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THE HALF-PLANES PROBLEM FOR THE LEVEL SET EQUATION

STÉPHANE CLAIN AND MALCOM DJENNO NGOMANDA

Abstract. The paper is dedicated to the construction of an analytic solution for

the level set equation in R2 with an initial condition constituted by two half-planes.

Such a problem can be seen as an equivalent Riemann problem in the Hamilton-Jacobi

equation context. We first rewrite the level set equation as a non-strictly hyperbolic

problem and obtain a Riemann problem where the line sharing the initial discontinuity

corresponds to the half-planes junction. Three different solutions corresponding to a

shock, a rarefaction and a contact discontinuity are given in function of the two half-

planes configuration and we derive the solution for the level set equation. The study

provides theoretical examples to test the numerical methods approaching the solution of

viscosity of the level set equation. We perform simulations to check the three situations

using a classical numerical method on a structured grid.

Key Words. Riemann problem, Cauchy problem, level set equation, analytical solu-

tion, half-planes problem

1. Introduction

The interface tracking problem takes place in various fields like front flame propaga-
tion, crystal growth in solidification process, fluid-structure interaction with moving solid
boundary, computer vision, dynamics bubbles or drops for example. The level set method
(see [8] for an overview) consists in representing the free boundary as the zero-level of a
continuous function φ where the normal velocity F is a prescribed function.
Consider the Cauchy problem:{

∂tφ(x, t) + F |∇φ(x, t)| = 0 in R2 × [0, T ],

φ(x, t = 0) = φ0(x) in R2,
(1)

where F (x, t) is a given Lipschitz function on R2 × [0, T ] while φ0 is a Lipschitz function
on R2. Existence and uniqueness of the Lipschitz viscosity solution for problem (1) on
R2 × [0, T ] is proved (see [1, 7]).

Since φ is a Lipschitz function, vector U = ∇φ is a bounded vector-valued function
and applying the gradient operator to equation (1), we derive the Cauchy problem for the
conservation law system associated to the level set equation:{

∂tU(x, t) +∇(F |U(x, t)|) = 0 in R2 × [0, T ],

U(x, t = 0) = ∇φ0(x) in R2.
(2)

For the one dimensional situation, [7] proves that the Lipschitz viscosity solution φ
of equation (1) corresponds to the bounded entropic solution U of equation (2) with
U = ∂xφ. Such a result is not established for higher dimension since we do not have the
uniqueness of solution for the non-strictly hyperbolic system (2) [2]. Nevertheless, if we
regularize equations (1) and (2) adding a diffusion term ε∆φ and ε∆U respectively, the
new solutions satisfy Uε = ∇φε. Passing to the limit assuming a L∞ convergence of φε
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toward φ and a L1 convergence of Uε toward U , we have that U = ∇φ where φ is the
viscosity solution and U the entropy solution.

From a numerical point of view, the non-strictly hyperbolic system discretization using
the finite volume method leads to solve Riemann problems for each cell interface. The
problem is reduced to a one dimensional hyperbolic equation with a discontinuous flux
function [3] making difficult a complete and explicit resolution. We propose a different
approach based on the following remark: a constant state for the non-strictly hyperbolic
problem (2) corresponds to a plane for the level set equation (1). Hence we propose to
study an equivalent Riemann problem in the level set equation context using two half-
planes as an initial continuous condition [4, 5].

2. The two half-planes problem

For the sake of simplicity, we assume in the following that function F is reduced to a
constant function. Such an assumption is not restrictive since we usually solve Riemann
problems using the normal velocity evaluated at the interface midpoint.
Let π1 and π2 be two planes of the (x, z) = (x1, x2, z) ∈ R3 space. We impose that the
planes contain the origin point and the plane equations write

z = φi(x) = Ui.x, i = 1, 2

where Ui are given vectors of R2. Of course, when the two planes are equal, one has
φ0(x) = φ1(x) = φ2(x) as an initial condition and the solution is given by φ(x, t) =
φ0(x) − F |UL|t with UL = U1 = U2 which corresponds to a simple translation of the
initial plane with velocity F |UL| (see figure (1)).

t = 0

|UL|t

Figure 1: The trivial case when φ0 = φ1 = φ2. The solution representation in R3 corre-
sponds to the initial plane translated following the Oz axis with velocity F |UL| = F |∇φ0|
(we take F = 1 in the figure).

