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STABILITY AND DISPERSION ANALYSIS OF THE
STAGGERED DISCONTINUOUS GALERKIN METHOD FOR
WAVE PROPAGATION

HIU NING CHAN*, ERIC T. CHUNG* AND GARY COHEN**

Abstract. Staggered discontinuous Galerkin methods have been developed recently and are
adopted successfully to many problems such as wave propagation, elliptic equation, convection-
diffusion equation and the Maxwell’s equations. For wave propagation, the method is proved
to have the desirable properties of energy conservation, optimal order of convergence and block-
diagonal mass matrices. In this paper, we perform an analysis for the dispersion error and the
CFL constant. Our results show that the staggered method provides a smaller dispersion error
compared with classical finite element method as well as non-staggered discontinuous Galerkin
methods.
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1. Introduction

Discontinuous Galerkin method has become a class of very popular, efficient and
highly accurate methodologies for the numerical approximation of wave equations
[12, 13, 14, 15]. There are many studies in literature regarding their numerical per-
formance as well as stability and convergence analysis. However, dispersion analysis
is rarely seen despite its importance for wave propagation. The first attempt to
analyze the numerical dispersion for discontinuous Galerkin method for the scalar
wave equation has been carried out in [1], where a complete dispersion analysis
for the interior penalty, upwind and central discontinuous Galerkin methods are
performed for the numerical approximation of the wave equation in both first or-
der and second order forms. Besides, in [11], dispersion analysis for high order
discontinuous Galerkin methods applied to three dimensional Maxwell’s equations
with both centered and uncentered fluxes are carried out. Some superconvergence
results on the dispersion error are also obtained in this work.

Recently, staggered discontinuous Galerkin methods have been developed and are
adopted successfully to many problems such as wave propagation [2, 3, 4, 5, 6], ellip-
tic equation [7], convection-diffusion equation [9] and the Maxwell’s equations [§].
For the numerical simulation of waves, the method is proved to have the desirable
properties of energy conservation, optimal order of convergence and block-diagonal
mass matrices. Our aims in this paper are to estimate the CFL stability condition
corresponding to the leap-frog time discretization and derive the dispersion relation
for the staggered discontinuous Galerkin method developed in [3, 4] for wave prop-
agation. We will show that this method has a better CFL number and a smaller
dispersion error compared with the classical conforming finite element for second
order wave equation [10] as well as the upwind and central discontinuous Galerkin
method for wave equation in first order form [1].
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2. The staggered discontinuous Galerkin method

In this section, we will present the staggered discontinuous Galerkin method
developed by Chung and Engquist [3, 4] for the numerical simulation of waves.
To facilitate the stability and dispersion analysis, we consider the one-dimensional
scalar wave equations

ou 5 0p
(1) a = ¢ %7
dp  Ou

for (z,t) € (—o00,00) x [0,00), where ¢ > 0 is the scalar wave speed. Moreover,
we will consider a uniform partition. Let h > 0 be the mesh size and let z; = jh,
j=0,£1,42 - be the nodal points. We define the primal cell Ij+% = (xj,xj41).
For each primal cell Ij+%, we take a point x;.Jr% S Ij+% and define the dual cell

Il by I = ($;_1733;+1)- To simplify the analysis, we will take x;+l to be the
2 2 2
mid-point of Ij+%= that is, x;Jr% =T and consequently ij = (xjf%,:vﬂ%).
Multiplying both sides of (1) by a test function ¢, integrating on a primal cell
Iy 1 and using integration by parts yields

T+t L+

0 d
/ 8_1;¢ dr = 02{p(xj+1,t)¢(arj+1) —plzj, t)p(z;) — / l pd_j d:z:},

Similarly, multiplying both sides of (2) by a test function ¢, integrating on a dual
cell I, and using integration by parts yields

0 d
[ Gde = sy 000 y) — w00 y) - [ uGdn

The staggered discontinuous Galerkin method can be described as follows. Find
up € Uy, and pp, € W, such that

0 + ) — do

(3) /Ij ) Uthﬁdgzj C2{ph(xj 1,t) (Ij+1) ph(a:j,t)gb(xj)—/lj lph_lx da:},
d

() , 8th¢d$—’dh(wk+%,t)w($k %)—uh(xk %,t)’t/J(fL'k %)—/I;C uh—?ﬁ d:v,

for all ¢ € Uy, and ¢ € W}, and for all integers j and k.

