q ∈ Qh(22)

(∇φh − uh ×B,∇ψ) = 0, ∀ψ ∈ Sh(23)

uh(x, 0) = uh0 (x)(24)

for some uh0 ∈ V h.

Restrict v ∈ V h in (21), (22), (23), (24): find uh : (0, T ]→ V h and φh : (0, T ]→
Sh satisfying (23), (24), and

N−1(uht ,v) +N−1b∗(uh,uh,v)

+M−2(∇uh,∇v) + (−∇φh + uh ×B,v ×B) = (f ,v), ∀v ∈ V h.(25)

Solving the problem associated with (25), (23), (24) is equivalent to (21), (22), (23),
(24). Define

jh := −∇φh + uh ×B.

This definition makes sense in L2 as we show in Proposition 3.2. We provide proofs
of the a priori estimate (Proposition 3.2) and of the convergence estimate (Theorem
3.3).

Proposition 3.2. Any solution (uh, ph, φh) of (21), (22), (23), (24) satisfies uh ∈
L2(0, T ;X) ∩ L∞(L2), φh ∈ L∞(0, T ;H1(Ω)) so that

N−1||uh||2L∞(L2) +M−2||∇uh||2L2(L2)

+B
−2
N−1||∇φh||2L∞(L2) + 2||jh||2L2(L2) ≤ N

−1||uh0 ||2 +M2||f ||2
L2(W−1

2 )
(26)

Proof. See Proposition 3.1. �

Fix k, r ≥ 0, s ≥ −1, and k′ = max {2, k}. For the convergence estimate,
introduce

Fh := GTh
k+1||uh0 ||k+1 +GTMNhs+1||p||L2(Hs+1) +GTMNhr||φ||L2(Hr+1)

+GTN
−1/2hk

′
||ut||L2(Hk′−1) +GTMN−1/2hk||u||L∞(H1)||u||L2(Hk+1)(27)

where GT := C exp(CN−3M6
∫ T

0
|u(·, t)|41dt). Note that Fh → 0 as h → 0 for

smooth enough u, p, φ. This is made precise in Corollary 3.4.
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Theorem 3.3. Let (u, p, φ) solve (4), (5), (6), (7) and (uh, ph, φh) solve (21),
(22), (23), (24). Suppose that Assumption 2.3 is satisfied and the FE-space satisfies
Assumption 2.2. Fix k, r ≥ 0, s ≥ −1, and k′ = max {2, k}. Suppose that u ∈
L2(Hk+1)∩L∞(Hk∩V ), ut ∈ L2(Hk′−1), p ∈ L2(Hs+1∩Q), and φ ∈ L2(Hr+1∩S).
If ||uh0 − u0|| ≤ αFh for some α > 0, then

||u− uh||L∞(L2) ≤ Fh + Chk||u||L∞(Hk)(28)

||∇(u− uh)||L2(L2) ≤MN−1/2Fh + Chk||u||L2(Hk+1)(29)

||j− jh||L2(L2) ≤ N−1/2Fh + CBhk||u||L2(Hk+1) + Chr||φ||L2(Hr+1)(30)

||∇(φ− φh)||L2(L2) ≤ BFh + CBhk||u||L2(Hk) + Chr||φ||L2(Hr+1)(31)

and, if φ ∈ L∞(Hk+1),

(32) ||∇(φ− φh)||L∞(L2) ≤ BFh + CBhk||u||L∞(Hk) + Chr||φ||L∞(Hr+1)

where Fh is given in (27).

Proof. See Section 3.2. �

Corollary 3.4. Under the assumptions of Theorem 3.3, suppose further that k =
r = s+ 1 ≥ 2 and φ ∈ L∞(Hk+1). Then

||u− uh||L∞(L2) + ||∇(u− uh)||L2(L2)

+ ||j− jh||L2(L2) + ||∇(φ− φh)||L∞(L2) ≤ Fhk(33)

where F > 0 is independent of h→ 0.

Proof. See Section 3.2. �

3.1. Proof of Proposition 3.2. Set v = uh, ψ = φh in (25), (23) to get

1

2N

d

dt
||uh||2 +M−2|uh|21 + (−∇φh + uh ×B,uh ×B) = (f ,uh)(34)

(−∇φh + uh ×B,∇φh) = 0.(35)

Add (34) and (35) to get

1

2N

d

dt
||uh||2 +M−2|uh|21 + ||jh||2 = (f ,uh).

Duality estimate on H1
0 ×W−1

2 and Young give

N−1 d

dt
||uh||2 +M−2|uh|21 + 2||jh||2 ≤M2||f ||2−1.

Integrate over [0, T ] to get

N−1||uh||2L∞(L2) +M−2||∇uh||2L2(L2)

+ 2||jh||2L2(L2) ≤ N
−1||uh0 ||2 +M2||f ||2

L2(W−1
2 )

(36)

Apply Cauchy-Schwarz to (35) and simplify to get

|φh|1 ≤ B||uh||.

Together with (36), we prove (26).
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3.2. Proof of Theorem 3.3. Decompose the errors

Eu = Uh − η, Uh = uh − ũh, η = u− ũh

Eφ = Φh − ζ, Φh = φh − φ̃h, ζ = φ− φ̃h
Ej = Jh − χ, Jh = −∇Φh + Uh ×B, χ = −∇ζ + η ×B.

Let ũh, φ̃h be the elliptic projections defined in (17), (18) respectively. Fix q̃h ∈ Qh.
Note that (ph,∇ · v) = 0 for any v ∈ V h. Write

R(v) := N−1b∗(uh,uh,v)−N−1b∗(u,u,v).

Subtract (9) from (25), test with v = Uh, and apply (17) to get

1

2N

d

dt
||Uh||2 +M−2|Uh|21 + (−∇Φh + Uh ×B,Uh ×B)

= −(p− q̃h,∇ ·Uh) +N−1(ηt,U
h)

+ (−∇ζ + η ×B,Uh ×B)−R(Uh).(37)

Subtract (6) from (23) and test with ψ = Φh to get

(38) (−∇Φh + Uh ×B,∇Φh) = (−∇ζ + η ×B,∇Φh).

Subtract (37) and (38) to get

1

2N

d

dt
||Uh||2 +M−2|Uh|21 + ||Jh||2

= N−1(ηt,U
h)− (p− q̃h,∇ ·Uh) + (χ,Jh)−R(Uh).(39)

Fix ε′ > 0 to be the Young’s inequality constant to be prescribed later. Note that
the generic constant C depends on ε′. Apply the duality estimate on H1

0 ×W−1
2 ,

Cauchy-Schwarz, and Young to get

|N−1(ηt,U
h)− (p− q̃h,∇ ·Uh) + (χ,Jh)|

≤ CM2||p− q̃h||2 + CM2N−2||ηt||2−1 +
1

2
||χ||2 +

1

ε′M2
|Uh|21 +

1

2
||Jh||2.(40)

It remains to bound the convective terms.