Now, we consider the nontrivial case when the two planes are different. To construct
an initial condition φ0 for the Cauchy problem (1) we consider an arbitrary line δ ⊂ R2

passing to the origin, an arbitrary normal vector W ∈ R2 and we define the left part PL
and the right part PR of R2 such that W goes from left to right (see figure (2)). We
then construct the initial condition by φ0(x) = φ1(x) if x ∈ PL and φ0(x) = φ2(x) if
x ∈ PR. Such a definition gives rise to a function which is not a priori continuous on
δ and disqualify the construction since we would like to handle continuous solutions. It
results that the interface δ can not be arbitrary but has to be defined such that we have a
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continuous connection between the two planes. To this end, we introduce the two following
continuous Lipschitz functions

φm0 = min(φ1, φ2), φM0 = max(φ1, φ2)

which are the unique function linking π1 with π2 continuously. Note that the particular
case U1 = U2 corresponds to a unique function φm0 = φM0 = φ1 = φ2.
Assuming U1 6= U2, we set

W =
U1 −U2

|U1 −U2|
and define the two half-planes PL and PR of R2 by

PL = {x ∈ R2; x.W < 0}, PR = {x ∈ R2; x.W > 0}.
The line δc = PL ∩ PR is orthogonal to W and we choose the unit vector V on δc such
that the vectors {W,V} form a direct orthonormal basis of R2 (see figure (2)). Note that
by construction W goes from PL to PR.

δc
P

P
R

L

x

x

z

2

1

W

V

Figure 2: Orientation and definition of PL and PR.

In R3, the two planes π1 and π2 have an intersection line ∆c = π1 ∩ π2 ⊂ R3 passing
by the origin O and δc ⊂ R2 is the orthogonal projection of line ∆c ⊂ R3 on the plane
(x1, x2) (see figure (3)).

z
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y

π2

π1

Δc

δc

Figure 3: Representation of function φm
0 in R3. The two half-planes intersection provides the

line ∆c which the orthogonal projection on (x1, x2) corresponds to line δc.
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We now aim to study the Cauchy problem (1) using φm0 or φM0 as an initial condition.
In the hyperbolic context, we have to consider Riemann problems (2) where the initial
conditions are ∇φm0 or ∇φM0 with a discontinuity situated on the line δc. Two cases arise
whether we choose φm0 or φM0 as an initial condition.

• If φm0 is the initial condition, definition of W yields that φm0 = φ1 on the half-
plane PL and φm0 = φ2 on the half-plane PR. Indeed, we have W.W = 1 > 0
so (U1 −U2).W > 0 then U1.W > U2.W which means that φ1(W) > φ2(W).
Hence π1 is above π2 on PR while π1 is under π2 on PL. In the conservative
law framework, we derive the following initial condition for the Riemann problem
UL = U1 on PL and UR = U2 on PR.

• If we choose φM0 as the initial condition, we deduce that UL = U2 on PL and
UR = U1 on PR.

In the sequel, for any arbitrary couple of vectors U1 and U2 we choose φm0 as the initial
condition and we have UL = U1 on PL and UR = U2 on PR oriented from left to right
by

(3) W =
UL −UR

|UL −UR|
.

2.1. The one dimensional problem reduction. The objective is to determine the
theoretical solution φ of the level set equation with φm0 as an initial condition using the
solution U of the associated Riemann problem. To this end, we carry out the following
change of variable where we introduce the coordinates in basis {W,V} setting

x = ζW + ηV.

The transformation corresponds to a rotation in the new basis where

W =

(
1
0

)
, V =

(
0
1

)
.