We will now discuss the choice of the two finite element spaces U, and Wj,. Let
m > 0 be an integer, that corresponds to the degree of polynomials used for trial
and test spaces. For each given primal cell I, 1, we define R,, (I i+l ) as the space
of functions which are polynomials of degree at most m on each of the two sub-cells
(zj, 24 1) and (2,1 1, 2;41) with continuity at z; 1. Similarly, for each given dual
cell I}, we define R/ (I}) as the space of functions which are polynomials of degree
at most m on each of the two sub-cells (z),_1,xx) and (z, :C,H%) with continuity
at x;. We will state the definitions of U, and W}, in the following.

Definition 1. The two finite element spaces Uy and W}, are defined by
(1) 6 i dlr,,, € Rmllsy):
(2) v eWn if Wl € Ry, (1)

In Figure 1, typical functions in the spaces Uy, and W}, are shown for the piecewise
linear case, that is m = 1. Here, we use solid line to represent a function in U, and
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use dotted line to represent a function in Wj. In Figure 2, we show an example of
functions in U} for the piecewise quadratic case, that is m = 2.

A A A

A X A X A

Lj+1
FIGURE 1 The spaces Uy, and Wy, Wlth piecewise linear elements

(m = 1). Solid line represents a function in U}, while dotted line
represents a function in W,

A A A A A
T Tj+1
FIGURE 2 A function in the space Uh with piecewise quadratic

elements (m = 2).

In the following analysis, we will use w and p instead of uj, and p, in (3)-(4) to
simplify notations.

3. Dispersion analysis for piecewise linear elements

In this section, we will perform the dispersion analysis for the scheme (3)-(4)
with piecewise linear element, that is, m = 1.

First, we recall that on each I, 10U is linear on each subinterval [z}, Tiy1 | and
[a:j+%,:1:j+1], and is continuous at x;, 1 for each j. We denote the restriction of

won I;, 1 by ut2). We will represent each u(+2) by using the basis functions

(J+) ( +3) (g

1
NI and golj+2) defined as follows. We note that x;, 1 — B and Tjy1 are

the Radau quadrature points on the interval [z, z;, 1 ] so that the following rule

Tit3 h 3h h
/x‘ ’ g9(z) do = 3 9(%‘4—%) + 3 9(95]‘4-% - g)
is exact for all quadratic polynomial g(z). Similarly, Tip1 and x; w1+ % are the
Radau quadrature points on the interval [z, 1 xj4+1] so that the following rule

T+t h 3h h
/ 9(x) dz = gg(iﬁﬂé)‘f'gg(fﬂ#% +§)
i+
is exact for all quadratic polynomial g(z).
i1
We observe that the space Ry ([; ) has dimension three spanned by <p(J+ 2) gpéﬁr 2)

it l
and ¢§J+2) where
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(G+3)

e ', ?’ is the function with support [azj,x#%] and is linear in [xj,x#%]
with ga(_j;r%)(xj+%) =0 and gp(_j;r%)(xj_,_% -by=1

. (p((Jj 1) is the function with support [z;,z;+1] and is piecewise linear in
[zj, 2, 1] and [z, 1, ;1] with cp((JH%)(ijr%) =1 and (péj+%)(;vj+% -4y =
o (g + ) =0

. cpngr%) is the function with support [$j+% ,Zj+1] and is linear in [x#% VTjt1]

1 ipl
with gpiﬁz)(x#%) =0 and Sﬁgﬁz)(xﬁ% + %) =1

With the above basis functions, we can write
‘ i1y (el i1y (el i1y (il
wG3) = DD | D ) L D) )
G+3z)  (G+3)
We remark that there are three degrees of freedom represented by u"; *7, ug
i1
and ugﬁz) on each primal cell Ij+%’ which are the values of u at the points Tip1—
%, Tip1 and Tip1+ % respectively.
Similarly, we let p*) be the restriction of p on I i For each k, we can represent
k) (k k) (k k) (k
9 = B+ o)+
where the basis functions are defined as follows:

° <p(_kl) is the function whose support is [3319—% ,xk] such that it is linear in

[2— 1, k] with ga(fl) (zx) =0 and <p(f1) (xp — %) =1.

o cp((Jk) is the function with support [z)_1, ;1] and is piecewise linear in

w1, @x] and g, 244 3] with @7 (2) = 1 and @f (21 — &) = o (a5 +

by =o.
o ©\" is the function whose support is [Tk, )4 1] such that it is linear in

[k, Ty 2] with <p§k)(:1:k) =0 and gpgk)(xk + %) =1.

