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SECOND ORDER PARAMETER-UNIFORM CONVERGENCE

FOR A FINITE DIFFERENCE METHOD FOR A SINGULARLY

PERTURBED LINEAR PARABOLIC SYSTEM

V. FRANKLIN, M. PARAMASIVAM, J.J.H. MILLER, AND S. VALARMATHI

Abstract. A singularly perturbed linear system of second order partial dif-

ferential equations of parabolic reaction-diffusion type with given initial and

boundary conditions is considered. The diffusion term of each equation is mul-

tiplied by a small positive parameter. These singular perturbation parameters

are assumed to be distinct. The components of the solution exhibit overlap-

ping layers. Shishkin piecewise-uniform meshes are introduced, which are used

in conjunction with a classical finite difference discretisation, to construct a

numerical method for solving this problem. It is proved that in the maximum

norm the numerical approximations obtained with this method are first or-

der convergent in time and essentially second order convergent in the space

variable, uniformly with respect to all of the parameters.

Key Words. Singular perturbation problems, parabolic problems, boundary

layers, uniform convergence, finite difference scheme, Shishkin mesh.

1. Introduction

The following parabolic initial-boundary value problem is considered for a sin-
gularly perturbed linear system of second order differential equations

(1)
∂~u

∂t
− E

∂2~u

∂x2
+A~u = ~f, on Ω, ~u given on Γ,

where Ω = {(x, t) : 0 < x < 1, 0 < t ≤ T }, Ω = Ω ∪ Γ, Γ = ΓL ∪ ΓB ∪ ΓR with

~u(0, t) = ~φL(t) on ΓL = {(0, t) : 0 ≤ t ≤ T }, ~u(x, 0) = ~φB(x) on ΓB = {(x, 0) :

0 ≤ x ≤ 1}, ~u(1, t) = ~φR(t) on ΓR = {(1, t) : 0 ≤ t ≤ T }. Here, for all (x, t) ∈ Ω,

~u(x, t) and ~f(x, t) are column n − vectors, E and A(x, t) are n × n matrices,
E = diag(~ε), ~ε = (ε1, · · · , εn) with 0 < εi ≤ 1 for all i = 1, . . . , n. The εi are
assumed to be distinct and, for convenience, to have the ordering

ε1 < · · · < εn.

Cases with some of the parameters coincident are not considered here.
The problem (1) can also be written in the operator form

~L~u = ~f on Ω, ~u given on Γ,

where the operator ~L is defined by

~L = I
∂

∂t
− E

∂2

∂x2
+A,
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where I is the identity matrix. The reduced problem corresponding to (1) is defined
by

(2)
∂~u0
∂t

+A~u0 = ~f, on Ω, ~u0 = ~u on {(x, 0) : 0 < x < 1}.

For a general introduction to parameter-uniform numerical methods for singular
perturbation problems, see [7], [9] and [1]. The piecewise-uniform Shishkin meshes
ΩM,N in the present paper have the elegant property that they reduce to uniform
meshes when the parameters are not small. The problem posed in the present paper
is also considered in [3], where parameter uniform convergence in the maximum
norm is proved, which is first order in time and essentially first order in space.
The meshes used there are different from those in the present paper. The main
result of the present paper is established in [6] for the special case n = 1 and in [5]
for n = 2. The proof in the present paper of first order convergence in the time
variable and essentially second order convergence in the space variable, for general
n, draws heavily on the analogous result in [8], where a slightly weaker result is
proved for a reaction-diffusion system. The final result in the present paper is that
the error in the maximum norm is bounded by C(M−1 + (N−1 lnN)2), where C is
a constant which is independent of the singular perturbation parameters ~ε and of
the mesh parameters M,N . It is the factor lnN here, which makes the convergence
essentially rather than fully second order, but it has little significance in practice.

The plan of the paper is as follows. In the next three sections both standard
and novel bounds on the smooth and singular components of the exact solution
are obtained. The sharp estimates for the singular component in Lemma 4.3 are

proved by mathematical induction, while interesting orderings of the points x
(s)
i,j

are established in Lemma 4.2. In Section 5 piecewise-uniform Shishkin meshes are
introduced. In Section 6 the discrete problem is defined and a discrete maximum
principle, discrete stability properties and a comparison principle are established.
In Section 7 an expression for the local truncation error is derived and standard
estimates are stated. In Section 8 parameter-uniform estimates for the local trun-
cation error of the smooth and singular components are obtained by means of a
sequence of lemmas. The section culminates with the statement and proof of the
required parameter-uniform error estimate in the maximum norm.

2. Solutions of the continuous problem

Standard theoretical results on the solutions of (1) are stated, without proof, in
this section. See [2] and [4] for more details. For all (x, t) ∈ Ω, it is assumed that
the components aij(x, t) of A(x, t) satisfy the inequalities

aii(x, t) >

n
∑

j 6=i
j=1

|aij(x, t)| for 1 ≤ i ≤ n, and aij(x, t) ≤ 0 for i 6= j(3)

and, for some α,

0 < α < min
(x,t)∈Ω

1≤i≤n

(

n
∑

j=1

aij(x, t)).(4)

It is also assumed, without loss of generality, that

max
1≤i≤n

√
εi ≤

√
α

6
.(5)
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The norms ‖ ~V ‖ = max1≤k≤n |Vk| for any n-vector ~V , ‖ y ‖D = sup{|y(x, t)| :
(x, t) ∈ D} for any scalar-valued function y and domain D, and ‖ ~y ‖ = max1≤k≤n
‖ yk ‖ for any vector-valued function ~y are introduced. When D = Ω or Ω the
subscript D is usually dropped. In a compact domain D a function is said to be
Hölder continuous of degree λ, 0 < λ ≤ 1, if, for all (x1, t1), (x2, t2) ∈ D,

|u(x1, t1) − u(x2, t2)| ≤ C(|x1 − x2|2 + |t1 − t2|)
λ/2

.

The set of Hölder continuous functions forms a normed linear space C0
λ(D) with

the norm

||u||λ,D = ||u||D + sup
(x1,t1),(x2,t2)∈D

|u(x1, t1) − u(x2, t2)|
(|x1 − x2|2 + |t1 − t2|)λ/2

,

where ||u||D = sup
(x,t)∈D

|u(x, t)|. For each integer k ≥ 1, the subspaces Ckλ(D) of

C0
λ(D), which contain functions having Hölder continuous derivatives, are defined

as follows

Ckλ(D) = {u :
∂l+mu

∂xl∂tm
∈ C0

λ(D) for l,m ≥ 0 and 0 ≤ l + 2m ≤ k}.

The norm on C0
λ(D) is taken to be ||u||λ,k,D = max

0≤l+2m≤k
|| ∂

l+mu

∂xl∂tm
||λ,D. For a vector

function ~v = (v1, v2, ..., vn), the norm is defined by ||~v||λ,k,D = max
1≤i≤n

||vi||λ,k,D.

Sufficient conditions for the existence, uniqueness and regularity of a solution of
(1) are given in the following theorem.

Theorem 2.1. Assume that A, ~f ∈ C2
λ(Ω), ~φL ∈ C1(ΓL), ~φB ∈ C2(ΓB), ~φR ∈

C1(ΓR) and that the following compatibility conditions are fulfilled at the corners
(0, 0) and (1, 0) of Γ

(6) ~φB(0) = ~φL(0) and ~φB(1) = ~φR(0),

(7)

d~φL(0)

dt
− E

d2~φB(0)

dx2
+A(0, 0)~φB(0) = ~f(0, 0),

d~φR(0)

dt
− E

d2~φB(1)

dx2
+A(1, 0)~φB(1) = ~f(1, 0)

and

(8)

d2

dt2
~φL(0) = E2 d

4

dx4
~φB(0) − 2EA(0, 0)

d2

dx2
~φB(0) − EA(0, 0)

d

dx
~φB(0)

−(A2(0, 0) +
∂A

∂t
(0, 0) + E

∂2A

∂x2
(0, 0))~φB(0)

−A(0, 0)~f(0, 0) +
∂ ~f

∂t
(0, 0) + E

∂2 ~f

∂x2
(0, 0),
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(9)

d2

dt2
~φR(0) = E2 d

4

dx4
~φB(1) − 2EA(1, 0)

d2

dx2
~φB(1) − EA(1, 0)

d

dx
~φB(1)

−(A2(1, 0) +
∂A

∂t
(1, 0) + E

∂2A

∂x2
(1, 0))~φB(1)

−A(1, 0)~f(1, 0) +
∂ ~f

∂t
(1, 0) + E

∂2 ~f

∂x2
(1, 0).

Then there exists a unique solution ~u of (1) satisfying ~u ∈ C4
λ(Ω).

It is assumed throughout the paper that all of the assumptions (3) - (9) of this
section are fulfilled. Furthermore, C denotes a generic positive constant, which is
independent of x, t and of all singular perturbation and discretization parameters.
Inequalities between vectors are understood in the componentwise sense.