By construction of V and W we have UL ·V = UR ·V = ω0, thus, vectors UL and UR

are defined in the new base:

UL = ωLW + ω0V, UR = ωRW + ω0V,

with ωL = UL ·W, ωR = UR ·W.
Using the change of variables, the level set problem becomes

∂tφ(ζ, η, t) + F |∇ζ,ηφ(ζ, η, t)| = 0,

φ(ζ, η) = ωLζ + ω0η if ζ < 0, η ∈ R,
φ(ζ, η) = ωRζ + ω0η if ζ > 0, η ∈ R,

(4)

and the associated Riemann problem:

∂tU(ζ, η, t) +∇ζ,η (F |U(ζ, η, t)|) = 0,

U(., 0) =

(
ωL

ω0

)
if ζ < 0, η ∈ R,

U(., 0) =

(
ωR

ω0

)
if ζ > 0, η ∈ R,

(5)
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If U(ζ, η, t) is a solution of (5) then U(ζ, η + c, t) is also a solution of (5) for all c ∈ R
thus U(ζ, η + c, t) = U(ζ, η, t) hence ∂ηU = 0. It follows that

∂tU(ζ, t) ·
(

0
1

)
= 0

hence U ·
(

0
1

)
= ω0, ∀ η, ζ, t.

On the other hand, let ω(ζ, t) = U ·
(

1
0

)
, the component of U following the direction

W , function ω satisfy the one-dimension scalar Riemann problem
∂tω(ζ, t) + F∂ζ

√
w2(ζ, t) + w2

0 = 0,

ω(ζ, 0) = ωL, ζ < 0,

ω(ζ, 0) = ωR, ζ > 0.

(6)

Note that the choice of W yields UL.W > UR.W hence ωL ≥ ωR.

3. Solutions for the Riemann problem

We first give the solution for the situation ω0 6= 0, case ω0 = 0 will be studied as the
limit situation when ω0 tends to 0. We denote by f(ω) = F

√
w2 + w2

0, and a simple
calculation provides

λ(ω) = f ′(ω) =
Fω√
w2 + w2

0

, f ′′(ω) =
Fω2

0

(w2 + w2
0)

3
2

.

We note that f ′ is an increasing function for F ≥ 0 while f ′ is a decreasing function if
F ≤ 0. Since ωL > ωR it result that λ(ωL) > λ(ωR) if F > 0 leading to an entropic shock
configuration while λ(ωL) < λ(ωR) if F < 0 which corresponds to a rarefaction [6].

3.1. The shock case F ≥ 0. We first assume ω0 6= 0. The Rankine-Hugoniot condition
yields

σ =
f(ωL)− f(ωR)

ωL − ωR
= F
|UL| − |UR|
|UL −UR|

.(7)

ω = ωL

ω = ωL

ω = ωR

ξ = σt

Figure 4: Shock wave, case ω0 6= 0

We now consider the case where ω0 = 0 with ωL 6= ωR. Such a situation arises when
vectors UL and UR are collinear. Since ωL 6= ωR, then we can pass to the limit setting
ω0 = 0 in relation (7) since f depends continuously on ω0. The solution is still an entropic
shock.
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3.2. The rarefaction case F < 0. We first assume that ω0 6= 0 and we seek for an
auto-similar solution which satisfies

f ′(ω(ζ, t)) =
ζ

t
.(8)

Since f ′′(ω) < 0, we deduce that f ′(ω) is a one-to-one function mapping R onto ]F,−F [
and F < λ(ωL) < λ(ωR) < −F since ωL > ωR. From relation (8), we deduce

F 2ω2 =

(
ζ

t

)2

(ω2 + ω2
0),

and we get an explicit expression of ω in the fan

(9) ω(ζ, t) = −
ζ
t |ω0|√

F 2 −
(
ζ
t

)2
,

ζ

t
∈]λ(ωL), λ(ωR)[.

Three cases arise in function of the ωL and ωR signs that we display in figure (5).

(1) If ωL > ωR ≥ 0 then f ′(ωL) < f ′(ωR) ≤ 0: the fan is contained in the left
half-plane PL and the flux on interface δc is F |UR|.

(2) If 0 ≥ ωL > ωR then 0 ≤ f ′(ωL) < f ′(ωR): the fan is contained in the right
half-plane PR and the flux on interface δc is F |UL|.

(3) At last, if ωL > 0 > ωR then f ′(ωL) < 0 < f ′(ωR), the fan crosses the line δc and
the flux on the interface line δc is F |ω0|.