Here we remark that the zj and xp — % are the Radau quadrature points for

[%4_ 1, k] while 2, and zy, + % are the Radau quadrature points for [y, Tpysl-
Now we will show that the scheme (3)-(4) can be written as follows.

(3+3)
du’; ? 3¢2 ; ;
1 ( _ pgj) I pgj)),

dt h
(G+3) 2
duy "2 ¢ ‘ ‘ " "
Odt :%(pé])—ngj)—pgj )—|—9p(,]1 )),
1
dugﬂ 2) _ 3_@2(_p(j+1) +p(j+1))
(5) dt h —1 0 )
py 3 -5, G-%)
7 = R(muw ),
dpi’ 1 Geh) o -3 GHh) g G+
d—?f:ﬁ(uoj 2 —9u1J 2 —uoj 2 +9uf12>,
dp}” L G+Y

3 (‘+l)
S =n (Y g,
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To derive the first equation in (5), we take ¢ = gp ) i (3) and evaluate the
integrals by the Gauss-Radau quadrature rule. Since

i+1) (i 3h i+1) (j+1 i+1) (41
/spgj;)spgj;)dx =3 /@gf;>¢§a+;>dx _ /spgf;)(pgﬁ;)dx _o,
the integral of the left hand side of (3) can be computed by the following;:
/zﬂ*% duVt3) i1y 3h du(,j;r%)
. at U TR T a

J

The right hand side of (3) can be computed as follows:

— (P ) ) - /%% pV (<p(3f%))ld$

T
_ 3 Pl (1h Gy, 3h <j>)
- 2 +h 13bo T yghi
_ (J) (4
8 +8p '
Thus, we have
du(j;r%)

3c? j j
i = o)

Similarly, we take ¢ = ¢ Gt 3 )

we have

n (3) to derive the second equation in (5). First,

/1j+1 dul+3) (p(jJr%)d(E _h du((JjJr%)
a0 4 dt
for the left hand side of (3). For the right hand side,

(Wé 2 ) Tir1) (Wm ) _/‘Hlp(j)(%()ﬁr%))ldx
- (p(péj+§))(xj+l) - (pwéj+§))($j)

Tipl . 1/ Tj+1 . 1/
_/ 0 (wéﬁ;)) dx_/ U+ (@E)Hé)) i
ZTj x

1
itz

_ L gy 1) (1h Gy, 3h <j>) 3(3h G+ , 1h <j+1>)
R R Y R A VT Y B B S Y o BT
Ll 9 o9 9 pUFD 1 G+1)
Therefore,
G+3)
dug * () ) (+1) <j+1>)
dt 2h(p0 — 9 A9 '

To derive the third equation in (5), we take ¢ = <p§J+ 2) n (3). The left hand
side can be computed as

/Ij+l duli+3) G+1) Y 35 dungr%)
- a7 8 dt

i1
it
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on the left hand side. On the right hand side,

. 1 Tj+1 . o1y
(p(J+1)¢§J+2))($j+l)_/ pU+D) ((pngrz)) do

Tiv s
3 i+1 3 3 h i+1 1 h I+1
== (Gt g ™)
9 G+, 9 G+

Therefore,

(G+3)

duy *_ 3_02( — U 4 p0)
dt h ! VA

The last three equations in (5) can be derived in the same way.

To perform the dispersion analysis for (5), we consider solution of the form

(j+l) z(m lkfwt)

u’ly? =a_1e s ,

(+3) (., 1 k—wt)

(6) ug ¥ =age I3 ,
ji+1 i(z., 5 k—wt)

Ugj 2 = aye' it ,

where a_1,ap, a1 € C. Now we substitute the formula (6) in (5). From the first
equation of (5), we have

1 3 2 . .
—iwu(ji‘_?) = %(—pé]) —|—p§])).

Taking time derivative, we have

(4) (4)

2 (G+3) 3_02(_ dpg dpy )
e 3 at "t
3c? 1 . .
= %{ — %((uo — 9u1)(J_%) + (—uo + 9u_1)(3+%))
3 .
+ E((_u_l +UO)(J+%)>}
3c? i~ 1 i1 i1 i1
22—22(— éj é)—i-9ugj é)—15u9;ré)+7uéj+;)).