Lemma 3.5. Let u satisfy the regularity assumptions of Theorem 3.3. For any
ε′ > 0 there exists C > 0 such that

|R(Uh)| ≤ 1

ε′M2
|Uh|21

+ CN−4M6(|η|41 + |u|41)||Uh||2 + CN−2M2||u||2L∞(H1)|η|
2
1.(41)

Proof. First note that

R(Uh) = N−1b∗(Uh,u,Uh)−N−1b∗(uh, η,Uh)−N−1b∗(η,u,Uh)

Then (14) and Young give

N−1|b∗(Uh,u,Uh) + b∗(η,u,Uh)|

≤ CN−2M2(|u|21|η|21 +N−2M4|u|41||Uh||2) +
1

2ε′M2
|Uh|21.(42)

Rewrite the remaining convective term to get

b∗(uh, η,Uh) = b∗(u, η,Uh) + b∗(Uh, η,Uh)− b∗(η, η,Uh).
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Then (14) and Young give

N−1|b∗(u, η,Uh) + b∗(η, η,Uh) + b∗(Uh, η,Uh)|

≤ CN−2M2(|u|21|η|21 + |η|21|η|21 +N−2M4|η|41||Uh||2) +
1

2ε′M2
|Uh|21.(43)

Estimates (42), (43) prove (41). �

Note that

(44) |χ|1 ≤ |ζ|1 +B|η|1.
Apply (19), (20), (11) along with (40), (41), (44) to (39). Pick ε′ = 4. Fix k, r ≥ 0,
s ≥ −1, and k′ = max {2, k}. Then

d

dt
||Uh||2 +M−2N |Uh|21 +N ||Jh||2

≤ CN−1h2k′ ||ut||2k′−1 + CM2Nh2k(N−2|u|21 +B
2
)|u|2k+1

+ CM2Nh2s+2||p||2s+1 + CM2Nh2r||φ||2r+1 + CN−3M6|u|41||Uh||2.(45)

Write

(46) G(t) := exp(

∫ t

0

A(t′)dt′), A(t) := CN−3M6

∫ t

0

|u(·, t′)|41dt′.

Multiply (45) by G(−t), integrate over [0, t], and multiply the result by G(t) to get

||Uh(·, t)||2 +M−2N

∫ t

0

|Uh(·, t′)|21dt′ +N

∫ t

0

||Jh(·, t′)||2dt′

≤ G(t)||Uh(·, 0)||2 +G(t)N−1h2k′ ||ut||2L2(Hk′−1)

+G(t)M2N−1h2k||u||2L∞(H1)||u||
2
L2(Hk+1)

+G(t)M2Nh2s+2||p||2L2(Hs+1) +G(t)M2Nh2r||φ||2L2(Hr+1)(47)

Apply the triangle inequality ||Eu|| ≤ ||Uh|| + ||η|| and ||Ej || ≤ ||Jh|| + ||χ|| and
elliptic projection estimates (19), (20) to (47) to get (28), (29), (30). Start now
with (38). Apply (18) to get

|Φh|21 = −(Eu ×B,∇Φh) ≤ B||Eu|| |Φh|1.(48)

The triangle inequality ||Eφ|| ≤ ||Φh|| + ||ζ|| along with estimates (19), (20), (28)
applied to (48) proves (32). Lastly, estimates (11), (19) applied to the results of
Theorem 3.3 prove Corollary 3.4.

4. Fully-discrete approximation

The semi-discrete model (Problem 3.1) reduces the SMHD equations to a stiff
system of ordinary differential equations. A time-discretization must be chosen
carefully to ensure stability and accuracy of the approximation scheme. We in-
vestigate a Crank-Nicolson (CN) time-stepping scheme of the SMHD equations by
following a similar analysis performed for the semi-discrete formulation (Section 3).
Let 0 =: t0 < t1 < . . . < tK := T <∞ be a discretization of the time interval [0, T ]
for a constant time step ∆t = tn−tn−1. Write zn = z(tn) and zn+1/2 = 1

2 (zn+zn+1)
for any function z on [0, T ]. Define

||u||lq(m1,m2;Wk
p ) :=

{
(∆t

∑m2

n=m1
||un||qk,p)1/q, q ∈ [1,∞)

maxm1≤n≤m2 ||un||k,p, q =∞
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for any 0 ≤ n = m1,m1 + 1, . . . ,m2 ≤ K. Write ||u||lq(Wk
p ) = ||u||lq(0,K;Wk

p ). We

say that u ∈ lq(m1,m2;W k
p ) if the associated norm defined above stays finite as

∆t→ 0.

Algorithm 4.1 (CN-FE). Given u0 ∈ V , find (uhn+1, p
h
n+1/2, φ

h
n+1/2) ∈ Xh×Qh×

Sh for each n = 0, 1, . . . ,K − 1 satisfying

N−1(
uhn+1 − uhn

∆t
,v) +N−1b∗(uhn+1/2,u

h
n+1/2,v) +M−2(∇uhn+1/2,∇v)

+ (−∇φhn+1/2 + uhn+1/2 ×Bn+1/2,v ×Bn+1/2)

− (phn+1/2,∇ · v) = (fn+1/2,v), ∀v ∈ Xh(49)

(∇ · uhn+1, q) = 0, ∀q ∈ Qh(50)

(∇φhn+1/2 − uhn+1/2 ×Bn+1/2,∇ψ) = 0, ∀ψ ∈ Sh(51)

uh(x, 0) = uh0 (x).(52)

Restrict v ∈ V h in (49), (50), (51), (52): find (uhn+1, p
h
n+1/2, φ

h
n+1/2) ∈ V h ×

Qh × Sh for each n = 0, 1, . . . ,K − 1 satisfying (51), (52), and

N−1(
uhn+1 − uhn

∆t
,v) +N−1b∗(uhn+1/2,u

h
n+1/2,v) +M−2(∇uhn+1/2,∇v)

+ (−∇φhn+1/2 + uhn+1/2 ×Bn+1/2,v ×Bn+1/2) = (fn+1/2,v), ∀v ∈ V h.(53)

Solving the problem associated with (53), (51), (52) is equivalent to (49), (50), (51),
(52). We prove that uhn, φhn solving (49), (50), (51), (52) are stable and converge
to u, φ solving (4), (5), (6), (7).