ω = ωL

ω = ω(ξ, t)

ω = ωR
ξ = λ(ωL)t

ξ = λ(ωR)t

(a)

ω = ωR

ω = ω(ξ, t)

ω = ωL
ξ = λ(ωL)t ξ = λ(ωR)t

(b)

ω = ωR

ω = ω(ξ, t)

ω = ωL

ξ = λ(ωL)t ξ = λ(ωR)t

ω = ω(ξ, t)

(c)

Figure 5: Rarefaction situations with ω0 6= 0. Three cases arise in function of ωL and ωL
signs: ωR > 0 (a), 0 > ωL (b), ωL > 0 > ωR (c).

We now consider the situation when ω0 vanishes. For all parameters ω0 6= 0, function
f ′(ω;ω0) = λ(ω;ω0) is a one-to-one function of ω from R onto ]F,−F [ and the rarefaction
takes place between λ(ωL;ω0) and λ(ωR;ω0). For ωL and ωR fixed, we take the limit
ω0 → 0 and we have

lim
ω0→0

λ(ωi, ω0) = −F, if ωi < 0, lim
ω0→0

λ(ωi;ω0) = +F, if ωi > 0
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with i = L,R. In addition, relation (9) says

lim
ω0→0

w(ζ, t) = 0, ∀ζ ∈]F,−F [, t > 0.

Three cases again then arise.

(1) If ωL > ωR > 0 then lim
ω0→0

λ(ωL, ω0) = lim
ω0→0

λ(ωR, ω0) = +F < 0 and the rarefac-

tion is reduced to a contact discontinuity moving with the velocity σ = +F (see
figure (6-a)).

(2) If 0 > ωL < ωR then lim
ω0→0

λ(ωL, ω0) = lim
ω0→0

λ(ωR, ω0) = −F > 0 and the rarefac-

tion is reduced to a contact discontinuity moving with the velocity σ = −F (see
figure (6-b)).

(3) At last, if ωL > 0 > ωR then lim
ω0→0

λ(ωL, ω0) = +F, lim
ω0→0

λ(ωR, ω0) = −F and

the rarefaction is reduced to the null solution in the cone F < ζ
t < −F (see figure

(6-c)).

ω = ωR

ω = ωL

ξ = Ft

(a)

ω = ωR

ξ = −Ft

ω = ωL

(b)

ω = ωR

ω = 0

ω = ωL

ξ = Ft ξ = −Ft

ω = 0

(c)

Figure 6: The rarefaction degenerates into a contact discontinuity when ω0 = 0. Three
situations arise in function of ωL and ωR signs: ωL < 0 (a), 0 < ωR (b), ωR < 0 < ωL (c).

Remark 3.1. Two other cases arise whether ωL = 0 case (i) or ωR = 0 case (ii). This
particular situation is similar to case (c) but the rarefaction cone is reduced to the left
half-cone ]F, 0] in case (i) and the right half-cone [0,−F [ in case (ii).

4. Solution for the level set equation

Based on the solution obtained with the Riemann problem, we build the solution for
the level set equation. We distinguish the cases whether F is positive or negative.
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4.1. The shock: case F > 0. For t ≥ 0, we define the line δc(t) parallel to δc(0) = δc
moving with the velocity

σ = F
|Ug| − |Ud|
|Ug −Ud|

.

i.e. δc(t) = {x ∈ R2; W.x = σt}. We then consider the two half-planes situated on the
left and right side of δc(t) (see figure 7)

PL(t) = {x ∈ R2; x.W < σt}, PR(t) = {x ∈ R2; x.W > σt}.
From section 3.1, the solution U(x, t) of the Riemann problem (2) is given by

U(x, t) = UL, x ∈ PL(t),

U(x, t) = UR, x ∈ PR(t).

We then define

φ(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ(x, t) = x.UR − F |UR| t, x ∈ PR(t).

We easily check that φ is a continuous function thanks to the shock velocity definition and
∇φ = U. Function φ is the viscosity solution which satisfies the Cauchy problem (1) with
φ0 = φm0 as an initial condition.

z

x

y

πL

πR

PL(t)

δc(t)

PR(t)
δc

(a)

PL(t)

δc(t)

PR(t)

1

(b)

Figure 7: Solution for the half-planes problem: the shock case

4.2. The rarefaction: case F < 0 with ω0 6= 0. Since ω0 6= 0, solution U of the
Riemann problem (2) is a rarefaction situated in the cone λL <

ζ
t < λR with

λL = λ(ωL) = F
ωL
|UL|

, λR = λ(ωR) = F
ωR
|UR|

.