3. Standard analytical results

The operator ~L satisfies the following maximum principle

Lemma 3.1. Let assumptions (3) - (9) hold. Let ~ψ be any vector-valued function

in the domain of ~L such that ~ψ ≥ ~0 on Γ. Then ~L~ψ(x, t) ≥ ~0 on Ω implies that
~ψ(x, t) ≥ ~0 on Ω.

Proof. Let i∗, x∗, t∗ be such that ψi∗(x∗, t∗) = mini minΩ ψi(x, t) and assume that
the lemma is false. Then ψi∗(x∗, t∗) < 0 . From the hypotheses we have (x∗, t∗) 6∈ Γ

and ∂2ψi∗

∂x2 (x∗, t∗) ≥ 0. Thus

(~L~ψ)i∗(x∗, t∗) =
∂ψi∗

∂t
(x∗, t∗) − εi∗

∂2ψi∗

∂x2
(x∗, t∗) +

n
∑

j=1

ai∗,j(x
∗, t∗)ψj(x

∗, t∗) < 0,

which contradicts the assumption and proves the result for ~L. �

Let Ã(x, t) be any principal sub-matrix of A(x, t) and ~̃L the corresponding op-

erator. To see that any ~̃L satisfies the same maximum principle as ~L, it suffices to
observe that the elements of Ã(x, t) satisfy a fortiori the same inequalities as those
of A(x, t).

Lemma 3.2. Let assumptions (3) - (9) hold. If ~ψ is any vector-valued function in

the domain of ~L, then, for each i, 1 ≤ i ≤ n and (x, t) ∈ Ω,

|ψi(x, t)| ≤ max

{

‖ ~ψ ‖Γ,
1

α
‖ ~L~ψ ‖

}

.

Proof. Define the two functions

~θ±(x, t) = max

{

‖ ~ψ ‖Γ,
1

α
‖ ~L~ψ ‖

}

~e ± ~ψ(x, t)

where ~e = (1, . . . , 1)T is the unit column vector. Using the properties of A

it is not hard to verify that ~θ± ≥ ~0 on Γ and ~L~θ± ≥ ~0 on Ω. It follows from

Lemma 3.1 that ~θ± ≥ ~0 on Ω as required. �

A standard estimate of the exact solution and its derivatives is contained in the
following lemma.
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Lemma 3.3. Let assumptions (3) - (9) hold and let ~u be the exact solution of (1).
Then, for all (x, t) ∈ Ω and each i = 1, . . . , n,

|∂lui

∂tl (x, t)| ≤ C(||~u||Γ +
∑l

q=0 ||∂
q ~f
∂tq ||), l = 0, 1, 2

|∂lui

∂xl (x, t)| ≤ Cε
−l
2

i (||~u||Γ + ||~f || + ||∂ ~f∂t ||), l = 1, 2

|∂lui

∂xl (x, t)| ≤ Cε−1
i ε

−(l−2)
2

1 (||~u||Γ + ||~f || + ||∂ ~f∂t || + ||∂2 ~f
∂t2 || + ε

l−2
2

1 ||∂l−2 ~f
∂xl−2 ||), l = 3, 4

| ∂lui

∂xl−1∂t (x, t)| ≤ Cε
1−l
2

i (||~u||Γ + ||~f || + ||∂ ~f∂t || + ||∂2 ~f
∂t2 ||), l = 2, 3.

Proof. The bound on ~u is an immediate consequence of Lemma 3.2. Differentiating
(1) partially with respect to time once, respectively twice, and applying Lemma

3.2, the bounds on ∂~u
∂t , respectively ∂2~u

∂t2 are obtained. To bound ∂ui

∂x , for each i and
(x, t), consider an interval I = [a, a+

√
εi], a ≥ 0 such that x ∈ I.

Then for some y such that a < y < a+
√
εi and t ∈ (0, T ]

∂ui
∂x

(y, t) =
ui(a+

√
εi, t) − ui(a, t)√
εi

(10) |∂ui
∂x

(y, t)| ≤ Cεi
−1
2 ||~u||.

Then for any x ∈ I

∂ui
∂x

(x, t) =
∂ui
∂x

(y, t) +

∫ x

y

∂2ui(s, t)

∂x2
ds

∂ui
∂x

(x, t) =
∂ui
∂x

(y, t) + ε−1
i

∫ x

y





∂ui(s, t)

∂t
− fi(s, t) +

n
∑

j=1

aij(s, t)uj(s, t)



 ds

|∂ui
∂x

(x, t)| ≤ |∂ui
∂x

(y, t)| + Cε−1
i

∫ x

y

(||~u||Γ + ||~f || + ||∂
~f

∂t
||)ds.

Using (10) in the above equation

|∂ui
∂x

(x, t)| ≤ Cεi
−1
2 (||~u||Γ + ||~f || + ||∂

~f

∂t
||).

Rearranging the terms in (1), it is easy to get

|∂
2ui
∂x2

| ≤ Cε−1
i (||~u||Γ + ||~f || + ||∂

~f

∂t
||).

Analogous steps are used to get the rest of the estimates. �

The Shishkin decomposition of the exact solution ~u of (1) is ~u = ~v + ~w where
the smooth component ~v is the solution of

(11) ~L~v = ~f in Ω, ~v = ~u0 on Γ

and the singular component ~w is the solution of

(12) ~L~w = ~0 in Ω, ~w = ~u− ~v on Γ.

Theorem 2.1 ensures that ~v, ~w ∈ C4
λ(Ω). For convenience the left and right boundary

layers of ~w are separated using the further decomposition ~w = ~wL + ~wR where
~L~wL = ~0 on Ω, ~wL = ~w on ΓL, ~wL = ~0 on ΓB ∪ ΓR and ~L~wR = ~0 on
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Ω, ~wR = ~w on ΓR, ~wR = ~0 on ΓL ∪ ΓB.
Bounds on the smooth component and its derivatives are contained in

Lemma 3.4. Let assumptions (3) - (9) hold. Then the smooth component ~v and
its derivatives satisfy, for each (x, t) ∈ Ω and i = 1, . . . , n,

(a) |∂lvi
∂tl

(x, t)| ≤ C for l = 0, 1, 2

(b) |∂lvi
∂xl (x, t)| ≤ C(1 + ε

1− l
2

i ) for l = 0, 1, 2, 3, 4

(c) | ∂lvi
∂xl−1∂t

(x, t)| ≤ C for l = 2, 3.

Proof. The bound on ~v is an immediate consequence of the defining equations for
~v and Lemma 3.2. Differentiating the equation (11) twice partially with respect to

x and applying Lemma 3.2 for ∂2vi
∂x2 , we get

(13) |∂
2vi
∂x2

(x, t)| ≤ C(1 + ||∂~v
∂x

||).

Let

(14)
∂vi∗

∂x
(x∗, t∗) = ||∂~v

∂x
|| for some i = i∗, x = x∗, t = t∗.

Using Taylor expansion, it follows that, for some y ∈ [0, 1 − x∗] and some η ∈
(x∗, x∗ + y)

(15) vi∗(x∗ + y, t∗) = vi∗(x∗, t∗) + y
∂vi∗

∂x
(x∗, t∗) +

y2

2

∂2vi∗

∂x2
(η, t∗).

Rearranging (15) yields

∂vi∗

∂x
(x∗, t∗) =

vi∗(x∗ + y, t∗) − vi∗(x∗, t∗)

y
− y

2

∂2vi∗

∂x2
(η, t∗)

(16) |∂vi∗
∂x

(x∗, t∗)| ≤ 2

y
||~v|| +

y

2
||∂

2~v

∂x2
||.

Using (14) and (16) in (13),

|∂
2vi
∂x2

| ≤ C(1 +
2

y
||~v|| +

y

2
||∂

2~v

∂x2
||).

This leads to

(1 − Cy

2
)||∂

2~v

∂x2
|| ≤ C(1 +

2

y
||~v||)

and so, using (a) with l = 0,

(17) ||∂
2~v

∂x2
|| ≤ C.

Using (17) in (16) yields

||∂~v
∂x

|| ≤ C.

Repeating the above steps with ∂vi
∂t , it is easy to get the required bounds on the

mixed derivatives. The bounds on
∂3~v

∂x3
,
∂4~v

∂x4
are derived by a similar argument.

�
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4. Improved estimates

The layer functions BLi , B
R
i , Bi, i = 1, . . . , n, , associated with the solution

~u, are defined on [0, 1] by

BLi (x) = e−x
√
α/εi , BRi (x) = BLi (1 − x), Bi(x) = BLi (x) +BRi (x).

The following elementary properties of these layer functions, for all 1 ≤ i < j ≤ n
and 0 ≤ x < y ≤ 1, should be noted:

(18) Bi(x) = Bi(1 − x).

(19) BLi (x) < BLj (x), BLi (x) > BLi (y), 0 < BLi (x) ≤ 1.

(20) BRi (x) < BRj (x), BRi (x) < BRi (y), 0 < BRi (x) ≤ 1.

(21) Bi(x) is monotone decreasing for increasing x ∈ [0,
1

2
].

(22) Bi(x) is monotone increasing for increasing x ∈ [
1

2
, 1].