Proposition 4.2 (Stability). Suppose that (uhn+1, p
h
n+1/2, φ

h
n+1/2) solve (49), (50),

(51), (52) for each n = 0, 1, . . . ,K − 1. Then,

||uh||2l∞(1,K;L2) +M−2N∆t
K−1∑
n=0

|uhn+1/2|
2
1

+ 2N∆t

K−1∑
n=0

||jhn+1/2||
2 ≤ ||uh0 ||2 +M2N∆t

K−1∑
n=0

||fn+1/2||2−1(54)

and

max
0≤n≤K−1

|φhn+1/2|
2
1 ≤ B

2
(||uh0 ||2 +M2N∆t

K−1∑
n=0

||fn+1/2||2−1).(55)

Proof. See Section 4.1. �
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Fix s ≥ −1, k, r ≥ 0, and k′ = max {2, k}. For the convergence estimate,
introduce

Fh∆t := GKh
k||u0||k +GKMN−1/2∆t2(

K−1∑
n=0

E
(1)
n+1)1/2

+GKN
1/2∆t2(

K−1∑
n=0

E
(2)
n+1)1/2 +GKMN−1/2hk||u||l∞(H1)||u||l2(Hk+1)

+GKMN−1/2hk
′
||ut||L2(Hk′−1) +GKN

1/2hkB||u||l2(Hk)

+GKMN1/2hs+1||p||l2(Hs+1) +GKN
1/2hr||φ||l2(Hr+1)(56)

where E
(1)
n+1, E

(2)
n+1 > 0 are given in (80), (88) respectively and GK :=

exp(
∑K
n=0

κn

1−∆tκn
), κn := M6N−3|un+1/2|41 + ||Bn+1/2||20,∞. Note that Fh∆t → 0

as h, ∆t→ 0 for smooth enough u, p, φ. This is made precise in Corollary 4.5.

Theorem 4.3. Let (u, p, φ) solve (4), (5), (6), (7) and (uhn+1, p
h
n+1/2, φ

h
n+1/2)

solve (49), (50), (51), (52) for each n = 0, 1, . . . ,K − 1. Suppose that Assumption
2.3 is satisfied and the FE-space satisfies Assumption 2.2. Fix s ≥ −1 and k,
r ≥ 0, and k′ = max {2, k}. Suppose further that u ∈ l∞(H2) ∩ l2(Hk+1), ut ∈
l∞(L2) ∩ L2(H2) ∩ L2(Hk′−1), utt ∈ L2(L2), uttt ∈ L2(W−1

2 ), p ∈ l2(Hs+1), and
φ ∈ l2(Hr+1). If B is not constant, require that B ∈ L∞(L∞), Bt ∈ l∞(H1), Btt ∈
L2(L2), φ ∈ l∞(H2), φt ∈ L2(H1), and φtt ∈ L2(L2). If ∆t > 0 is small enough
(e.g. ∆t < M6N−3|un+1/2|41 + ||Bn+1/2||20,∞ for each n) and ||u0 − uh0 || ≤ αFh∆t
for some α ≥ 0, then

||u− uh||l∞(1,K;L2) ≤ Chk||u||l∞(Hk) + Fh∆t(57)

(∆t

K−1∑
n=0

|un+1/2 − uhn+1/2|
2
1)1/2 ≤ Chk||u||l2(Hk+1) + Fh∆t(58)

(∆t

K−1∑
n=0

||jn+1/2 − jhn+1/2||
2)1/2 ≤ Chr||φ||l2(Hr+1)

+ CBhk||u||l2(Hk) + Fh∆t(59)

and

max
0≤n≤K−1

|φn+1/2 − φhn+1/2|1 ≤ Ch
r||φ||l∞(Hr+1)

+ CBhk||u||l∞(Hk) + ∆t2(

K−1∑
n=0

E
(2)
n+1)1/2 +BFh∆t.(60)

where Fh∆t, E
(2)
n+1 are given in (56), (88) respectively.

Proof. See Section 4.2. �

Remark 4.4. The regularity assumptions in Theorem 4.3 can be relaxed by re-
quiring instead, e.g., t utt ∈ L2(L2), t2 uttt ∈ L2(W−1

2 ), and when k > 2, s > 1,
tk−2 u ∈ l2(Hk+1) ∩ L2(Hk), ts−1 p ∈ l2(Hs+1). Relaxed regularity assumptions
introduce a factor min(1, t−1) into the estimates of Theorem 4.3. Note that the re-
quirement u ∈ L2(Hk) is a consequence of using the elliptic projection in the error
analysis to prove Theorem 4.3. This requirement is eliminated by proceeding instead
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with the L2-projection. The L2-projection requires more technical machinery and
does not provide an improved estimate in the case k > 2 (since here we pick k′ = k
to preserve the optimal convergence rate) relative to the elliptic projection.

Corollary 4.5. Under the assumptions of Theorem 4.3, pick s = k − 1, k′ =
max {2, k}, and r = k. Then

||u− uh||l∞(1,K;L2) + max
0≤n≤K−1

|φn+1/2 − φhn+1/2|
2
1

+

K−1∑
n=0

(|un+1/2 − uhn+1/2|
2
1 + ||jn+1/2 − jhn+1/2||

2) ≤ C(hk + ∆t2)(61)

for some C > 0 independent of h, ∆t→ 0.

Proof. See Section 4.2. �

The discrete Gronwall inequality is essential in proving Theorem 4.3, Corollary
4.5.

Lemma 4.6. Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for any integer n ≥ 0 and satisfy

AK + ∆t

K∑
n=0

Bn ≤ ∆t

K∑
n=0

κnAn + ∆t

K∑
n=0

Cn +D, ∀K ≥ 0.

Suppose that for all n

∆tκn < 1

and set λn = (1−∆tκn)−1. Then,

AK + ∆t

K∑
n=0

Bn ≤ exp(∆t

K∑
n=0

λnκn)(∆t

K∑
n=0

Cn +D), ∀K ≥ 0.

Lemma 4.6 is proved in Lemma 5.1 of [9]. The estimates in (62), (63), (64) are
used in Corollary 4.5: For any n = 0, 1, . . . ,K − 1, k ≥ −1

||un+1 − un
∆t

||2k ≤ ∆t−1

∫ tn+1

tn

||ut(·, t)||2kdt(62)

||un+1/2 − u(·, tn+1/2)||2k ≤ C∆t3
∫ tn+1

tn

||utt(·, t)||2kdt(63)

||un+1 − un
∆t

− (ut)
n+1/2||2k ≤ C∆t3

∫ tn+1

tn

||uttt(·, t)||2kdt(64)

when ut ∈ L2(Hk), utt(·, t) ∈ L2(Hk), uttt(·, t) ∈ L2(Hk). Each estimate (62),
(63), (64) is a result of a Taylor expansion with integral remainder, see Appendix
A. Write σ(t) := min {1, t}. In the case that the prescribed regularity is not
attainable, (63), (64) are replaced by

||un+1/2 − u(·, tn+1/2)||2k ≤ C∆t3σ(tn+1/2)−2

∫ tn+1

tn

σ(t)2||utt(·, t)||2kdt

||un+1 − un
∆t

− (ut)
n+1/2||2k ≤ C∆t3σ(tn+1/2)−2

∫ tn+1

tn

σ(t)2||uttt(·, t)||2kdt

for t2 utt(·, t) ∈ L2(Hk), t2 uttt(·, t) ∈ L2(Hk). See Appendix A.
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4.1. Proof of Proposition 4.2. Recall jhn+1/2 = −∇φhn+1/2 + uhn+1/2 ×Bn+1/2.