To describe the solution φ of the associated the Cauchy problem (1), we define the following
lines and domains (see figure (8))

δL(t) = {x ∈ R2; x.W = λLt}, δR(t) = {x ∈ R2; x.W = λRt},
PL(t) = {x ∈ R2; x.W < λLt}, PR(t) = {x ∈ R2; x.W > λRt},
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Pc(t) = {x ∈ R2; λLt < x.W < λRt}.

The solution U for the Riemann problem is a continuous function given by

U(x, t) = UL = ωLW + ω0V, x ∈ PL(t),

U(x, t) = UR = ωRW + ω0V, x ∈ PR(t),

U(x, t) = ω(ζ, t)W + ω0V, ζ = x.W, x ∈ Pc(t)

where function ω(ζ, t) is given by relation (9).
On domains PL(t) and PR(t), function φ is then given by

φ = φL(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ = φR(x, t) = x.UR − F |UR| t, x ∈ PR(t).

To give the analytical expression of the solution on the band Pc(t), we use the change

of variables ζ, η and obtain a new function φ̃c(ζ, η, t) = φc(x, t) we have to explicit.

On one hand, we have ∂ηφ̃ = ω0 while on the other hand ∂ζ φ̃ = ω(ζ, t) and ∂tφ̃ =

−F
√
ω2(ζ, t) + ω2

0 with

ω(ζ, t) = − ζ|ω0|√
t2F 2 − ζ2

,
ζ

t
∈]λL, λR[.

We consider the function γ(ζ, t) = |ω0|
√
t2F 2 − ζ2 and we claim that φ̃c(ζ, η, t) = γ(ζ, t)+

ηω0 is the solution of the problem.

We first easily check that relations ∂ηφ̃ = ω0 and ∂ζ φ̃c = ω(ζ, t) are well-satisfied. We now

check that φ̃c satisfies the level set equation

∂tφ̃ = −F |∇ζ,ηφ̃| = −F
√
ω2(ζ, t) + ω2

0 .

Indeed, the time derivative provides

∂tφ̃ = ∂tγ(ζ, t) = F 2 t|ω0|√
t2F 2 − ζ2

and, in addition, one has

F
√
ω2(ζ, t) + ω2

0 = F

√
ζ2ω2

0

t2F 2 − ζ2
+ ω2

0 = −F 2 t|ω0|√
t2F 2 − ζ2

.

At last, we provide the φc expression in function of the x variable:

φc(x, t) = |ω0|
√
t2F 2 − (x ·W)

2
+ (x ·V)ω0, x ∈ Pc(t).

To end the construction, we now prove that function φ is continuous on the whole
domain, in particularly on line δL(t) and δR(t). Noting that line δL(t) is characterized in
the W,V basis by

ζ = ζL(t) := F
ωL
|UL|

t

and function φ̃L(ζ, η, t) is given by

φL(ζ, η, t) = ωLζ + ω0ζ − F |UL| t;
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πL(t)

πR(t)

PL(t)

PR(t)

δR(t)

δL(t) Pc(t)

(a)

PL(t)

δL(t)

PC(t)

δR(t)

PR(t)

1

(b)

Figure 8: Solution for the half-planes problem: the rarefaction case with ω0 6= 0

we then have on the line δL(t):

φ̃L(ζL(t), η, t)− φ̃c(ζL(t), η, t)

= ζL(t)ωL + ηω0 − F |UL| t− (−|ω0|
√
t2F 2 − ζ2

L(t) + ηω0),

= F
(ωL)2

|UL|
t− F |UL|t+ |ω0|

√
t2F 2 −

(
Ft

ωL
|UL|

)2

,

= Ft

(
ω2
L

|UL|
− |UL|+

|ω0|
|UL|

√
|UL|2 − ω2

L

)
,

= Ft

(
ω2
L

|UL|
− |UL|+

ω2
0

|UL|

)
= 0.

We deduce that function φ is continuous on line δL(t) and the result also holds on line
δR(t)

4.3. The contact discontinuity: case F < 0 with ω0 = 0. The rarefaction degen-
erates into a contact discontinuity when ω0 tends to 0 and three situations have to be
considered in functions of the ωL and ωR sign.