Using the definition of u from (6),

) 2

ix. 1k 3c
—la_qje 5T = -
2h

3¢? i ) ) .
2—226 gk ( — aoelhk(_%) + 90[16””“(_%) —15a_1 + 70406“““(%)).

Dividing common factors,

1T, 1k 1T, 1k 1T, 1k ’L:E 1k
(—aoe 772 4+ 9aqe 775 —1ba_je Te 4+ Tage 'tz )

2
9 3c

(1) wa_= _W{ —15a_1 + (— ethk(=5) 4 76“““(%))040 + Qeihk(_%)al}.

From the second equation of (5), we have

i1 2 . ) ) ‘
—iwu((JJJr?) - ;_h (p((JJ) —gp?) —plth 9p(_J;r1)).
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Taking time derivative, we have

dp(]-i-l) dp(g+1)

(4) (4)
2 (i+3) _ (dp dpy’ 9 )
e T U dt i U
Al 1 1 27
= o (60— 9u) 078+ (o £+ 0u )Y = Ty )
o ((”0 = 9u1)UF2) 4+ (—ug + 9u71)0+%)) + (w0 + u1)<3+%)}
2 /1 (-1 9 (-1 i1 63
222 (_u(] 3 —§u§] %)_55uéj+§)+ a (jii- 3) 7u§]+ 3)
1 G+ _ 9 G+3)
+ = .
210 2"t )
Using the definition of u from (6),
2
—w ozoel P 2Ch?( oeZ =k galewj*%k — bbage ”%k—k 6—23a 1€ ST
+70416 ”%k—kiaoe ”%k—gcy,le ”%k)
2 i, 1 ; 9 ; 63 ;
:#e f*%k(iaoemk(_l)—5041(51%(_%)—550404—704—161%(_%)
T 6_;%6“11@(%) + %aoeihk _ gaileihk(%)>'

Therefore,
63 9 .4 1 . 1 .
2 _ pihh(=2) _ 2 zhk(—)) (_ —ihk _ 1 mk)
wag 2h2{( 26 ) a1 + 26 55+2e Qg
9 63
+ (_ iezhk(fé) + ?ezhk(%))al}'
From the third equation of (5), we have

(®)

3 2
—muﬁ” )_%( (a+1)+péa+1))_

Taking time derivative, we have

RN 3_02( dpg+1 dpgjm)
! h dt dt
2
S SRR

1 . L

+ 57 ((uo — 9u) U8 4 (—ug + 9u_1)(J+%))}
- 2h2 (7 T s Y 9“(—jl+%))'

Using the definition of w in (6), we get

. 2 ) . )
., 5k 3c 1 k ., 5k w., 3k ., 7k
—wlage 8T = o2 (7aoe +3" _ 1B5aqe 8 —age T3 4+ 9a_je ItE
3¢ w5k (2 k(4 k(2
= 52¢ it (7040€th( §) — 150 — ape™ (E) 4 904_1€th(5)>.

Consequently, we obtain

3 ) .
(9) wlay = 222 {96"”“( oy + (7€th(7%) — elhk(%))ao — 15a1}.
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Combining the above three equations (7), (8) and (9), we obtain the following
eigenvalue problem:

02 a1 ) a—1
(10) _WM (7)) = w (o7 5
a1 a1

where
—45 —3¢ihk(=8) 4 21¢ihk(3) 27¢ihk(=%)
M — %eihk(—% _ geihk(%) Lo—ihk _ 55 4 %eihk _%eihk(—%) + %eihk(g)
27¢ihk(§) 21ethk(=3) _ 3¢ihk(3) —45

With the help of a mathematics software (such as Mathematica), we find that the
characteristic polynomial of the following eigenvalue problem

a_1 a_1q
M1 (7)) = (w’)2 (7))
a1 aq

is
23 + {145 — cos(hk)}2? 4 {4896 + 288 cos(hk)}x + {20736 — 20736 cos(hk)} = 0.