Set v = uhn+1/2 in (53) to get

1

2N∆t

(
||uhn+1||2 − ||uhn||2

)
+M−2|uhn+1/2|

2
1

+ (jhn+1/2,u
h
n+1/2 ×Bn+1/2) = (fn+1/2,u

h
n+1/2).(65)

Set ψ = φhn+1 in (51) to get

−(jhn+1/2,∇φ
h
n+1/2) = 0.(66)

Add (65) and (66), apply duality estimate H1
0 ×W−1

2 , and Young’s inequality.
Absorb like-terms from right to left-hand-side. Multiply by ∆t and sum from n = 0
to n = K − 1 to get

1

2N
||uhK ||2 +

1

2M2
∆t

K−1∑
n=0

|uhn+1/2|
2
1 + ∆t

K−1∑
n=0

||jhn+1/2||
2

≤ 1

2N
||uh0 ||2 +

M2

2
∆t

K−1∑
n=0

||fn+1/2||2−1.

Multiply by 2N to get (54). Set ψ = φhn+1/2 in (51), apply Cauchy-Schwarz, and

simplify to get

(67) |φhn+1/2|1 ≤ ||u
h
n+1/2 ×Bn+1/2|| ≤ B||uhn+1/2|| ≤ B||u

h||l∞(L2).

Apply (54) to (67) to prove (55).

4.2. Proof of Theorem 4.3, Corollary 4.5. Define jn+1/2 := −∇un+1/2 +

un+1/2 × Bn+1/2 and jhn+1/2 := −∇uhn+1/2 + uhn+1/2 × Bn+1/2. For any v ∈ X,

ψ ∈ S, write

τ (1)
n (v) : = N−1((ut)n+1/2 −

un+1 − un
∆t

,v) + τ̂ (1)
n (v) + ˆ̂τ (1)

n (v)(68)

τ̂ (1)
n (v) : =

1

2N

1∑
i=0

b∗(un+i,un+i,v)− 1

N
b∗(un+1/2,un+1/2,v)

ˆ̂τ (1)
n (v) : =

1

2

1∑
i=0

(jn+i,v ×Bn+i)− (jn+1/2,v ×Bn+1/2)

τ (2)
n (ψ) : = −1

2

1∑
i=0

(un+i ×Bn+i,∇ψ) + (un+1/2 ×Bn+1/2,∇ψ).(69)

Then sum (4), (6) at t = tn and tn+1 and divide by 2 to get

N−1(
un+1 − un

∆t
,v) +N−1b∗(un+1/2,un+1/2,v) +M−2(∇un+1/2,∇v)

− (pn+1/2,∇ · v) + (jn+1/2,v ×Bn+1/2) = (fn+1/2,v)− τ (1)
n (v), ∀v ∈ V(70)

− (jn+1/2,∇ψ) = −τ (2)
n (ψ), ∀ψ ∈ S.(71)

Decompose the velocity, potential, and current density errors:

Eu,n = Uh
n − ηn, Uh

n = uhn − ũhn, ηn = un − ũhn
Eφ,n = Φhn − ζn, Φhn = φhn − φ̃hn, ζn = φn − φ̃hn
Ej,n = Jhn − χn, Jhn = −∇Φhn + Uh

n ×Bn, χn = −∇ζn + ηn ×Bn
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Let ũhn, φ̃hn be the elliptic projection defined in (17), (18). Fix q̃hn ∈ Qh. Note that
(ph,∇ · v) = 0 for any v ∈ V h. Write

Rhn(v) := N−1b∗(uhn+1/2,u
h
n+1/2,v)−N−1b∗(un+1/2,un+1/2,v)

Subtract (70) and (71) from (53) and (51) respectively. Set v = Uh
n+1/2, ψ =

Φhn+1/2 to get the error equations

1

2N∆t

(
||Uh

n+1||2 − ||Uh
n||2
)

+M−2|Uh
n+1/2|

2
1 + (Jhn+1/2,U

h
n+1/2 ×Bn+1/2)

= N−1(
ηn+1 − ηn

∆t
,Uh

n+1/2) + (χn+1/2,U
h
n+1/2 ×Bn+1/2)

+ (q̃hn+1/2 − pn+1/2,∇ ·Uh
n+1/2)−Rhn(Uh

n+1/2)− τ (1)
n (Uh

n+1/2),(72)

− (Jhn+1/2,∇Φhn+1/2) = −(χn+1/2,∇Φhn+1/2) + τ (2)
n (Φhn+1/2).(73)

Add (73) to (72) and combine terms to get

1

2N∆t

(
||Uh

n+1||2 − ||Uh
n||2
)

+M−2|Uh
n+1/2|

2
1 + ||Jhn+1/2||

2

= N−1(
ηn+1 − ηn

∆t
,Uh

n+1/2) + (q̃hn+1/2 − pn+1/2,∇ ·Uh
n+1/2)

+ (χn+1/2,J
h
n+1/2)−Rhn(Uh

n+1/2)− τ (1)
n (Uh

n+1/2) + τ (2)
n (Φhn+1/2).(74)

Note that (73) can be written

|Φhn+1/2|
2
1 = (Uh

n+1/2 ×Bn+1/2 − χn+1/2,∇Φhn+1/2) + τ (2)
n (Φhn+1/2).(75)

Add (75) to (74) to get

1

2N∆t

(
||Uh

n+1||2 − ||Uh
n||2
)

+M−2|Uh
n+1/2|

2
1 + ||Jhn+1/2||

2 + |Φhn+1/2|
2
1

= N−1(
ηn+1 − ηn

∆t
,Uh

n+1/2) + (q̃hn+1/2 − pn+1/2,∇ ·Uh
n+1/2)

+ (χn+1/2,J
h
n+1/2) + (Uh

n+1/2 ×Bn+1/2 − χn+1/2,∇Φhn+1/2)

−Rhn(Uh
n+1/2)− τ (1)

n (Uh
n+1/2) + 2τ (2)

n (Φhn+1/2).(76)