First, assume that ωR < ωL < 0, we denote by δc(t) the parallel line to δc given by

δc(t) = {x ∈ R2; x.W = −Ft}
and the two half-planes

PL(t) = {x ∈ R; x.W < −Ft}, PR(t) = {x ∈ R; x.W > −Ft}.
Solution U(x, t) is given by

U(x, t) = UL, x ∈ PL(t),

U(x, t) = UR, x ∈ PR(t).

and the viscosity solution φ is the continuous Lipschitz function defined by

φ(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ(x, t) = x.UR − F |UR| t, x ∈ PR(t).
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The case where 0 < ωR < ωL can be treated in the same way.
We now consider the situation where ωR < 0 < ωL, with F < 0. We define the lines

δL(t) = {x ∈ R2; x.W = Ft}, δR(t) = {x ∈ R2; x.W = −Ft}

and the domain

PL(t) = {x ∈ R2; x.W < Ft}, PR(t) = {x ∈ R2; x.W > −Ft},

Pc(t) = {x ∈ R2; Ft < x.W < −Ft}.

πL(t)

πR(t)

PL(t)

PR(t)

δR(t)

δL(t) Pc(t)

(a)

PL(t)

δL(t)

PC(t)

δR(t)

PR(t)

1

(b)

Figure 9: Solution for the half-planes problem, the rarefaction case with ω0 = 0 and
ωR < 0 < ωL.

The solution U for the Riemann problem is a piecewise constant function given by

U(x, t) = UL, x ∈ PL(t),

U(x, t) = UR, x ∈ PR(t),

U(x, t) = 0, x ∈ Pc(t)

and the viscosity solution φ is the continuous Lipschitz function defined by

φ = φL(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ = φR(x, t) = x.UR − F |UR| t, x ∈ PR(t),

φ = 0, x ∈ Pc(t).

The function is clearly continuous on the whole domain R2 by definition of the lines δL(t)
and δR(t).

Remark 4.1. The contact discontinuity solution comes from the monotony principle of
the viscosity solution for the Hamilton-Jacobi problem in one-space dimension, equivalent
to the entropy condition applied to the one-dimensional problem (6). The solution for
ω0 = 0 is obtained as the uniform limit on R2 × [0, T ] of a Lipschitz function sequence
(φω0

) where φω0
are the viscosity solutions of the level set equation with ω0 > 0.
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5. Numerical tests

The goal of this section is to compare the analytical solution proposed in section 4 with
numerical approximations using the classical schemes on structured grids (see [8] for a
survey). We focus our study on the simple level set equation

∂tφ(x, t) + F |∇φ(x, t)| = 0 in Ω× [0, T ],

φ(x, t = 0) = φ0(x) in Ω,
∂φ

∂n
= 0 on ∂Ω× [0, T ].

(10)

where Ω = [a, b]× [a, b] with a < b, T > 0, F ∈ R and

φ0(x) = φm0 (x) = min(U1.x,U2.x)

such that U1,U2 are two prescribed vectors of R2.

5.1. Discretization on a Cartesian grid. Let I ∈ N∗, we define a uniform mesh of Ω

with space step ∆x =
b− a
I

and nodes

xi,j = (a+ i∆x, b+ j∆x), 0 ≤ i, j ≤ I.
Let N ∈ N∗, we denote by (tn)n=0,...,L a subdivision of the time interval [0, T ], with
∆tn = tn+1 − tn the time step (the subdivision is not uniform) and the maximum time
step by

∆t = max
n=1,...,N

∆tn.

Let φni,j be an approximation of φ(xi,j , t
n) for all i, j = 0, ..., L at time tn, then we compute

an approximation at time tn+1 using the scheme (see [8]):

φn+1
i,j = φni,j − F

∆tn

∆x
(max(F, 0)∇+ + min(F, 0)∇−), i, j = 0, ..., I(11)

where we define

∇+ =
(
max(φni,j − φni−1,j , 0)2 + min(φni+1,j − φni,j , 0)2+

max(φni,j − φni,j−1, 0)2 + min(φni,j+1 − φni,j , 0)2
) 1

2 ,

∇− =
(
min(φni,j − φni−1,j , 0)2 + max(φni+1,j − φni,j , 0)2+

min(φni,j − φni,j−1, 0)2 + max(φni,j+1 − φni,j , 0)2
) 1

2 .