Thus, the eigenvalues for (10) are

2
o __ ¢ (Lo a b
Wh1 = =55 (511454 cos(hk)} + o = 2,

2 . .
R (1 +ivB3)a | (1—iV3)b
who =~ (51145 + cos(hk)) Wi Qi)

¢ (1 1—ivB)a  (1+iv3)b

where
a = —6337 + 1154 cos(hk) — cos?(hk),

b= (133921 — 508899 cos(hk) + 1731 cos®(hk) — cos® (hk)

-

3

+ 77767/3\/—1304 + 15 cos(hk) 4 1290 cos?(hk) — cos3 (hk))
Hence, by using the Taylor’s expansion, we have

Whi 36 9 3 31(hk) (hk)2  4027(hk)®  7(hk)*

w? (k)2 " hk 8 128 96 1474560 ' 17280
| 246397(hk)5  17(hk)®  48433199(hk)7 N 451(hk)8 Lo ( (hk)g)
g 118904851842k)643545f§(hk)584793045278720 1567641600 ’
hk
% =1- (864)0 - 2(17728 ~ 111974400 +O((hk)9)’
whs 369 3 N 31(hk)  (hk)*  4027(hk)® | T(hk)*
w?  (hk)2  hk 8 128 96 1474560 ' 17280

246307(hk)°  17(hk)° | 48433199(hk)T | d5L(WE) ( (hk)g)
11890851840 4354560 ' 54793045278720 ' 1567641600 '

Thus, we see that wi2z-,2 is the physically correct eigenvalue, while W%J and w?%g are
spurious modes with small amplitude [10].
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4. Dispersion analysis for piecewise quadratic elements

Now we will perform the dispersion analysis for (3)-(4) with piecewise quadratic
elements, that is, m = 2.

We recall that u(T2) is the restriction of u on I;, 1, and recall that ul+3) is qua-
dratic on each subinterval [z;, 2, 1] and [z}, 1, ;41], and is continuous at x; 1 for
each j. Since the space Ra(I; +1 ) has dimension five, each ult2) can be represent-

(a+ ) G+3)  G+3)  (G+3)

ed by a linear combination of the five basis functions ¢, *7, ) *7, 300 , Py
and gpé ), that is
WU+ — (J+ )SD(_J+ 3) (JJF%)cp(_j;L%)+uéj+%)cp(()j+%)+u§j+%)¢§j+%)+u§j+%)g0;j+%).

To define the basis functions, we first recall that the points z; LT TN and

(6—=v6)h (6+V6)h
20 20

Tipr =72, where v; = and o = , are the Radau quadrature

points so that the following rule

i+ h h
[ oo dr = 1egay) + 75006+ VB3 — )

J

+ 2516 = VB)g(ay4y —2)

is exact for all polynomials of degree less than or equal to 4. Similarly, the three
points Tipl, Tip1+m and Tiypl+ 2 are the Radau quadrature points so that the
following rule

Tt h h
[ o) do = fgotay ) + 2516+ VBlglayy + )
Tiv s

h NG
+ 5(16— 6)g(z;4 1 +72)

is exact for all polynomials of degree less than or equal to 4. Now we give the
definitions of the basis functions.
(J 3) .

o is the function with support [z;, 2, 1] and is quadratic in [z}, z;, 1]
+1 +1
with U3 (@, 0) = 00 (=) = 0 and % @y ) —0) = 1.
° SJ* 2) is the function with support [z;, a:j+;] and is quadratic in [z;, azj+%]
1
with o9 (@) 1) = 09 (a1 —72) = 0 and U P2y ) —m) = 1.
° (p((JJ +3) 5 is the function with support [x] ,xj11] and is plecewise quadratic in
+1 +1
[z, J+%] and [2;, 1, xj41] with QD(J )(xj+ ) =1and cp(J )(xj+%_72) =
+1 +1
e @iy — ) = TP @y + ) = e T 1 +72) =0,
1
° <P(J+ 2) i the function with support [ijrl , z;+1] and is quadratic in [3:#% yTjt1]
i1
with @02 (2, 1) = o (@), 4 +72) = 0 and oV (@) g + 1) = 1.
° <p(J+ 2) i the function with support [azj+l ,z;+1] and is quadratic in [xﬂ_% VTjt1]
+3 i+ 3 +3
with gp(J )(gcj+;) = gpéj 2)( il +7) =0 and cp(J )( Tiyl +72) = 1.

Let p) be the restriction of p on I;. . We recall that p\9) is quadratic on each
subinterval [z;_1,z;] and [z}, 2;, 1], and is continuous at z; for each j. For each
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p\9), we can write

p) _p(J)SD( 7) —i—p( i(p(J) +p((3)<p(J)+p§)sD( ) + S

where the basis functions cp(J%, 90( i 90( ) gj ) and goéj ) are defined similarly.

Next, we will show that the scheme (3) (4) can be written in the following way.