(23) Bi(x) ≤ 2BLi (x) for x ∈ [0,
1

2
], Bi(x) ≤ 2BRi (x) for x ∈ [

1

2
, 1].

(24) BLi (2

√

εi
α

lnN) = N−2.

The interesting points x
(s)
i,j are now defined.

Definition 4.1. For BLi , B
L
j , each i, j, 1 ≤ i 6= j ≤ n and each s, s > 0, the point

x
(s)
i,j is defined by

(25)
BLi (x

(s)
i,j )

εsi
=
BLj (x

(s)
i,j )

εsj
.

It is remarked that

(26)
BRi (1 − x

(s)
i,j )

εsi
=
BRj (1 − x

(s)
i,j )

εsj
.

In the next lemma the existence and uniqueness of the points x
(s)
i,j are shown.

Various properties are also established.

Lemma 4.2. For all i, j, such that 1 ≤ i < j ≤ n and 0 < s ≤ 3/2, the points x
(s)
i,j

exist, are uniquely defined and satisfy the following inequalities

(27)
BLi (x)

εsi
>
BLj (x)

εsj
, x ∈ [0, x

(s)
i,j ),

BLi (x)

εsi
<
BLj (x)

εsj
, x ∈ (x

(s)
i,j , 1].

Moreover

(28) x
(s)
i,j < x

(s)
i+1,j , if i+ 1 < j and x

(s)
i,j < x

(s)
i,j+1, if i < j.

Also

(29) x
(s)
i,j < 2s

√

εj
α

and x
(s)
i,j ∈ (0,

1

2
) if i < j.
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Analogous results hold for the BRi , B
R
j and the points 1 − x

(s)
i,j .

Proof. The proof is given in [8]. �

Bounds on the singular components ~wL, ~wR of ~u and their derivatives are contained
in

Lemma 4.3. Let assumptions (3) - (9) hold. Then there exists a constant C, such
that, for each (x, t) ∈ Ω and i = 1, . . . , n,

(30)

|∂
lwLi
∂tl

(x, t)| ≤ CBLn (x), for l = 0, 1, 2,

|∂
lwLi
∂xl

(x, t)| ≤ C
∑n
q=i

BLq (x)

ε
l
2
q

, for l = 1, 2,

|∂
3wLi
∂x3

(x, t)| ≤ C
∑n

q=1

BLq (x)

ε
3
2
q

,

|∂
4wLi
∂x4

(x, t)| ≤ C
1

εi

∑n
q=1

BLq (x)

εq
.

Analogous results hold for the wRi and their derivatives.

Proof. To obtain the bound of ~wL, define the functions ψi
±(x, t) = CeαtBLn (x) ±

wLi (x, t), for each i = 1, . . . , n. It is clear that, for (x, t) ∈ Ω, ψi
±(0, t), ψi

±(x, 0),

ψi
±(1, t) and (~L~ψ±)i(x, t) are non-negative. By Lemma 1, ψi

±(x, t) ≥ 0 for (x, t) ∈
Ω. It follows that |wLi (x, t)| ≤ CeαtBLn (x) or

(31) |wLi (x, t)| ≤ CBLn (x).

To obtain the bound for
∂wL

i

∂t , define the two functions θi
±(x, t) = CBLn (x) ±

∂wL
i

∂t (x, t) for each i = 1, . . . , n. Differentiating the homogeneous equation satisfied

by wLi , partially with respect to t, and rearranging yields

(32)
∂2wLi
∂t2

− εi
∂3wLi
∂x2∂t

+
n
∑

j=1

aij
∂wLj
∂t

=
−∂

∑n
j=1 aij

∂t
wLj ,

and we get

|(~L∂ ~w
L

∂t
)i| ≤ CBLn (x)

|∂w
L
i

∂t
(0, t)| ≤ |∂ui

∂t
(0, t)| + |∂vi

∂t
(0, t)| ≤ C1

|∂w
L
i

∂t
(1, t)| = 0

|∂w
L
i

∂t
(x, 0)| = 0

as wLi = 0 on ΓB ∪ ΓR.
By Lemma 3.2, for a proper choice of C, it follows that

(33) |∂w
L
i

∂t
| ≤ CBLn (x).
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Now the bound for
∂2wL

i

∂x∂t is obtained by using Lemma 3.3 and Lemma 3.4

|∂
2wLi
∂x∂t

| ≤ | ∂
2ui

∂x∂t
| + | ∂

2vi
∂x∂t

|

|∂
2wLi
∂x∂t

| ≤ Cεi
−1
2 (||~u||Γ + ||~f || + ||∂

~f

∂t
|| + ||∂

2 ~f

∂t2
||).

Similarly,

(34) | ∂
3wLi

∂x2∂t
| ≤ Cε−1

i (||~u||Γ + ||~f || + ||∂
~f

∂t
|| + ||∂

2 ~f

∂t2
||).

As before, using suitable barrier functions, it is not hard to verify that

|∂
l+mwLi
∂xl∂tm

| ≤ Cε
−l
2

i BLn (x), l ≤ 3, m ≤ 2 and 0 ≤ l+ 2m ≤ 4.

Using (31), (33) and (34) in (32), |∂
2wL

i

∂t2 | ≤ C. Then defining the barrier function

Ψ±
i (x, t) = CeαtBLn (x) ± ∂2wL

i

∂t2 (x, t) and using Lemma 3.2, the required bound is
obtained.

The bounds on
∂lwL

i

∂xl , l = 1, 2, 3, 4 and i = 1, . . . , n are now derived by induction
on n. For n = 1, the result follows from [6]. It is then assumed that the required

bounds on
∂wL

i

∂x ,
∂2wL

i

∂x2 ,
∂3wL

i

∂x3 and
∂4wL

i

∂x4 hold for all systems up to order n−1. Define
~̃wL = (wL1 , . . . , w

L
n−1), then ~̃wL satisfies the system

∂ ~̃wL

∂t
− Ẽ

∂2 ~̃wL

∂x2
+ Ã ~̃wL = ~g,

with
~̃wL(0, t) = ~̃u(0, t) − ~̃u0(0, t), ~̃wL(1, t) = ~̃0,

~̃wL(x, 0) = ~̃u(x, 0) − ~̃u0(x, 0) =
~̃
φB(x) − ~̃

φB(x) = ~̃0.

Here, Ẽ and Ã are the matrices obtained by deleting the last row and column from
E,A respectively, the components of ~g are gi = −ai,nwLn for 1 ≤ i ≤ n − 1 and
~̃u0 is the solution of the reduced problem. Now decompose ~̃wL into smooth and

singular components to get ~̃wL = ~q + ~r, where ~L~q = ~g, ~q = ~̃u0 on Γ, ~Lr = ~0, ~r =
~̃wL − ~q on Γ. By induction, the bounds on the derivatives of ~̃w

L
hold. That is, for

i = 1, . . . , n− 1,

(35)

|∂w
L
i

∂x
| ≤ C

∑n−1
q=i ε

−1
2
q BLq (x)

|∂
2wLi
∂x2

| ≤ C
∑n−1

q=i ε
−1
q BLq (x)

|∂
3wLi
∂x3

| ≤ C
∑n−1

q=1 ε
−3
2
q BLq (x)

|εi
∂4wLi
∂x4

| ≤ C
∑n−1

q=1 ε
−1
q BLq (x).































































Rearranging the nth equation of the system satisfied by wLn yields

εn
∂2wLn
∂x2

=
∂wLn
∂t

+

n
∑

j=1

anjw
L
j .
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Using (31) and (33) gives

(36) |∂
2wLn
∂x2

| ≤ Cε−1
n BLn (x).

Applying the mean value theorem to wLn at some y ∈ I = (a, a+
√
εn),

∂wLn
∂x

(y, t) =
wLn (a+

√
εn, t) − wLn (a, t)√
εn

.

Using (31) gives

|∂w
L
n

∂x
(y, t)| ≤ C√

εn
(BLn (a+

√
εn) +BLn (a)).

So

(37) |∂w
L
n

∂x
(y, t)| ≤ C√

εn
BLn (a).

Again, for x ∈ I, such that y < η < x,

(38)
∂wLn
∂x

(x, t) =
∂wLn
∂x

(y, t) + (x− y)
∂2wLn
∂x2

(η, t).

Using (36) and (37) in (38) yields

|∂w
L
n

∂x (x, t)| ≤ C[ε
−1
2
n BLn (a) + ε

−1
2
n BLn (η)]

≤ Cε
−1
2
n BLn (a)

= Cε
−1
2
n BLn (x)

BL
n (a)

BL
n (x)

= Cε
−1
2
n BLn (x)e(x−a)

√
α/

√
εn

≤ Cε
−1
2
n BLn (x)e

√
εn

√
α/

√
εn .

Therefore

(39) |∂w
L
n

∂x
(x, t)| ≤ Cε

−1
2
n BLn (x).

Now, differentiating the equation satisfied by wLn partially with respect to x, and
rearranging, gives

εn
∂3wLn
∂x3

=
∂2wLn
∂x∂t

+
n−1
∑

q=1

anq
∂wLq
∂x

+ ann
∂wLn
∂x

+
n
∑

q=1

∂anq
∂x

wLq .