The maximum time step length is controlled by the Courant-Lax-Friedrisch condition

(CFL) ∆t ≤ ∆x

|F | × cfl where cfl ∈ [0, 1] is a parameter we use to reduce the time step.

The discrete L1-norm and L∞-norm at time tn are given by

ε1(tn) =
∑
i,j

|φnij − φe(xij , tn)|∆x, ε∞(tn) = max
i,j
|φnij − φe(xij , tn)|.

where φeij is the analytical solution.

All the numerical experiments have been carried out with Ω = [−1, 1]2 and five grids Tk of

space step ∆kx =
21−k

10
, k = 1, ..., 5 have been employed to measure the convergence rate.

Let UL and UR be two prescribed vectors of R2, we then evaluate vector W with (3)
and the half-planes PL, PR. We define the initial condition for the Cauchy problem

φ0(x) = min(UL.x,UR.x).

Note that by construction we have ∇φ0 = UL on PL and ∇φ0 = UR on PR.
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5.2. The shock case: F > 0. We set F = 1 and consider two situations whether ω0

is null or not. We first choose UL =

(
−2
1

)
, UR =

(
1
1

)
then we have W =

(
−1
0

)
and

ω0 = 1. The analytical solution of the problem (10) is given by

φ(x, y, t) =

{
−2x+ y +

√
5t, −x <

√
5−
√

2
3 t,

x+ y +
√

2t, −x >
√

5−
√

2
3 t.

For the second case, we choose UL =

(
−1
0

)
, UR =

(
2
0

)
then we have W =

(
−1
0

)
and

ω0 = 0. The analytical solution of the problem (10) is given by

φ(x, y, t) =

{
−x+ t, −x < 1−

√
2

3 t,

2x+
√

2t, −x > 1−
√

2
3 t.

We display in figure (10) a comparison between the analytical solution and the numerical
solution at time t = 0.5 computing with mesh T3 both for the case ω0 6= 0 and the case
ω0 = 0. The curves correspond to the planar cut of φ in the W direction. Convergence
rates in L1-norm and L∞-norm are given in table (1). We observe that the numerical
approximation suit well with the analytical solution and we obtain an effective second-
order convergence between the approximation and the exact solution.

−1 −0.5 0 0.5 1
−1.6

−1.4

−1.2

−1

−0.8

−0.6

  Exact
  Numerical

(a) ω0 6= 0

−1 −0.5 0 0.5 1
−1.4

−1.2

−1

−0.8

−0.6

−0.4

  Exact
  Numerical

(b) ω0 = 0

Figure 10: φ curve in the W direction at time t = 0.5: the shock case with ω0 6= 0 (left)
and ω0 = 0 (right).
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(a) ω0 6= 0

∆x L1 error order L∞ error order
0.2 4.40 ×10−2 - 7.66 ×10−2 -
0.1 2.45 ×10−2 1.79 3.71 ×10−2 2.06

0.05 1.28 ×10−2 1.91 1.81 ×10−2 2.04
0.025 6.55 ×10−3 1.95 8.95 ×10−3 2.02

0.0125 3.30 ×10−3 1.98 4.44 ×10−3 2.01

(b) ω0 = 0

∆x L1 error order L∞ error order
0.2 3.06 ×10−2 - 5.18 ×10−2 -
0.1 1.70 ×10−2 1.80 2.60 ×10−2 1.99

0.05 8.97 ×10−3 1.89 1.28 ×10−2 2.03
0.025 4.58 ×10−3 1.95 6.32 ×10−3 2.02

0.0125 2.31 ×10−3 1.98 3.14 ×10−3 2.01

Table 1: Convergence rate for the shock cases: ω0 6= 0 (top) and ω0 = 0 (bottom).

5.3. The rarefaction case: F < 0 and ω0 6= 0. We set F = −1 and we choose

UL =

(
1
0

)
, UR =

(
1
1

)
then we have W =

(
0
−1

)
and ω0 = −1. The analytical solution

of problem (10) is given by

φ(x, y, t) =


x+ t, −x < t,

x+ y +
√

2t, −x > t√
2
,√

t2 − x2 + y, t < −x < t√
2
.