(5) ()

1
du(flg?) _ 32 (( 8 — 4\/_)p0 (16+\/6)p§j) +(—8+3\/6)p§j)>

j+i
du(;l:e 2) _ ;2 (( 8—|—4\/—)p0 + (-8 — 3\/_) @) 4 + (16 \/E)pgj))

iy 1
duéleQ) :::Z( PP + (=13 + 7V6)pY + (=13 — TV6)ps) + pi

+ (13- TVERYTY + (13 + TVERYSY)

iy 1
dug;;r?) :%((8—4\/6) G 1 (34 3B + (164 VB
duéjJr%) 2

(11) a ?fh((8+4\/_) (j+1) + (=16 — V6)pV (]+1 (8= 3V ]H)

PRt 1
p*r":i( 8 — 4V6)ug 4+ (16 + VO)ui ) + (-8 4+ 3vB)us )
. 3h
¥l 1 ) (-3 (—3)
— _3—h( (=8 +4vB)u ™) + (=8 — 3v6)u ) + (16 — v6)us )
i’ _ 1 b, (-1 G+1)
: _%(—uo (—13 + 7vVB)ul ™2 + (=13 — 7VB)uS ™2 + ul
(13— 7\/6)u(31+%’ (13 + 7\/6)u(32+§’)
dpy’) _ (G+3) a+ ) (G+3)
L= ((8 WVE)u T + (8 +3v6)uY ) + (16 + VB)uY) )
ap 1 1 1 m
2 _ 3h((8+4\/_) (”5’+(—16—\/6)u(_71+5)+(8—3\/6)u(_”§5>).

To do so, we first calculate mass integrals as follows:

10\ 2 (16 —V6)h
/(‘P(j“‘ ') de ==

/ (95D aw = L0 VOR Vo)h

72 ’
i1y 2 16 — vV6)h
/(‘pém)) o=t 72 )

To derive the first equation in (11), we take

(b_ (J+ )
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in the equation (3). Then we have

T gt s \/— d(j+%)
[ g, 10—V
. at 72 72 dt

J

for the left hand side of (3). For the right hand side, we need to compute the
following.

i Sl Tipl . I/
—(p(”sa(fﬁ))(a:j)_/ +2p<g>(<p9;§>) d.
Tj

By Gauss-Radau quadrature rule, it suffices to compute

Then we obtain

- (p(j)<p<_j;%>) @) /m% 20 (909;%))'61:1:

J

(j)2+3\/6
~( )8=13V6 h  ;)=16+ V6 (16 +VE)h <j>8—3\/5(16—\/5)h)
Po 318 TP T gy 72 P23y, 72
_TB-TV6 G 125 ) ST 28V )
27 0 1081 108 2
Thus,

(G+3)
du_ 2 02 . . X
=3 ((—8 —4V6)p{ + (16 + V6)pi) + (—8 + 3\/6)p§”).

For the second equation in (11), we first compute

3h
_ —16—+6

@

(

(cp(_'f%))/(xj +m) = M,
( T
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Then, by taking ¢ = tp(jf%) in (3), we have

(G+3)
du”y * (16+\/6)h 2 ), ([G+3%) Titd G5, G+HY
i = ) [ (o) )
12 —3vV6
262{_]981) :
_( (j)8+13\/6£+ ()8 +3v6 (16 + V6)h
Por =318 TP Ty 72
16—\/6(16—\/6)11)}
3h 72
73+28v6 () 125p(j))

+p5) =

B 2(—134—7\/(_5

@ 125
- o7 Po

108 P21 T 108P2

Therefore, we have

i1
du(jib) 75(—84-4\/6 (j)+_8—3\/6 (j)+16_\/6 (j))
. h 3 Do 3 M 3 P2 )

To derive the third equation in (11), we first compute

G+d),oy 1
(p (IJ) - 35
(J+%))' _ 16
(<P0 ( J) 3h )
<j+%>)’ _ _ 84V
(‘PO (xJ +Fyl) - 3h )
(_]4—%))’ _ B 8 + 46
( 0 ('rj +FYQ) - 3h )
i+3 1
9087 2)(ﬂ%‘+1) =3
<j+%>)’ oy _ 16
(SOO (x]"l‘l) 3h7
( (+4 )/(x. ) = —8+4v6
®o j+1 — 1) = 3h )
+3Y -8 —4v6
(‘P((JJ 2)) (Tjy1 —2) = —3n
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Then, by taking ¢ = (pOH 2) in (3), we have
(G+3%)
dug > h ; i+ 1 +3
&= 02{(]9(”1)908J 2))(%‘+1) (P( Dol ))(wj)

dt 9
Tipl . I/ Tj+ . L1/
_ / 0 () e - / p<J+1>(¢éa+;>) )