The bounds on wLn and (35) then give

|∂
3wLn
∂x3

| ≤ C
n
∑

q=1

εq
−3
2 BLq (x).

Similarly

|εn
∂4wLn
∂x4

| ≤ C

n
∑

q=1

ε−1
q BLq (x).

Using the bounds on wLn ,
∂wL

n

∂x ,
∂2wL

n

∂x2 ,
∂3wL

n

∂x3 and
∂4wL

n

∂x4 , it is seen that ~g, ∂~g∂x ,
∂2~g
∂x2 ,

∂3~g
∂x3 ,

∂4~g
∂x4 are bounded by CBLn (x), C

BL
n (x)√
εn

, C
BL

n (x)
εn

, C
∑n
q=1

BL
q (x)

ε
3
2
q

, Cε−1
n

∑n
q=1

BL
q (x)

εq

respectively. Introducing the functions ~ψ±(x, t) = CBLn (x)~e ± ~q(x, t), it is
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easy to see that ~ψ±(0, t) = C~e ± ~q(0, t) ≥ ~0, ~ψ±(1, t) = CBLn (1)~e ± ~0 ≥ ~0,
~ψ±(x, 0) = CBLn (x)~e ± ~0 ≥ ~0 and

(~L~ψ±)i(x, t) = C(−εi
α

εn
+

n
∑

j=1

aij)B
L
n (x) ± CBLn (x) ≥ 0, as− εi

εn
≥ −1.

Applying Lemma 1, it follows that ||~q(x, t)|| ≤ CBLn (x). Defining barrier functions

~θ±(x, t) = Cε
−l
2
n BLn (x)~e ± ∂l~q

∂xl , l = 1, 2 and using Lemmas 3.3 and 3.4 for the

problem satisfied by ~q, the bounds required for ∂~q
∂x and ∂2~q

∂x2 are obtained. Then it

is easy to derive the bounds for ∂l~q
∂xl , l = 3, 4 from the defining equation of ~q. By

induction, the following bounds for ~r are obtained for i = 1, . . . , n− 1,

|∂ri
∂x

| ≤ C

[

BLi (x)√
εi

+ · · · +
BLn−1(x)√
εn−1

]

,

|∂
2ri
∂x2

| ≤ C

[

BLi (x)

εi
+ · · · +

BLn−1(x)

εn−1

]

,

|∂
3ri
∂x3

| ≤ C





BL1 (x)

ε
3
2
1

+ · · · +
BLn−1(x)

ε
3
2
n−1



 ,

|εi
∂4ri
∂x4

| ≤ C

[

BL1 (x)

ε1
+ · · · +

BLn−1(x)

εn−1

]

.

Combining the bounds for the derivatives of qi and ri it follows that, for i =
1, 2, . . . , n

|∂
lwLi
∂xl

| ≤ |∂
lqi
∂xl

| + |∂
lri
∂xl

| ≤ C
∑n

q=i

BLq (x)

ε
l
2
q

for l = 1, 2,

|∂
3wLi
∂x3

| ≤ C
∑n
q=1

BLq (x)

ε
3
2
q

,

|εi
∂4wLi
∂x4

| ≤ C
∑n

q=1

BLq (x)

εq
.

Recalling the bounds on the derivatives of wLn completes the proof of the lemma
for the system of n equations.
A similar proof of the analogous results for the boundary layer functions wRi holds.

�

In the following lemma sharper estimates of the smooth component are presented.

Lemma 4.4. Let assumptions (3) - (9) hold. Then the smooth component ~v of
the solution ~u of (1) satisfies for all i = 1, · · · , n and all (x, t) ∈ Ω

|∂
lvi
∂xl

(x, t)| ≤ C



1 +

n
∑

q=i

Bq(x)

ε
l
2−1
q



 for l = 0, 1, 2, 3.

Proof. Define two barrier functions

~ψ±(x, t) = C[1 +Bn(x)]~e ± ∂l~v

∂xl
(x, t), l = 0, 1, 2 and (x, t) ∈ Ω.
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Using Lemma 3.4, it follows that, for a proper choice of C, with ~v = ~u0 on Γ,

ψ±
i (0, t) = C ± ∂lvi

∂xl
(0, t) ≥ 0

ψ±
i (1, t) = C ± ∂lvi

∂xl
(1, t) ≥ 0

ψ±
i (x, 0) = C[1 +Bn(x)] ± ∂lvi

∂xl
≥ 0

and (~L~ψ±)i(x, t) ≥ 0.
By Lemma 3.1

(40) |∂
lvi
∂xl

(x, t)| ≤ C[1 +Bn(x)] for l = 0, 1, 2.

Consider the equation

(41) (~L(
∂2~v

∂x2
))i =

∂2fi
∂x2

− 2
∂
∑n
j=1 aij

∂x

∂vj
∂x

−
∂2

∑n
j=1 aij

∂x2
vj

with

(42)
∂2vi
∂x2

(0, t) = 0,
∂2vi
∂x2

(1, t) = 0,
∂2vi
∂x2

(x, 0) =
∂2φB,i(x)

∂x2
.

For convenience, let ~p denote ∂2~v
∂x2 . Then

(43) ~ L~p = ~g with ~p(0, t) = ~0, ~p(1, t) = ~0, ~p(x, 0) = ~s

where

gi =
∂2fi
∂x2

− 2
∂
∑n

j=1 aij

∂x

∂vj
∂x

−
n
∑

j=1

∂2aij
∂x2

vj and si =
∂2φB,i(x)

∂x2
.

Let ~q and ~r be the smooth and singular components of ~p given by

(44) ~L~q = ~g with ~q(0, t) = ~p0(0, t), ~q(1, t) = ~p0(1, t), ~q(x, 0) = ~p(x, 0)

where ~p0 is the solution of the reduced problem

∂~p0
∂t

+A~p0 = ~g with ~p0(x, 0) = ~p(x, 0) = ~s.

Now,

(45) ~L~r = ~0, with ~r(0, t) = −~q(0, t), ~r(1, t) = −~q(1, t), ~r(x, 0) = ~0.

Using Lemma 3.4 and Lemma 4.3, it follows that, for i = 1, . . . , n and (x, t) ∈ Ω,

|∂qi
∂x

(x, t)| ≤ C

and

|∂ri
∂x

(x, t)| ≤ C[
Bi(x)√
εi

+ · · · +
Bn(x)√
εn

].

Hence, for (x, t) ∈ Ω and i = 1, . . . , n,

(46) |∂
3vi
∂x3

| = |∂pi
∂x

| ≤ C[1 +
Bi(x)√
εi

+ · · · +
Bn(x)√
εn

].



190 V. FRANKLIN, M. PARAMASIVAM, J.J.H. MILLER, AND S. VALARMATHI

Then (40) and (46), for l = 0, 1, 2, 3 and (x, t) ∈ Ω, lead to

|∂
lvi
∂xl

| ≤ C[1 + ε
1− l

2

i Bi(x) + · · · + ε
1− l

2
n Bn(x)].

�

Remark : It is interesting to note that the above estimate reduces to the estimate
of the smooth component of the solution of the scalar problem given in [7] when
n = 1.

5. The Shishkin mesh

A piecewise uniform Shishkin mesh with M × N mesh-intervals is now con-

structed. Let ΩMt = {tk}Mk=1, ΩNx = {xj}N−1
j=1 , Ω

M

t = {tk}Mk=0, Ω
N

x =

{xj}Nj=0, ΩM,N = ΩMt × ΩNx , Ω
M,N

= Ω
M

t × Ω
N

x and ΓM,N = Γ ∩ Ω
M,N

.

The mesh Ω
M

t is chosen to be a uniform mesh with M mesh-intervals on [0, T ].

The mesh Ω
N

x is a piecewise-uniform mesh on [0, 1] obtained by dividing [0, 1] into
2n+ 1 mesh-intervals as follows

[0, σ1] ∪ · · · ∪ (σn−1, σn] ∪ (σn, 1 − σn] ∪ (1 − σn, 1 − σn−1] ∪ · · · ∪ (1 − σ1, 1].

The n parameters σr, which determine the points separating the uniform meshes,
are defined by σ0 = 0, σn+1 = 1

2 and, for r = 1, . . . , n,

(47) σr = min

{

σr+1

2
, 2

√

εr
α

lnN

}

.

Clearly

0 < σ1 < . . . < σn ≤ 1

4
,

3

4
≤ 1 − σn < . . . < 1 − σ1 < 1.