We show in figure (11) a comparison between the analytical solution and the numerical
solution at time t = 0.5 computing with mesh T3 where the curves correspond to the planar
cut of φ in the W direction. Convergence rates in L1-norm and L∞-norm are given in
table (2). Again, we observe a nice correspondence between the numerical approximation
and the analytical solution confirmed by the effective second-order convergence between
the approximation and the exact solution.

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

  Exact
  Numerical

(a) ω0 6= 0

Figure 11: φ curve in the W direction at time t = 0.5: the rarefaction case with ω0 6= 0.
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(a) ω0 6= 0

∆x L1 error order L∞ error order
0.2 4.18 ×10−2 - 9.68 ×10−2 -
0.1 2.36 ×10−2 1.77 5.63 ×10−2 1.71

0.05 1.25 ×10−2 1.88 3.29 ×10−2 1.71
0.025 6.66 ×10−3 1.87 1.93 ×10−2 1.70

0.0125 3.86 ×10−3 1.72 1.13 ×10−2 1.70

Table 2: Convergence rate for the rarefaction (ω0 6= 0 case).

5.4. The contact discontinuity case: F < 0 and ω0 = 0. We set F = −1 and choose
UL and UR such as ω0 = 0. Two cases arise whether ωLωR > 0 or ωLωR < 0.

We first choose UL =

(
1
0

)
, UR =

(
2
0

)
then we have W =

(
−1
0

)
and ωL = −1, ωR = −2,

ω0 = 0. The analytical solution of problem (10) is given by

φ(x, y, t) =

{
x+ t, −x < t,

2x+ 2t, −x > t.

for the second case, we choose UL =

(
1
0

)
, UR =

(
−1
0

)
then we have W =

(
1
0

)
and

ωL = 2, ωR = 1, ω0 = 0. The analytical solution of problem (10) is given by

φ(x, y, t) =


x+ t, 2√

2
x < −t,

−x+ t, 2√
2
x > t,

0, −t < 2√
2
x < t.

We show in figure (12) a comparison between the analytical solution and the numerical
solution at time t = 0.5 computing with mesh T3 both for the case ωLωR > 0 and the case
ωLωR < 0. The curves correspond to the planar cut of φ in the W direction. Convergence
rates in L1-norm and L∞-norm are given in table (3). We obtain a very good approx-
imation of the analytical solution confirmed by the effective second-order convergences
between the approximation and the exact solution.
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Figure 12: φ curve in the W direction at time t = 0.5: the contact discontinuity case with
ωLωR > 0 (left) and ωLωR < 0 (right).

(a) ωLωR > 0

∆x L1 error order L∞ error order
0.2 2.80 ×10−2 - 5.18 ×10−2 -
0.1 1.95 ×10−2 1.43 4.39 ×10−2 1.17

0.05 1.18 ×10−2 1.62 2.56 ×10−2 1.25
0.025 6.54 ×10−3 1.74 1.26 ×10−2 1.17

0.0125 3.39 ×10−3 1.92 6.29 ×10−3 2.00

(b) ωLωR < 0

∆x L1 error order L∞ error order
0.2 4.23 ×10−2 - 1.11 ×10−1 -
0.1 2.67 ×10−2 1.68 5.50 ×10−2 2.01

0.05 1.45 ×10−2 1.71 3.26 ×10−2 1.68
0.025 7.63 ×10−3 1.82 2.30 ×10−2 1.41

0.0125 3.95 ×10−3 1.93 1.61 ×10−2 1.42

Table 3: Convergence rate for the contact discontinuity: case ωLωR > 0 (top) and case
ωLωR < 0 (bottom).
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6. Conclusion

We have determined the analytical solution of Cauchy problem for the level set equation
when the initial data is composed of two half-planes. Such a problem corresponds to the
Riemann problem in the hyperbolic system context and may be helpful to test numerical
schemes for level set equation. We show that we have three configurations corresponding to
the entropic shock, the rarefaction and the contact discontinuity which is the limit case of
the rarefaction with ω0 = 0. Numerical simulations have been performed using a classical
method on structured grids to compare with the analytical solution in the three cases
and we obtain an effective second-order convergence. Extension for the general Hamilton-
Jacobi problem can be considered and a ”Riemann solver” for level set equation based on
the two half-planes problem may also be investigated.
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