T 1
it3

_of g+l ¢l
= {po 3 Pog
_(p(j) —16 h . (J>8 44/6 (16 + v/6)h ) 8+4\/6(16—\/6)h)
0 34 18 3h 72 2 3h 72
_ (pmnﬁﬁ pUHD —8+4v6 (16 + V6)h
O 3p18 Ut 3h 72
LU 8—4\/5(16—\/5)11)}
3h 72
—1 (5 =1347V6 (5 —13—=7V6 (;
o2 1 () ) ()
_0(27’)0 N A T
LGty 18- 7\/— G+1) | 13+ 7V6 (j+1>)
9770 o7 o7 P2 )

+
Thus,

AR LB Gy 13-TV6 ()
a E( 3 Ty
L L BTV Gy 1B+ TVE o9,
3 3 - 3 -
For the fourth equation in (11), we first compute

I )(‘TJ'F )= 2_5\/_

_—8- 13\f

L) = g

ol
) —8-3v6
Y

T T =

16+x/€

(41 = 3h

$1
Then, by taking ¢ = (plﬁ 2) in (3), we have

(3+3) .
duy’ " (16 +V6)h G+1), (G+3) TG (L GEDY
dt 2 {(p 1 )(IJ“) _/z P (‘Pl ) dx}

it3
of +12—3V6
—¢c {Po -
_ (p<j+1> —(8+13v6) h Q) =8+ 3v6) (16 + vV6)h
0 3h 18 ot 3h 72
LU 16+ V6 (16 — \/é)h)}
P2 73y 7

_ 2(13—7\/6 G+1) 73+28V6 (1) 125 (j+1))
97 1o 108 P-v T o8P )
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Thus,
i1
ity _ 5(8 —4V6 iy 8+3VE iny 16+ V6 (jH))
dt n\ 3 BEE 3 2 )
For the fifth equation in (11), we first compute
2+3V6
eI (@511) = —5
( ) —8+13v6
]+1 73h
(47 1= 5
S 3h
(J+ ’ -8+ 3\/6
$J+1 T
Then, by taking ¢ = gpzj n (3), we have

(+3) Y
du$ T2 (16 — VB)h Ly (4l RE Y
Ug ( 6 \/6) 262{(p(J+1)<PgJ+é))(xj+1) —/ p(]+1)(<ﬁgj+é)) d{E}

dt 72 .
it+3
_02{2+3\/6 (G+1)
B (p(]+1)—8+13\/_ 6 h LY 16 — /6 (16 + V6)h
3h 18 3h 72
N (j+1)—8+3\/—(16—\/_)h)}
P2 3h 72
_ 62(.13 T TV6 ey 125 Gy T3 28\/5p<j+1>)
27 0 108" 1 108 -2 )
Therefore, we have
i1
duf ™ (8+4fp<y+1> L Z16-V6 U 8—3\/6p<j+1>)
dt h 3 3 3 A

The last 5 equations in (11) can be obtained in a similar way.
For the dispersion analysis of the scheme (11), we consider solution of the form

u(_q% = q_qellla—a)hk—wt]
u(_‘li = q_ellla=dhk—wt]
uéq) — qgeilahk—wt)
ugﬂ = qqeillathk—wt]
uéa) _ a2ei[(¢1+a)hk—wt]7
where a = 6+ V6 b= 6— V6
20 20

and «a_o,a_1,0p,a1,00 € C.

We will use these formula in (11).
From the first equation in (11), we have

—iwud P 3h(( 8 —4v6)pf’ (16+\/5)p§j)+(—8+3\/6)p§j))-
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Taking time derivatives,

Jr
OJ2U(_J2 )

) 0
=3h(( 8 — 4/6) po £ 06+ VP 1 (84 3v) L)

:9h2{( 8~ 4f)(—uoj P +( 13+ 7v6)ul ™ P (c13- Vo)~ 1)
+uf ™ 4 (13- 7vE)u ) 4 (134 VB )
”16”6)((8—”5)“(”’ + 8+ 3VBu Y ¢ (16 + VB D)
+(—8+3\/€)((8+4\f) G+ 4 (Z16 - vB)uYF P 4 (8 — 3v6)ul) ® >)}