Let ε′, ε′′ > 0 be Young’s inequality constants to be fixed later. Apply duality
estimate on H1

0 ×W−1
2 and Cauchy-Schwarz with Young to get

|N−1(
ηn+1 − ηn

∆t
,Uh

n+1/2) + (pn+1/2 − q̃hn+1/2,∇ ·U
h
n+1/2)

+ (χn+1/2,J
h
n+1/2) + (Uh

n+1/2 ×Bn+1/2,∇Φhn+1/2)− (χn+1/2,∇Φhn+1/2)|

≤ CM2N−2||ηn+1 − ηn
∆t

||2−1 + CM2||pn+1/2 − q̃hn+1/2||
2

+ C||χn+1/2||2 + C||Bn+1/2||20,∞||Uh
n+1/2||

2 +
1

ε′M2
|Uh

n+1/2|
2
1

+
1

ε′′
|Φhn+1/2|

2
1 +

1

2
||Jhn+1/2||

2.(77)

The convective terms are bounded in a similar way as in the proof of Lemma 3.5
noting that R(v) is Rnh(v) with u, uh, η, Uh replaced by un+1/2, uhn+1/2, ηn+1/2,
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Uh
n+1/2. We conclude without further proof

|Rhn(Uh
n+1/2)| ≤ CM2N−2(|un+1/2|21 + |ηn+1/2|21)|ηn+1/2|21

+
1

ε′M2
|Uh

n+1/2|
2
1 + CM6N−4(|un+1/2|41 + |ηn+1/2|41)||Uh

n+1/2||
2.(78)

Bounding the time-consistency error remains.

Lemma 4.7. Let u satisfy the regularity assumptions of Theorem 4.3. Then, for
any ε′ > 0 and any integer n ≥ 0

|τ (1)
n (Uh

n+1/2)| ≤ 1

ε′M2
|Uh

n+1/2|
2
1 + CM2N−2∆t3E

(1)
n+1(79)

where

E
(1)
n+1 := C||uttt||2L2(tn,tn+1;W−1

2 )
+ C||u||2l∞(H2)||utt||

2
L2(tn,tn+1;L2)

+ C||ut||2l∞(L2)||ut||
2
L2(tn,tn+1,H2) + CB

2||jtt||2L2(tn,tn+1;W−1,2)

+ C||j||2l∞(H1)||Btt||2L2(tn,tn+1;L2) + C||Bt||2l∞(H1)||jt||
2
L2(tn,tn+1;L2).(80)

Proof. Duality estimate on W−1
2 ×H1

0 and Young give

N−1|(un+1 − un
∆t

− ut(tn+1/2),Uh
n+1/2)|

≤ CM2N−2||un+1 − un
∆t

− ut(·, tn+1/2)||−1

+ CM2N−2||ut(·, tn+1/2)− (ut)n+1/2||−1 +
1

ε′M2
|Uh

n+1/2|1.(81)

For the remaining terms, details are provided in Appendix A. Taylor-expansion
about tn+1/2 with integral remainder gives

1

2
(un+1 · ∇un+1,v) +

1

2
(un · ∇un,v) = (u(·, tn+1/2) · ∇u(·, tn+1/2),v)

+
1

2

∫ tn+1

tn+1/2

(tn+1 − t)
d2

dt2
(u(·, t) · ∇u(·, t),v)dt

+
1

2

∫ tn+1/2

tn

(t− tn)
d2

dt2
(u(·, t) · ∇u(·, t),v)dt.(82)

Add/subtract (un+1/2 · ∇u(·, tn+1/2),v) and apply (82) to get

τ̂
(1)
n+1(Uh

n+1) = (un+1/2 · ∇(un+1/2 − u(·, tn+1/2)),Uh
n+1/2)

+ (un+1/2 − u(·, tn+1/2) · ∇u(·, tn+1/2),Uh
n+1/2)

− 1

2

∫ tn+1

tn+1/2

(tn+1 − t)
∫

(utt · ∇u + u · ∇utt + 2ut · ∇ut) ·Uh
n+1/2dt

− 1

2

∫ tn+1/2

tn

(t− tn)

∫
(utt · ∇u + u · ∇utt + 2ut · ∇ut) ·Uh

n+1/2dt(83)
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Majorize (83) with (15) and Hölder’s inequality (in time) applied to (83) to get

|τ̂ (1)
n+1(Uh

n+1/2)| ≤ C||u||l∞(H2)||un+1/2 − u(·, tn+1/2)|| |Uh
n+1/2|1

+
C∆t3/2√
tn+1/2

||u||l∞(H2)(

∫ tn+1

tn

t ||utt(·, t)||2dt)1/2|Uh
n+1/2|1

+
C∆t3/2√
tn+1/2

||ut||l∞(L2)(

∫ tn+1

tn

t ||ut(·, t)||22dt)1/2|Uh
n+1/2|1(84)

Similarly

ˆ̂τ
(1)
n+1(Uh

n+1) = −(jn+1/2, (Bn+1/2 −B(·, tn+1/2))×Uh
n+1/2)

− (jn+1/2 − j(·, tn+1/2),B(·, tn+1/2)×Uh
n+1/2)

+
1

2

∫ tn+1

tn+1/2

(tn+1 − t)
∫

(jtt · (B×Uh
n+1/2) + j · (Btt ×Uh

n+1/2)

. . .+ 2jt · (Bt ×Uh
n+1/2))dt

+
1

2

∫ tn+1/2

tn

(t− tn)

∫
(jtt · (B×Uh

n+1/2) + j · (Btt ×Uh
n+1/2)

. . .+ 2jt · (Bt ×Uh
n+1/2))dt(85)

Majorize (85) with duality estimate on H1
0 ×W−1

2 and Hölder’s inequality (in time
and space) to get

|ˆ̂τ (1)
n+1(Uh

n+1/2)| ≤ CB||jn+1/2 − j(·, tn+1/2)||−1|Uh
n+1/2|1

+ C||j||l∞(L∞)||Bn+1/2 −B(·, tn+1/2)||−1|Uh
n+1/2|1

+
C∆t3/2√
tn+1/2

B(

∫ tn+1

tn

t ||jtt(·, t)||2−1dt)
1/2|Uh

n+1|1

+
C∆t3/2√
tn+1/2

||j||l∞(L(H1))(

∫ tn+1

tn

t ||Btt(·, t)||2dt)1/2|Uh
n+1|1

+
C∆t3/2√
tn+1/2

||Bt||l∞(H1)(

∫ tn+1

tn

t ||jt(·, t)||2dt)1/2|Uh
n+1/2|1(86)

Estimates (81), (82), (84), (86), along with Young’s inequality and application of
assumed regularity (to bring weighting factor t outside of integrals) and estimates
(62), (63), (64) for u, j, and B prove (79). �

Lemma 4.8. Let u satisfy the regularity assumptions of Theorem 4.3. Then, for
any ε′′ > 0 and any integer n ≥ 0

|τ (2)
n (Φhn+1/2)| ≤ 1

ε′′
|Φhn+1/2|

2
1 + C∆t3E

(2)
n+1(87)

where

E
(2)
n+1 := CB

2||utt||2L2(tn,tn+1;L2) + C||u||2l∞(H2)||Btt||2L2(tn,tn+1;L2)

+ C||Bt||2l∞(H1)||ut||
2
L2(tn,tn+1;H1)(88)
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Proof. We estimate τ (2)(v) in a manner similar to ˆ̂τ (1)(v) in the proof of Lemma
4.7. Application of Taylor’s theorem with integral remainder gives

τ
(2)
n+1(Φh

n+1) = ((Bn+1/2 −B(·, tn+1/2))× un+1/2,∇Φh
n+1/2)

+ (B(·, tn+1/2)× (un+1/2 − u(·, tn+1/2)),∇Φh
n+1/2)

− 1

2

∫ tn+1

tn+1/2

(tn+1 − t)
∫

((B× utt) · ∇Φhn+1/2 + (Btt ×Uh) · ∇Φhn+1/2

. . .+ 2(Bt × ut) · ∇Φhn+1/2)dt

− 1

2

∫ tn+1/2

tn

(t− tn)

∫
((B× utt) · ∇Φhn+1/2 + (Btt ×Uh) · ∇Φhn+1/2

. . .+ 2(Bt × ut) · ∇Φhn+1/2)dt(89)

Majorize (89) with duality estimate on H1
0 ×W−1

2 and Hölder’s inequality (in time
and space) to get

|τ (2)
n+1(Φh

n+1/2)| ≤ CB||un+1/2 − u(·, tn+1/2)|| |Φh
n+1/2|1

+ C||u||l∞(L∞)||Bn+1/2 −B(·, tn+1/2)|| |Φh
n+1/2|1

+
C∆t3/2√
tn+1/2

B(

∫ tn+1

tn

t ||utt(·, t)||2dt)1/2|Φh
n+1|1

+
C∆t3/2√
tn+1/2

||u||l∞(L∞)(

∫ tn+1

tn

t ||Btt(·, t)||2dt)1/2|Φh
n+1|1

+
C∆t3/2√
tn+1/2

||Bt||l∞(H1)(

∫ tn+1

tn

t ||ut(·, t)||21dt)1/2|Φh
n+1/2|1.(90)

Estimate (90), along with Young and application of assumed regularity (to bring
weighting factor t outside of integrals) and estimates (63), (64) for u and B, proves
(87). �

Apply estimates (77), (78), (79), (87) to (76). Set ε′, ε′′ = 4 and absorb all
like-terms from the right into left-hand-side of (74). Approximation (11) gives
|ηn|1 ≤ C|un|21. Sum the resulting inequality on both sides from n = 0 to n = K−1.
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Apply the estimate (79), (87), (11). Multiply by N to get

||Uh
K ||2 +M−2N∆t

K−1∑
n=0

|Uh
n+1/2|

2
1 +N∆t

K−1∑
n=0

(||Jhn+1/2||
2 + |Φhn+1/2|

2
1)

≤ C∆t

K−1∑
n=0

(M6N−3|un+1/2|41 + ||Bn+1/2||20,∞)||Uh
n+1/2||

2

+ ||Uh
0 ||2 + CM2N−1∆t

K−1∑
n=0

(||ηn+1 − ηn
∆t

||2−1 + ||u||2L∞(H1)|ηn+1/2|2)

+ CM2N∆t

K−1∑
n=0

||q̃hn+1/2 − pn+1/2||2 + CN∆t

K−1∑
n=0

||χn+1/2||2

+M2N−1∆t4
K−1∑
n=0

E
(1)
n+1 +N∆t4

K−1∑
n=0

E
(2)
n+1.(91)

Write

GK := exp(

K∑
n=0

κn
1−∆tκn

), κn := M6N−3|un+1/2|41 + ||Bn+1/2||20,∞.

Suppose that ∆tκn < 1. Apply Gronwall Lemma 4.6 to (91) to get

||Uh
K ||2 +

N∆t

M2

K−1∑
n=0

|Uh
n+1/2|

2
1 +N∆t

K−1∑
n=0

(||Jhn+1/2||
2 + |Φhn+1/2|

2
1)

≤ GK ||Uh
0 ||2 +GKM

2N−1∆t4
K−1∑
n=0

E
(1)
n+1 +GKN∆t4

K−1∑
n=0

E
(2)
n+1

+GKM
2N−1∆t

K−1∑
n=0

(||ηn+1 − ηn
∆t

||2−1 + ||u||2L∞(H1)|ηn+1/2|2)

+GKM
2N∆t

K−1∑
n=0

||q̃hn+1/2 − pn+1/2||2 +GKN∆t
K−1∑
n=0

||χn+1/2||2.(92)

Fix k ≥ 0. Recall that (19), (11)(a) give

(93) |η|1 ≤ Chk||u||k+1.

Fix k′ ≥ 2. Then together we estimate (62), we get

(94) ||ηn+1 − ηn
∆t

||2−1 ≤ Ch2k′∆t−1||ut||2L2(tn,tn+1;Hk′−1)
.

Fix s ≥ −1. Estimate (11)(b) gives

(95) inf
q̃h∈Qh

||pn+1/2 − q̃hn+1/2|| ≤ Ch
s+1||pn+1/2||s+1.

Fix r ≥ 0. Then estimates (19), (20), and (11)(a)(c)

(96) ||χn+1/2|| ≤ C(hr||φn+1/2||r+1 + hkB||un+1/2||k).
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Apply estimates (93), (94), (95), (96) to (92) to get

||Uh
K ||2 +

N∆t

M2

K−1∑
n=0

|Uh
n+1/2|

2
1

+N∆t

K−1∑
n=0

(||Jhn+1/2||
2 + |Φhn+1/2|

2
1) ≤ GK ||Eu,0||2 + (Fh∆t)

2.(97)

where Fh∆t is given in (56). The triangle inequality ||Eu,n|| ≤ ||Uh
n|| + ||ηn||,

||Eφ,n|| ≤ ||Φhn||+||ζn||, ||Ej,n|| ≤ ||Jhn||+||χn|| along with estimates (19), (20), (11)
proves (57), (58), (59). Bound the right-hand-side of (73) with Cauchy-Schwarz,
Young, and estimate (87). Absorb like-terms into the left-hand-side to get

|Φhn+1/2|
2
1 ≤ CB

2||Eu,n+1/2||2 + C|ζn+1/2|21 + CE
(2)
n+1.(98)

Apply triangle inequality ||Eφ,n|| ≤ ||Φhn|| + ||ζn|| along with estimates (97), (19),
(20), (11) to prove (60).