Then, on the sub-interval (σn, 1 − σn] a uniform mesh with N
2 mesh-intervals

is placed, on each of the sub-intervals (σr, σr+1] and (1 − σr+1, 1 − σr], r =
1, . . . , n − 1, a uniform mesh of N

2n−r+2 mesh-intervals is placed and on both of

the sub-intervals [0, σ1] and (1 − σ1, 1] a uniform mesh of N
2n+1 mesh-intervals

is placed. In practice it is convenient to take

(48) N = 2n+p+1

for some natural number p. It follows that, for 2 ≤ r ≤ n, in the sub-interval
[σr−1, σr] there are N/2n−r+3 = 2r+p−2 mesh-intervals and in each of [0, σ1] and
[σ1, σ2] there are N/2n+1 = 2p. This construction leads to a class of 2n piecewise
uniform Shishkin meshes ΩM,N . Note that these meshes are not the same as those
constructed in [3].
From the above construction it is clear that the transition points {σr, 1−σr}nr=1 are
the only points at which the mesh-size can change and that it does not necessarily
change at each of these points. The following notation is introduced: if xj = σr,
then h−r = xj − xj−1, h

+
r = xj+1 − xj , J = {σr : h+r 6= h−r }. In general, for each

point xj in the mesh-interval (σr−1, σr ],

(49) xj − xj−1 = 2n−r+3N−1(σr − σr−1).

Also, for xj ∈ (σn,
1
4 ], xj −xj−1 = N−1(1−4σn) and for xj ∈ (0, σ1], xj −xj−1 =

2n+1N−1σ1. Thus, for 1 ≤ r ≤ n, the change in the mesh-size at the point xj = σr
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is

(50) h+r − h−r = 2n−r+3N−1(dr − dr−1),

where

(51) dr =
σr+1

2
− σr

with the convention d0 = 0. Notice that dr ≥ 0, that ΩM,N is a classical uniform
mesh when dr = 0 for all r = 1 . . . n and, from (47), that

(52) σr ≤ C
√
εr lnN, 1 ≤ r ≤ n.

It follows from (49) and (52) that for r = 1, . . . ,n,

(53) h−r + h+r ≤ C
√
εr+1N

−1 lnN.

Also

(54) σr = 2−(s−r+1)σs+1 when dr = · · · = ds = 0, 1 ≤ r ≤ s ≤ n.

The results in the following lemma are used later.

Lemma 5.1. Assume that dr > 0 for some r, 1 ≤ r ≤ n. Then the following
inequalities hold

(55) BLr (1 − σr) ≤ BLr (σr) = N−2.

(56) x
(s)
r−1,r ≤ σr − h−r for 0 < s ≤ 2, 1 < r ≤ n.

(57) BLq (σr − h−r ) ≤ CBLq (σr) for 1 ≤ r ≤ q ≤ n.

(58)
BLq (σr)√

εq
≤ C

1√
εr lnN

for 1 ≤ q ≤ n, 1 ≤ r ≤ n.

Analogous results hold for BRr .

Proof. The proof is given in [8]. �

6. The discrete problem

In this section a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1), which is shown later to be first
order parameter-uniform in time and essentially second order parameter-uniform
in the space variable.

The discrete initial-boundary value problem is now defined on any mesh by the
finite difference method

(59) D−
t
~U − Eδ2x

~U + A~U = ~f on ΩM,N , ~U = ~u on ΓM,N .

This is used to compute numerical approximations to the exact solution of (1). It
is assumed henceforth that the mesh is a Shishkin mesh, as defined in the previous
section. Note that (59), can also be written in the operator form

~LM,N ~U = ~f on ΩM,N , ~U = ~u on ΓM,N ,

where
~LM,N = ID−

t − Eδ2x +A

and D−
t , δ

2
x, D

+
x and D−

x are the difference operators

D−
t
~U(xj , tk) =

~U(xj , tk) − ~U(xj , tk−1)

tk − tk−1
,
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δ2x~U(xj , tk) =
D+
x
~U(xj , tk) −D−

x
~U(xj , tk)

(xj+1 − xj−1)/2
,

D+
x
~U(xj , tk) =

~U(xj+1, tk) − ~U(xj , tk)

xj+1 − xj
,

D−
x
~U(xj , tk) =

~U(xj , tk) − ~U(xj−1, tk)

xj − xj−1
.

For any function ~Z defined on the Shishkin mesh Ω
M,N

, we define

||~Z|| = max
i

max
j,k

|Zi(xj , tk)|.
The following discrete results are analogous to those for the continuous case.

Lemma 6.1. Let assumptions (3) - (9) hold. Then, for any vector-valued mesh

function ~Ψ, the inequalities ~Ψ ≥ ~0 on ΓM,N and ~LM,N ~Ψ ≥ ~0 on ΩM,N imply

that ~Ψ ≥ ~0 on Ω
M,N

.

Proof. Let i∗, j∗, k∗ be such that Ψi∗(xj∗ , tk∗) = mini minj,k Ψi(xj , tk) and assume
that the lemma is false. Then Ψi∗(xj∗ , tk∗) < 0 . From the hypotheses we have
j∗ 6= 0, N and Ψi∗(xj∗ , tk∗)−Ψi∗(xj∗ , tk∗−1) ≤ 0, Ψi∗(xj∗ , tk∗)−Ψi∗(xj∗−1, tk∗) ≤
0, Ψi∗(xj∗+1, tk∗) − Ψi∗(xj∗ , tk∗) ≥ 0, so D−

t Ψi∗(xj∗ , tk∗) ≤ 0, δ2xΨi∗(xj∗ , tk∗) >
0. It follows that

(

~LM,N ~Ψ
)

i∗
(xj∗ , tk∗) = D−

t Ψi∗(xj∗ , tk∗) − εi∗δ2xΨi∗(xj∗ , tk∗)

+

n
∑

q=1

ai∗, q(xj∗ , tk∗)Ψq(xj∗ , tk∗) < 0,

which is a contradiction, as required. �

An immediate consequence of this is the following discrete stability result.

Lemma 6.2. Let assumptions (3) - (9) hold. Then, for any vector-valued mesh

function ~Ψ on Ω
M,N

and i = 1, . . . , n,

|Ψi(xj , tk)| ≤ max

{

||~Ψ||ΓM,N ,
1

α
||~LM,N ~Ψ||

}

.

Proof. Define the two functions

~Θ±(xj , tk) = max{||~Ψ||ΓM,N ,
1

α
|| ~LM,N ~Ψ||}~e± ~Ψ(xj , tk)

where ~e = (1, . . . , 1). Using the properties of A it is not hard to verify that ~Θ± ≥ ~0

on ΓM,N and ~LM,N ~Θ± ≥ ~0 on ΩM,N . It follows from Lemma 6.1 that ~Θ± ≥ ~0 on

Ω
M,N

. �

The following comparison principle will be used in the proof of the error estimate.

Lemma 6.3. Assume that, for each i = 1, . . . , n, the vector-valued mesh functions
~Φ and ~Z satisfy

|Zi| ≤ Φi on ΓM,N and |(~LM,N ~Z)i| ≤ (~LM,N ~Φ)i on ΩM,N .

Then, for each i = 1, . . . , n,

|Zi| ≤ Φi on Ω
M,N

.
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Proof. Define the two mesh functions ~Ψ± by

~Ψ± = ~Φ ± ~Z.

Then, for each i = 1, . . . , n, Ψ±
i satisfies

Ψ±
i ≥ 0 on ΓM,N and (~LM,N ~Ψ±)i ≥ 0 on ΩM,N .

The result follows from an application of Lemma 6.1. �

7. The local truncation error

From Lemma 6.2, it is seen that in order to bound the error ~U − ~u, it suffices to

bound ~LM,N(~U − ~u). But this expression satisfies, for (xj , tk) ∈ ΩM,N ,

~LM,N(~U − ~u) = ~LM,N(~U) − ~LM,N (~u) =
~f − ~LM,N (~u) = ~L(~u) − ~LM,N (~u) = (~L − ~LM,N)~u.

It follows that

~LM,N(~U − ~u) = (
∂

∂t
−D−

t )~u − E(
∂2

∂x2
− δ2x)~u.

Let ~V , ~WL, ~WR be the discrete analogues of ~v, ~wL, ~wR respectively. Then, similarly,

~LM,N(~V − ~v) = (
∂

∂t
−D−

t )~v − E(
∂2

∂x2
− δ2x)~v,

~LM,N( ~WL − ~wL) = (
∂

∂t
−D−

t )~wL − E(
∂2

∂x2
− δ2x)~wL,

~LM,N ( ~WR − ~wR) = (
∂

∂t
−D−

t )~wR − E(
∂2

∂x2
− δ2x)~wR,

and so, for each i = 1, . . . , n,

(60) |(~LM,N (~V − ~v))i| ≤ |( ∂
∂t

−D−
t )vi| + |εi(

∂2

∂x2
− δ2x)vi|,

(61) |(~LM,N( ~WL − ~wL))i| ≤ |( ∂
∂t

−D−
t )wLi | + |εi(

∂2

∂x2
− δ2x)wLi |,

(62) |(~LM,N ( ~WR − ~wR))i| ≤ |( ∂
∂t

−D−
t )wRi | + |εi(

∂2

∂x2
− δ2x)wRi |.

Thus, the smooth and singular components of the local truncation error can be
treated separately. Note that, for any smooth function ψ and for each (xj , tk) ∈
ΩM,N , the following distinct estimates of the local truncation error hold:

(63) |( ∂
∂t

−D−
t )ψ(xj , tk)| ≤ C(tk − tk−1) max

s ∈ [tk−1,tk]
|∂

2ψ

∂t2
(xj , s)|,

(64) |( ∂
∂x

−D+
x )ψ(xj , tk)| ≤ C(xj+1 − xj) max

s ∈ [xj ,xj+1]
|∂

2ψ

∂x2
(s, tk)|,

(65) |( ∂
2

∂x2
− δ2x)ψ(xj , tk)| ≤ C max

s ∈ Ij
|∂

2ψ

∂x2
(s, tk)|,

(66) |( ∂
2

∂x2
− δ2x)ψ(xj , tk)| ≤ C(xj+1 − xj−1) max

s∈Ij
|∂

3ψ

∂x3
(s, tk)|.
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Furthermore, if xj /∈ J , then

(67) |( ∂
2

∂x2
− δ2x)ψ(xj , tk)| ≤ C(xj+1 − xj−1)2 max

s∈Ij
|∂

4ψ

∂x4
(s, tk)|.

Here Ij = [xj−1, xj+1].

8. Error estimate

The proof of the error estimate is broken into two parts. In the first a theorem
concerning the smooth part of the error is proved. Then the singular part of the
error is considered. A barrier function is now constructed, which is used in both
parts of the proof.
For each xj = σr ∈ J , introduce a piecewise linear polynomial θr on Ω, defined by

θr(x) =















x

σr
, 0 ≤ x ≤ σr.

1, σr < x < 1 − σr.
1 − x

σr
, 1 − σr ≤ x ≤ 1.

It is not hard to verify that for any xj ∈ ΩM,N

(68) (~LM,Nθr~e)i(xj) ≥







αθr(xj), if xj /∈ J

α+
2εi

σr(h
−
r + h+r )

, if xj ∈ J, xj ∈ {σr, 1 − σr}.

Now, define the barrier function ~Φ by

(69) ~Φ(xj , tk) = C[M−1 + (N−1 lnN)2 + (N−1 lnN)2
∑

{r: σr∈J}
θr(xj)]~e,

where C is any sufficiently large constant.

Then, on ΩM,N , ~Φ satisfies

(70) 0 ≤ Φi(xj , tk) ≤ C(M−1 + (N−1 lnN)2), 1 ≤ i ≤ n.

Also, for xj /∈ J ,

(71) (~LM,N ~Φ)i(xj , tk) ≥ C(M−1 + (N−1 lnN)2)

and, for xj ∈ J, xj ∈ {σr, 1 − σr}, using (52), (53) and (68),

(72) (~LM,N ~Φ)i(xj , tk) ≥ C(M−1 + (N−1 lnN)2 +
εi√
εrεr+1

N−1).

The following theorem gives the estimate for the smooth component of the error.

Theorem 8.1. Let assumptions (3) - (9) hold. Let ~v denote the smooth component

of the exact solution from (1) and ~V the smooth component of the discrete solution
from (59). Then

(73) ||~V − ~v|| ≤ C(M−1 + (N−1 lnN)2).

Proof. By the comparison principle in Lemma 6.3 it suffices to show that, for all
i, j, k and some C,

(74) |(~LM,N(~V − ~v))i(xj , tk)| ≤ (~LM,N ~Φ)i(xj , tk).

For each mesh point xj there are two possibilities: either xj /∈ J or xj ∈ J .
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If xj /∈ J , apply Lemma 3.4(a) with l = 2 and (63) to the t-derivative and apply
Lemma 3.4(b) with l = 4 and (67) to the x- derivative to get

(75)
|(~LM,N (~V − ~v))i(xj , tk)| ≤ C[tk − tk−1 + (xj+1 − xj−1)2]

≤ C(M−1 + (N−1 lnN)2).

Then (71) and (75) imply (74).
On the other hand, if xj ∈ J , then xj ∈ {σr, 1 − σr}, for some r, 1 ≤ r ≤ n. Here
the argument for xj = σr is given. For xj = 1 − σr it is analogous.
If xj = σr ∈ J , apply Lemma 3.4(a) with l = 2 and (63) to the t-derivative, and
apply Lemma 4.4 with l = 3 and (66) to the x- derivative to get

|(~LM,N(~V − ~v))i(xj , tk)| ≤ C[tk − tk−1 + εi(xj+1 − xj−1)(1 +

n
∑

q=i

Bq(xj−1)
√
εq

)],

so, since xj−1 = σr − h−r ,

(76) |(~LM,N(~V − ~v))i(xj , tk)| ≤ C[M−1 + εiN
−1(1 +

n
∑

q=i

Bq(σr − h−r )√
εq

)].

For each r, 1 ≤ r ≤ n there are at most two possibilities: either i ≥ r or i ≤ r − 1.

If i ≥ r, then
∑n
q=i

Bq(σr−h−
r )√

εq
≤ C√

εi
≤ C√

εr
. Substituting this into (76) gives

(77) |(~LM,N (~V − ~v))i(xj , tk)| ≤ C[M−1 +
εi√
εr
N−1].

(72) and (77) imply (74).
If i ≤ r − 1, which arises only if r ≥ 1, there are two possibilities: either dr > 0 or
dr = 0 and dr−1 > 0, because the case dr = dr−1 = 0 cannot occur for xj = σr ∈ J .
Since xj−1 = σr−h−r and σr−h−r <

1
2 , Bq(xj−1) = Bq(σr−h−r ) = BLq (σr−h−r ) +

BRq (σr − h−r ) ≤ 2BLq (σr − h−r ). Then
∑n

q=i
Bq(σr−h−

r )√
εq

≤ 2
∑n
q=i

BL
q (σr−h−

r )
√
εq

.

If dr > 0, then using (27) in Lemma 4.2 and (56) in Lemma 5.1 give
BL

q (σr−h−
r )

√
εq

≤
BL

r (σr−h−
r )√

εr
for 1 ≤ q ≤ r. Hence

∑n
q=i

Bq(σr−h−
r )√

εq
≤ C√

εr
. Substituting this into (76)

gives

(78) |(~LM,N (~V − ~v))i(xj , tk)| ≤ C[M−1 +
εi√
εr
N−1].

(72) and (78) imply (74).
If dr = 0 and dr−1 > 0 then using (27) and the fact that σr − h−r ≥ σr−1 ≥
xq,r−1, 1 ≤ q ≤ r − 2 give

BL
q (σr−h−

r )
√
εq

≤ BL
r−1(σr−h−

r )√
εr−1

for 1 ≤ q ≤ r − 1. Hence

∑n
q=i

BL
q (σr−h−

r )
√
εq

≤ C
∑n
q=r−1

BL
q (σr−1)√

εq
≤ C[

BL
r−1(σr−1)√
εr−1

+ 1√
εr

]

≤ C[ N−2

√
εr−1

+ 1√
εr

].

Substituting this into (76) gives

(79)

|(LM,N (~V − ~v))i(xj , tk)| ≤ C[M−1 + εi√
εr
N−1 + εi√

εr−1
N−3]

≤ C[M−1 + εi√
εr
N−1].

(72) and (79) imply (74). This completes the proof. �
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In order to estimate the singular component of the error the following four lemmas
are required.

Lemma 8.2. Assume that xj /∈ J . Let assumptions (3) - (9) hold. Then, on
ΩM,N , for each 1 ≤ i ≤ n, the following estimates hold

(80) |(~LM,N( ~WL − ~wL))i(xj , tk)| ≤ C(M−1 +
(xj+1 − xj−1)2

ε1
).

An analogous result holds for the ~WR − ~wR.

Proof. Since xj /∈ J , from (67) and Lemma 4.3, it follows that

|(~LM,N( ~WL − ~wL))i(xj , tk)| = |((( ∂∂t −D−
t ) − E( ∂2

∂x2 − δ2x))~wL)i(xj , tk)|

≤ C(M−1 + (xj+1 − xj−1)2 max
s ∈ Ij

n
∑

q = 1

BLq (s)

εq
)

≤ C(M−1 +
(xj+1−xj−1)

2

ε1
)

as required. �

The following decompositions of the singular components wLi are used in the next
lemma

(81) wLi =

r+1
∑

m=1

wi,m,

where the components wi,m are defined by

wi,r+1 =

{

p
(s)
i on [0, x

(s)
r,r+1)

wLi otherwise

and, for each m, r ≥ m ≥ 2,

wi,m =











p
(s)
i on [0, x

(s)
m−1,m)

wLi −
r+1
∑

q=m+1

wi,q otherwise

and

wi,1 = wLi −
r+1
∑

q=2

wi,q on [0, 1].

Here the polynomials p
(s)
i , for s = 3/2 and s = 1, are defined by

p
(3/2)
i (x, t) =

3
∑

q=0

∂qwLi
∂xq

(x
(3/2)
r,r+1, t)

(x− x
(3/2)
r,r+1)q

q!

and

p
(1)
i (x, t) =

4
∑

q=0

∂qwLi
∂xq

(x
(1)
r,r+1, t)

(x − x
(1)
r,r+1)q

q!
.