Estimates (11) and (62), (63), (64) applied to the results in Theorem 4.3 prove
the estimate in Corollary 4.5.

5. Numerical results

We consider two distinct numerical experiments in this section. First, we confirm
the converge rate as h, ∆t → 0 for the fully discrete, simplified MHD model (49),
(50), (51), (52). Second, we consider the effect of an applied magnetic field to a
conducting flow in a channel past a step by illustrating the damping effect of B 6= 0.

We use the FreeFem++ software for each of our simulations. We utilize Taylor-
Hood mixed FE’s (piecewise quadratics for velocity and piecewise linear pressure)
for the discretization. We apply Newton iterations to solve the nonlinear system
with a ||u(j) − u(j−1)||1 < 10−8 as a stopping criterion.

Experiment 1 - Convergence Analysis: For the first experiment, Ω = [0, π]2,
t0 = 0, T = 1, Re = 25, B = (0, 0, 1). The true solution (u, p, φ) is given by
(99)

ψ(x, y) = cos(2x) cos(2y), u(x, y, t) =

(
−∂ψ(x, y)

∂y
,
∂ψ(x, y)

∂x

)
e−5t

p(x, y, t) = 0, φ(x, y, t) = (ψ(x, y) + x2 − y2)e−5t.

We obtain f , u|∂Ω from the true solution. We solve one large coupled system for
u, p, φ. A uniform triangular mesh is used. We set Re = 25 for this experiment.
Results are compiled in Tables 1 and 2 for M = 20, N = M2/Re = 16 and
M = 200, N = M2/Re = 1600 respectively . Write ||| · |||0,∞ = maxn || · || and

|||·|||0,2 = (∆t
∑
n ||·||2)1/2. The rates of convergence suggested in Table 1 correlate

with theoretical rate O(h2 + ∆t2) predicted in Corollary 4.5 for u corresponding
discrete norms. Note that the O(h3) convergence suggested in L2 is expected and
can be shown by extension of the estimates in Theorem 4.3 via a duality argument.
Similar results are reported in Table 2 for different error-measures, including the
electric potential φ.

Experiment 2: Flow in channel over a step is a classic benchmark test. It
is well-known that there exists a critical fluid Reynolds number Rec > 0 so that
the vortex developed in the wake of the step will detach from the step and be
carried downstream for any Re > Rec. In this test, we show how the SMHD



FECN ANALYSIS OF SMALL Rm FLOWS 93

Table 1. Convergence rate data for the first experiment, H = 20

h ∆t |||Eu,n|||0,∞ rate |||∇Eu,n+1/2|||0,2 rate
1/10 1/40 3.727e-2 −− 3.659e-1 −−
1/20 1/80 4.477e-3 3.05 8.111e-2 2.17
1/40 1/160 4.498e-4 3.32 1.439e-2 2.49
1/80 1/320 4.564e-5 3.30 2.789e-3 2.36
1/160 1/640 4.805e-6 3.24 6.285e-4 2.15

h ∆t |||Ej,n+1/2|||0,2 rate
1/10 1/40 5.471e-2 −−
1/20 1/80 1.295e-2 2.08
1/40 1/160 3.326e-3 1.96
1/80 1/320 8.451e-4 1.98
1/160 1/640 2.126e-4 1.99

Table 2. Convergence rate data for the first experiment, H = 200

h ∆t |||Eu,n+1/2|||0,2 rate |||∇Eu,n+1/2|||0,2 rate
1/10 1/100 3.559e-1 −− 1.488e-0 −−
1/20 1/200 3.772e-2 3.23 5.546e-1 1.42
1/40 1/400 4.159e-3 3.18 2.311e-1 1.26
1/80 1/800 5.299e-4 2.97 7.135e-2 1.69
1/160 1/1600 5.069e-5 3.39 1.424e-2 2.32

h ∆t |||∇Eφ,n+1/2|||0,2 rate
1/10 1/100 3.575e-1 −−
1/20 1/200 3.873e-2 2.02
1/40 1/400 4.890e-3 2.98
1/80 1/800 9.416e-4 2.37
1/160 1/1600 2.167e-4 2.12

model accurately models the damping effect of the magnetic field by suppressing
the shedding of these vortices.

We consider here a [0, 40] × [0, 10] channel. The step is square with width 1.
The front of the step is located at x = 5. For velocity boundary conditions, let
u|x=0 = 0.04y(10 − y) at the in-flow, do-nothing (−M−2∇u · n̂ + pn̂)|x=40 = 0
at the out-flow, and no-slip u = 0 otherwise. For the potential, let φ|y=10 = 0
and ∇φ · n̂ = 0 otherwise. We set Re = M2/N = 1800, M = 1000, so that
N ≈ 555.6. We compute the SMHD solution with B = (0, 0, 1) as well as the NSE
solution (B ≡ 0) for comparison. We use ∆t = 0.005 in both cases. Both problems
are solved on a non-uniform mesh generated with the Delaunay-Vornoi algorithm,
shown in Figure 1. Notice the mesh refinement along the step. The SMHD problem
contained 58046 degrees of freedom. We show the streamlines for the velocity field
for the corresponding NSE and SMHD solutions in Figures 2, 3 (domain restricted
to [0,20] x [0,4]). Notice that as time evolves, vortices are created and separate
for the NSE flow. As expected, the magnetic field suppresses this shedding for
the SMHD flow so that the vortex in the wake of the step is elongated without
separation.
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Figure 1. Experiment 2: Sample mesh - 8761 triangles.

Figure 2. Experiment 2: Streamlines at t = 40, Re = 1800 (top)
NS solution, B = (0, 0, 0), (bottom) SMHD solution, B = (0, 0, 1),
M = 1000.