Notice that the decomposition (81) depends on the choice of the polynomials p
(s)
i

and that the x
(s)
i,j are defined by (25). The following lemma provides estimates of

the derivatives of the components in the decomposition (81).
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Lemma 8.3. Assume that dr > 0 for some r, 1 ≤ r ≤ n. Let assumptions (3) - (9)
hold. Then, for each 1 ≤ i ≤ n, the components in the decomposition (81) satisfy
the following estimates for each q and r, 1 ≤ q ≤ r, and all (xj , tk) ∈ ΩM,N ,

|∂
2wi,q

∂x2 (xj , tk)| ≤ C min{ 1
εq
, 1
εi
}BLq (xj),

|∂
3wi,q

∂x3 (xj , tk)| ≤ C min{ 1
εi
√
εq
, 1

ε
3/2
q

}BLq (xj),

|∂
3wi,r+1

∂x3 (xj , tk)| ≤ C min{∑n
q=r+1

BL
q (xj)

εi
√
εq
,
∑n

q=r+1

BL
q (xj)

ε
3/2
q

},

|∂
4wi,q

∂x4 (xj , tk)| ≤ C
BL

q (xj)

εiεq
,

|∂
4wi,r+1

∂x4 (xj , tk)| ≤ C
∑n

q=r+1

BL
q (xj)

εiεq
.

Analogous results hold for the wRi and their derivatives.

Proof. Consider first the decomposition (81) corresponding to the polynomials

p
(3/2)
i .

From the above definitions it follows that, for each m, 1 ≤ m ≤ r, wi,m =

0 on [x
(3/2)
m,m+1, 1].

To establish the bounds on the third derivatives it is seen that: for x ∈ [x
(3/2)
r,r+1, 1],

Lemma 4.3 and x ≥ x
(3/2)
r,r+1 imply that

|∂
3wi,r+1

∂x3
(x, t)| = |∂

3wLi
∂x3

(x, t)| ≤ C
n
∑

q=1

BLq (x)

ε
3/2
q

≤ C
n
∑

q=r+1

BLq (x)

ε
3/2
q

;

for x ∈ [0, x
(3/2)
r,r+1], Lemma 4.3 and x ≤ x

(3/2)
r,r+1 imply that

|∂
3wi,r+1

∂x3
(x, t)| = |∂

3wLi
∂x3

(x
(3/2)
r,r+1, t)|

≤ C
n
∑

q=1

BLq (x
(3/2)
r,r+1)

ε
3/2
q

≤ C
n
∑

q=r+1

BLq (x
(3/2)
r,r+1)

ε
3/2
q

≤ C
n
∑

q=r+1

BLq (x)

ε
3/2
q

;

and for each m = r, . . . , 2, it follows that

for x ∈ [x
(3/2)
m,m+1, 1],

∂3wi,m

∂x3 = 0;

for x ∈ [x
(3/2)
m−1,m, x

(3/2)
m,m+1], Lemma 4.3 implies that

|∂
3wi,m
∂x3

(x, t)| ≤ |∂
3wLi
∂x3

(x, t)| +
r+1
∑

q=m+1

|∂
3wi,q
∂x3

(x, t)|

≤ C

n
∑

q=1

BLq (x)

ε
3/2
q

≤ C
BLm(x)

ε
3/2
m

, using (27);

for x ∈ [0, x
(3/2)
m−1,m], Lemma 4.3 and x ≤ x

(3/2)
m−1,m imply that

|∂
3wi,m
∂x3

(x, t)| = |∂
3wLi
∂x3

(x
(3/2)
m−1,m, t)|

≤ C

n
∑

q=1

BLq (x
(3/2)
m−1,m)

ε
3/2
q

= C
BLm(x

(3/2)
m−1,m)

ε
3/2
m

≤ C
BLm(x)

ε
3/2
m

, using (25) and (27);

for x ∈ [x
(3/2)
1,2 , 1],

∂3wi,1

∂x3 = 0;
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for x ∈ [0, x
(3/2)
1,2 ], Lemma 4.3 implies that

|∂
3wi,1
∂x3

(x, t)| ≤ |∂
3wLi
∂x3

(x, t)| +
r+1
∑

q=2

|∂
3wi,q
∂x3

(x, t)| ≤ C
n
∑

q=1

BLq (x)

ε
3/2
q

≤ C
BL1 (x)

ε
3/2
1

.

For the bounds on the second derivatives note that, for each m, 1 ≤ m ≤ r : for

x ∈ [x
(3/2)
m,m+1, 1],

∂2wi,m

∂x2 = 0;

for x ∈ [0, x
(3/2)
m,m+1],

∫ x
(3/2)
m,m+1

x

∂3wi,m
∂x3

(s, t)ds =
∂2wi,m
∂x2

(x
(3/2)
m,m+1, t) −

∂2wi,m
∂x2

(x, t) = −∂
2wi,m
∂x2

(x, t)

and so

|∂
2wi,m
∂x2

(x, t)| ≤
∫ x

(3/2)
m,m+1

x

|∂
3wi,m
∂x3

(s, t)|ds ≤ C

ε
3/2
m

∫ x
(3/2)
m,m+1

x

BLm(s)ds ≤ C
BLm(x)

εm
.

This completes the proof of the estimates for s = 3/2.

Secondly, consider the decomposition (81) corresponding to the polynomials p
(1)
i .

From the above definitions it follows that, for each m, 1 ≤ m ≤ r, wi,m =

0 on [x
(1)
m,m+1, 1].

To establish the bounds on the fourth derivatives it is seen that:
for x ∈ [x

(1)
r,r+1, 1], Lemma 4.3, (27) and x ≥ x

(1)
r,r+1 imply that

|εi
∂4wi,r+1

∂x4
(x, t)| = |εi

∂4wLi
∂x4

(x, t)| ≤ C

n
∑

q=1

BLq (x)

εq
≤ C

n
∑

q=r+1

BLq (x)

εq
;

for x ∈ [0, x
(1)
r,r+1], Lemma 4.3, (27) and x ≤ x

(1)
r,r+1 imply that

|εi
∂4wi,r+1

∂x4
(x, t)| = |εi

∂4wLi
∂x4

(x
(1)
r,r+1, t)| ≤

n
∑

q=1

BLq (x
(1)
r,r+1)

εq

≤ C

n
∑

q=r+1

BLq (x
(1)
r,r+1)

εq
≤ C

n
∑

q=r+1

BLq (x)

εq
;

and for each m = r, . . . , 2, it follows that

for x ∈ [x
(1)
m,m+1, 1],

∂4wi,m

∂x4 = 0;

for x ∈ [x
(1)
m−1,m, x

(1)
m,m+1], Lemma 4.3 implies that

|εi
∂4wi,m
∂x4

(x, t)| ≤ |εi
∂4wLi
∂x4

(x, t)| +

r+1
∑

q=m+1

|εi
∂4wi,q
∂x4

(x, t)|

≤ C

n
∑

q=1

BLq (x)

εq
≤ C

BLm(x)

εm
, using (27);

for x ∈ [0, x
(1)
m−1,m], Lemma 4.3 and x ≤ x

(1)
m−1,m imply that

|εi
∂4wi,m
∂x4

(x, t)| = |εi
∂4wLi
∂x4

(x
(1)
m−1,m, t)| ≤ C

n
∑

q=1

BLq (x
(1)
m−1,m)

εq

≤ C
BLm(x

(1)
m−1,m)

εm
≤ C

BLm(x)

εm
, using (25) and (27);
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for x ∈ [x
(1)
1,2, 1],

∂4wi,1

∂x4 = 0;

for x ∈ [0, x
(1)
1,2], Lemma 4.3 implies that

|εi
∂4wi,1
∂x4

(x, t)| ≤ |εi
∂4wLi
∂x4

(x, t)| +

r+1
∑

q=2

|εi
∂4wi,q
∂x4

(x, t)|

≤ C

n
∑

q=1

BLq (x)

εq
≤ C

BL1 (x)

ε1
.

For the bounds on the second and third derivatives note that, for eachm, 1 ≤ m ≤ r:

for x ∈ [x
(1)
m,m+1, 1],

∂2wi,m

∂x2 = 0 =
∂3wi,m

∂x3 ;

for x ∈ [0, x
(1)
m,m+1],

∫ x
(1)
m,m+1

x

εi
∂4wi,m
∂x4

(s, t)ds = εi
∂3wi,m
∂x3

(x
(1)
m,m+1, t)−εi

∂3wi,m
∂x3

(x, t) = −εi
∂3wi,m
∂x3

(x, t)

and so

|εi
∂3wi,m
∂x3

(x, t)| ≤
∫ x

(1)
m,m+1

x

|εi
∂4wi,1
∂x4

(s, t)|ds ≤ C

εm

∫ x
(1)
m,m+1

x

BLm(s)ds ≤ C
BLm(x)√
εm

.

In a similar way, it can be shown that

|εi
∂2wi,m
∂x2

(x, t)| ≤ CBLm(x).

The proof for the wRi and their derivatives is similar. �

Lemma 8.4. Assume that dr > 0 for some r, 1 ≤ r ≤ n. Let assumptions (3) -
(9) hold. Then, if xj /∈ J,

(82) |(~LM,N ( ~WL − ~wL))i(xj , tk)| ≤ C[M−1 +BLr (xj−1) +
(xj+1 − xj−1)2

εr+1
]

and if xj ∈ J

(83) |(~LM,N( ~WL − ~wL))i(xj , tk)| ≤ C[M−1 + N−2 +
εi√
εrεr+1

N−1].

Analogous results hold for the ~WR − ~wR.

Proof. By (63) and Lemma 4.3

(84) |εi(
∂

∂t
−D−

t )wLi (xj , tk)| ≤ C(tk − tk−1).

Suppose first that xj /∈ J . Then, by (65), (67) and Lemma 8.3
(85)

|εi( ∂2

∂x2 − δ2x)wLi (xj , tk)|
≤ C[

∑r
q=1 maxs∈Ij |εi ∂

2wi,q

∂x2 (s, tk)| + (xj+1 − xj−1)2 maxs∈Ij |εi ∂
4wi,r+1

∂x4 (s, tk)|]
≤ C[

∑r
q=1 min{1, εiεq }B

L
q (xj−1) + (xj+1 − xj−1)2

∑n
q=r+1

BL
q (xj−1)

εq
]

≤ C[BLr (xj−1) +
(xj+1−xj−1)

2

εr+1
].

Then (82) follows from (84) and (85).
Suppose now that xj = σr ∈ J



200 V. FRANKLIN, M. PARAMASIVAM, J.J.H. MILLER, AND S. VALARMATHI

(an analogous argument holds if xj = 1 − σr ∈ J). Then, by Lemma 8.3 and the
expressions (65) and (66),

|εi( ∂2

∂x2 − δ2x)wLi (xj , tk)|
≤ C[

∑r
q=1 maxs∈Ij |εi ∂

2wi,q

∂x2 (s, tk)| + (xj+1 − xj−1) maxs∈Ij |εi ∂
3wi,r+1

∂x3 (s, tk)|]
≤ C[

∑r
q=1 min{1, εiεq }B

L
q (σr − h−r ) + (h−r + h+r )

∑n
q=r+1 min{1, εiεq }

BL
q (σr−h−

r )
√
εq

].

When i ≥ r + 1 replace both minima by the upper bound 1 and get, using (19),
(57),(58),(24) and (53),

|εi( ∂2

∂x2 − δ2x)wLi (xj , tk)| ≤ C[BLr (σr − h−r ) + (h−r + h+r )
∑n

q=r+1

BL
q (σr)√
εq

]

≤ C[BLr (σr) +
h−
r +h+

r√
εr lnN

] ≤ C[N−2 +
√

εr+1

εr
N−1] ≤ C[N−2 + εi√

εrεr+1
N−1],

which is (83) for this case. On the other hand, when i ≤ r replace both minima by
the upper bound εi

εq
and get, using Lemma 5.1,

|εi( ∂2

∂x2 − δ2x)wLi (xj , tk)|
≤ C[εi

BL
r (σr−h−

r )
εr

+ (h−r + h+r )εi
∑n
q=r+1

BL
q (σr)

ε
3/2
q

]

≤ C[ εiεrN
−2 + εi√

εrεr+1
N−1] ≤ C[N−2 + εi√

εrεr+1
N−1],

which is (83) for this case. The proof for ~WR − ~wR is similar. �

Lemma 8.5. Let assumptions (3) - (9) hold. Then, on ΩM,N , for each 1 ≤ i ≤ n,
the following estimates hold

(86) |(~LM,N ( ~WL − ~wL))i(xj , tk)| ≤ C(M−1 +BLn (xj−1)).

An analogous result holds for ~WR − ~wR.

Proof. From (65) and Lemma 4.3, for each i = 1, . . . , n , it follows that on ΩM,N ,

|(~LM,N ( ~WL − ~wL))i(xj , tk)| = |((( ∂∂t −D−
t ) − E( ∂2

∂x2 − δ2x))~wL)i(xj , tk)|

≤ C(M−1 + εi

n
∑

q=i

BLq (xj−1)

εq
)

≤ C(M−1 +BLn (xj−1)).

The proof for ~WR − ~wR is similar. �

The following theorem gives the estimate of the singular component of the error.

Theorem 8.6. Let assumptions (3) - (9) hold. Let ~w denote the singular compo-

nent of the exact solution from (1) and ~W the singular component of the discrete
solution from (59). Then

(87) || ~W − ~w|| ≤ C(M−1 + (N−1 lnN)2).

Proof. Since ~w = ~wL+ ~wR, it suffices to prove the result for ~wL and ~wR separately.
Here it is proved for ~wL; a similar proof holds for ~wR.
By the comparison principle in Lemma 6.3 it suffices to show that, for all i, j, k,
and some constant C,

(88) |(~LM,N ( ~WL − ~wL))i(xj , tk)| ≤ (~LM,N ~Φ)i(xj , tk).

This is proved for each mesh point xj ∈ (0, 1) by considering separately the 4 kinds
of subinterval (a) (0, σ1), (b) [σ1, σ2), (c) [σm, σm+1) for some m, 2 ≤ m ≤ n− 1
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and (d) [σn, 1).
(a) Clearly xj /∈ J and xj+1 − xj−1 ≤ C

√
ε1N

−1 lnN. Then, Lemma 8.2 and (71)
give (88).
(b) There are 2 possibilities: (b1) d1 = 0 and (b2) d1 > 0.
(b1) Since σ1 = σ2

2 and the mesh is uniform in (0, σ2) it follows that xj /∈ J, and

xj+1 − xj−1 ≤ C
√
ε1N

−1 lnN. Then Lemma 8.2 and (71) give (88).
(b2) Either xj /∈ J or xj ∈ J.
If xj /∈ J then xj+1 − xj−1 ≤ C

√
ε2N

−1 lnN and by Lemma 5.1 BL1 (xj−1) ≤
BL1 (σ1 − h−1 ) ≤ CN−2, so Lemma 8.4 (82) with r = 1 and (71) give (88).
On the other hand, if xj ∈ J , then Lemma 8.4 (83) with r = 1 and (72) give (88).
(c) There are 3 possibilities: (c1) d1 = d2 = · · · = dm = 0, (c2) dr > 0 and
dr+1 = . . . = dm = 0 for some r, 1 ≤ r ≤ m− 1 and (c3) dm > 0.
(c1)Since σ1 = Cσm+1 and the mesh is uniform in (0, σm+1), it follows that xj /∈ J
and xj+1 − xj−1 ≤ C

√
ε1N

−1 lnN. Then Lemma 8.2 and (71) give (88).
(c2) Either xj /∈ J or xj ∈ J.
If xj /∈ J then σr+1 = Cσm+1, xj+1 − xj−1 ≤ C

√
εm+1N

−1 lnN and by Lemma

5.1 BLr (xj−1) ≤ BLr (σm− h−m) ≤ BLr (σr −h−r ) ≤ CN−2. Thus Lemma 8.4 (82) and
(71) give (88).
On the other hand, if xj ∈ J , then xj = σm, so Lemma 8.4 (83) with r = m and
(72) give (88).
(c3) Either xj /∈ J or xj ∈ J.
If xj /∈ J then xj+1 − xj−1 ≤ C

√
εm+1N

−1 lnN and by Lemma 5.1 BLm(xj−1) ≤
BLm(σm − h−m) ≤ CN−2, so Lemma 8.4 (82) with r = m and (71) give (88).
On the other hand, if xj = σm, so Lemma 8.4 (83) with r = m and (72) give (88).
(d) There are 3 possibilities: (d1) d1 = . . . = dn = 0, (d2) dr > 0 and
dr+1 = . . . = dn = 0 for some r, 1 ≤ r ≤ n− 1 and (d3) dn > 0.
(d1) Since σ1 = C and the mesh is uniform in (0, 1), it follows that xj /∈ J ,
1√
ε1

≤ C lnN and xj+1 − xj−1 ≤ CN−1. Then Lemma 8.2 and (71) give (88).

(d2) Either xj /∈ J or xj ∈ J.
If xj /∈ J then σr+1 = C, 1√

εr+1
≤ C lnN , xj+1 − xj−1 ≤ CN−1 and, by Lemma

5.1, BLr (xj−1) ≤ BLr (σn− h−n ) ≤ BLr (σr − h−r ) ≤ CN−2. Thus Lemma 8.4 (82) and
(71) give (88).
On the other hand, if xj ∈ J , then xj ∈ {σn, 1 − σn, . . . , 1 − σ1}. Thus, Lemma
8.4 (83) and (72) give (88).
(d3) By Lemma 5.1 with r = n, BLn (xj−1) ≤ BLn (σn − h−n ) ≤ CN−2. Then Lemma
8.5 and (71) give (88). �

The following theorem gives the first order in time and essentially second order in
space parameter-uniform error estimate.

Theorem 8.7. Let assumptions (3) - (9) hold. Let ~u denote the exact solution of

(1) and ~U the discrete solution of (59). Then

(89) ||~U − ~u|| ≤ C(M−1 + (N−1 lnN)2).

Proof. An application of the triangle inequality and the results of Theorems 8.1
and 8.6 lead immediately to the required result. �
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