6. Conclusions

We introduced a FE method for quasi-static MHD equation at small Rem. We
decomposed the approximation into two parts. In the first part, we presented the
stability and error analysis of semi-discrete approximation. In the second part, we
presented the stability and error analysis of fully-discrete approximation, CN in-
time. We also conducted two numerical experiments to verify the effectiveness of
the proposed model. We confirm the theoretical rate of convergence derived in this
report in the first experiment. In the second experiment, we investigate how an
applied magnetic field affects the dynamics of the classic flow-past-a-step problem
in a channel. As expected, we show with the SMHD model that the magnetic field
suppresses the shedding so that the vortex in the wake of the step is elongated
without separation. For future work, note that we studied a fully coupled method
between fluid velocity and electric potential. To improve speed and assuage memory
requirements, we are investigating the existence and effectiveness of an uncoupled,
approximation of SMHD. Lastly, we are investigating the integration of LES models
to SMHD.
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Figure 3. Experiment 2: Streamlines at t = 60, Re = 1800 (top)
NS solution, B = (0, 0, 0), (bottom) SMHD solution, B = (0, 0, 1),
M = 1000.
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Appendix A. Derivation of intermediate estimates

Proof of Estimate (62). Fix n ≥ 0. Then, for k ≥ 0

|un+1 − un
∆t

|2k =

∫ ∣∣∣∣∆t−1

∫ tn+1

tn

Dkut(·, t)dt
∣∣∣∣2

≤ ∆t−2

∫ (∫ tn+1

tn

dt

∫ tn+1

tn

∣∣Dkut(·, t)
∣∣2 dt) ≤ ∆t−1

∫ tn+1

tn

|ut(·, t)|2kdt.

Similar proof for k = −1 applied to definition of W−1
2 -norm. �

Proof of Estimate (63). Fix n ≥ 0 and k ≥ 0. A Taylor-expansion with integral
remainder gives

|un+1/2 − u(·, tn+1/2)|2k ≤ C
∫ ∣∣∣∣∫ tn+1/2

tn

(t− tn)Dkutt(·, t)dt
∣∣∣∣2

+ C

∫ ∣∣∣∣∣
∫ tn+1

tn+1/2

(tn+1 − t)Dkutt(·, t)dt

∣∣∣∣∣
2

(100)
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where, for any r ∈ R,∫ ∣∣∣∣∣
∫ tn+1

tn+1/2

(tn+1 − t)Dkutt(·, t)dt

∣∣∣∣∣
2

≤ C
∫ tn+1

tn+1/2

(tn+1 − t)2dt

∫ tn+1

tn+1/2

||utt(·, t)||2kdt

≤ C∆t3
∫ tn+1

tn+1/2

1

tr
(
tr ||utt(·, t)||2k

)
dt

≤ C∆t3

(tn+1/2)r

∫ tn+1

tn+1/2

tr ||utt(·, t)||2kdt.(101)

and similarly on the time interval (tn, tn+1/2) when n > 0. If n = 0, then∫ ∣∣∣∣∣
∫ ∆t/2

0

t Dku(·, t)dt

∣∣∣∣∣
2

≤ C
∫ ∆t/2

0

dt

∫ ∆t/2

0

t2 ||utt(·, t)||2kdt

≤ C∆t

∫ ∆t/2

0

t2||utt(·, t)||2kdt.(102)

Note that
√
tn+1/2 =

√
∆t/2 when n = 0. Then estimates (101), (102) applied to

(100) give

|un+1/2 − u(·, tn+1/2)|2k ≤
C∆t3

(tn+1/2)2

∫ tn+1

tn

t2||utt(·, t)||2kdt.(103)

�

Proof of Estimate (64). Fix n ≥ 0. First add/subtract ut(·, tn+1/2) and apply the
triangle inequality to get

||un+1 − un
∆t

− (ut)n+1/2||2k

≤ ||un+1 − un
∆t

− ut(·, tn+1/2)||2k + ||ut(·, tn+1/2)− (ut)n+1/2||2k(104)

Following a similar method used to derive (100), we get

||ut(·, tn+1/2)− (ut)n+1/2||2k ≤
C∆t3

(tn+1/2)2

∫ tn+1

tn

t2 ||∂(3)
t u(·, t)||2kdt.(105)

Additionally,

||un+1 − un
∆t

− ut(·, tn+1/2)||2k

=

∥∥∥∥∥
∫ tn+1/2

tn

(t− tn)uttt(·, t)dt+

∫ tn+1

tn+1/2

(tn+1 − t)uttt(·, t)dt

∥∥∥∥∥
2

k

≤ C∆t3

(tn+1/2)2

∫ tn+1

tn

t2||uttt(·, t)||2kdt.(106)

Apply (105) and (106) to (104) to get

||un+1 − un
∆t

− (ut)n+1/2||2k ≤
C∆t3

(tn+1/2)2

∫ tn+1

tn

t2||uttt(·, t)||2kdt.(107)
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�

Proof of Estimate (84). Fix n ≥ 0. Then, for any r ∈ R, and for either i = 0 or 1,∫ tn+1

tn+1/2

(tn+1 − t)(utt · ∇u,v)dt ≤ C
∫ tn+1

tn+1/2

(tn+1 − t)||u||2||utt||1−i|v|i

≤ C||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn+1/2

(tn+1 − t)2dt)1/2(

∫ tn+1

tn+1/2

||utt||21−idt)1/2|v|i

≤ C∆t3/2

(tn+1/2)r/2
||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn+1/2

tr ||utt||21−idt)1/2|v|i.(108)

A similar estimate holds when time interval is shifted to (tn, tn+1) except when
n = 0. In this case∫ ∆t/2

0

t(utt · ∇u,v)dt ≤ C
∫ ∆t/2

0

t||u||2||utt||1−i|v|i

≤ C||u||L∞(0,∆t;H2)(

∫ ∆t/2

0

dt)1/2(

∫ ∆t/2

0

t2 ||utt||21−idt)1/2|v|i

≤ C∆t1/2||u||L∞(0,∆t;H2)(

∫ ∆t/2

0

t2 ||utt||21−idt)1/2|v|i.(109)

Note that
√
tn+1/2 =

√
∆t/2 when n = 0. Therefore, (108), (109) combine to give,

for n ≥ 0 ∫ tn+1

tn+1/2

(tn+1 − t)(utt · ∇u,v)dt+

∫ tn+1/2

tn

(t− tn)(utt · ∇u,v)dt

≤ C∆t3/2

tn+1/2
||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn

t2 ||utt||21−idt)1/2|v|i.(110)

Now recall that (u · ∇utt,v) = −(u · ∇v,utt) since ∇ · u = 0 and v = 0. Then
again a similar argument used to derive (109) proves∫ tn+1

tn+1/2

(tn+1 − t)(u · ∇utt,v)dt+

∫ tn+1/2

tn

(t− tn)(u · ∇utt,v)dt

≤ C∆t3/2

tn+1/2
||u||L∞(tn,tn+1;H2)(

∫ tn+1

tn

t2 ||utt||21−idt)1/2|v|i.(111)

Once again, following a similar argument used to derive (109) proves, for n ≥ 0,∫ tn+1

tn+1/2

(tn+1 − t)(ut · ∇ut,v)dt+

∫ tn+1/2

tn

(t− tn)(ut · ∇ut,v)dt

≤ C∆t3/2

tn+1/2
||ut||L∞(tn,tn+1;L2)(

∫ tn+1

tn

t2 ||ut||23−idt)1/2|v|i.(112)

�
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