2

:9h2((8+4\/—)u0 g (=64 — 4VB)ul ) 4 (272 + 108VB)uf P

+ (104 — 68v6)u ) + (320 + 20v6)uF P + (- 640—60\/6)u(_j;%))

Using the definition of w,

_ w2a 1hk(]+—7a)

2 . .
=9 ((8 + 4v/6) ek i—3) 4 (—64 — 4\/6)0416””“(]_%%)

+ ase’ —3+a) 4 (104 — 68v6 aoeihk(ﬂ%)
272 4 108v/6)ape’
+ (320 4 20v/6)ar_ U= 4 (_640 — 60\/6)a_2eihk<j+%—“>)

C2 3 i+1—a [ a— e’ a
:Wehk(g+2 )((8+4\/6)a06hk( D 4 (=64 — 4v/6) eR(-1+0+a)

+ (272 4 108V6)age™™ a1 1 (104 — 68V/6)age’*e
+ (320 + 20V/6)a_ @b 4 (—640 — 60\/6)a,2).

Consequently,

WQOA,Q

2
C 1 a—
- 9h2{( 640 — 60v/6)a_s + (320 + 20v/6)e @D g,
n ((8 +4VB)em a1 4 (104 — 68\/(_5)eihka) @

+ (=64 — 4V/6)e ka1 o) 4 (272 + 108\/6)eihk(2“_1)a2}.

From the second equation in (11), we have

2 ) ) )
A ;h(( 8 + 4/6) pz + (-8 -3VE) L+ (16 - V6) 22 )

dt
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Then

)
9h2{( 84+ 4v6) (= uf T+ (-134 TV 4 (-13 - VB Y
+uT 4 3—7\/6)u_j1+§ +(13+7\/6)u_”5)
+(—8—3\/6)((8—4\/(_5)u(j+ 2) 4 (8 +3v6)u (—16+\/6)u(,j;%))
+(16—\/6)((8+4\/_) (+3) (—16—\/6)u91+%)+(8—3\/6)u<_j;%))}
= ((8 4V/B)ul ™2 4 (272 — 108vV8)ul ) + (=64 + 4vB)uy

+ (104 + 68v8)ul ") + (=640 + 60vB)u 2 + (320—20\/6)u9;f>).

Using the definition of w,

. 1
_w2a_1ezhk(]+2 b)

2
S ((8 4V6)ape™ 0=3) 1 (272 — 108/6)ay eh*—1+0)
+ (=64 4 4v/6)ane™ =3+ 1 (104 + 68v/6)age Ut 2)

+ (=640 + 60V6)a_ eI+ 4 (320 — 20V/6)a_pe )

@

_ #ezhk(ﬁ-%—b) ((8 — 4VB)age™ =D 4 (272 — 108/6)a et (20D
+ (=64 4 4V6)age™ (@ F=D 1 (104 4 68V/6)age

+ (—640 + 60v6)a_1 + (320 — 20\/6)04_2&’““(1’—‘1)),
Consequently,

w20471 =

2
— o {(320 — 20V/6)eM =, 4 (—640 + 60v/6)a—

+ (8 = 4V6)e™ D 4 (104 + 68V/B)e ™ )

+ (272 — 108V6)em* Do 1 (—64 + 4\/6)61"1’“(“”*1)@2}.

From the third equation in (11), we have

2 (4) (4) (4)
o (Gh) _ ¢ dpg B dp1 e dpz
Wl 3h( o (—134+7VE) = + (-13 - TVE)
dpéj+1) dp(_J;r ) (J+1)
13— 7V6 1347
g T v6) g T8+ f) dt )
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Then

_wzuéﬂ%)

c? 1
:W{—(—u((f 2) + (- 13+7\/6)u§] + (= 13_7\/_) (—3%)
tud T (13— VB 4 (13 + 7VE) S Y )

+ (=13 +7V6) (8 - 4VB)u ) + (8 +3vB)uY P + (-16 4+ Vo )
+(—13—7\/6)((8+4\f) G+D) | (Z16— VE)uUt? )+(8_3\/6)u<_j;%>)
+ (— w87 4 (213 + 7Bl 4 (—13 — V)T

Pt @3- VO 4 (134 VB

+ (13- TVB) (=8 + VB + (=8 — 3VElH + (16— VY )
(13 +7V6) (8~ 4vB)ud " 4 (16 + VBl 1 (81 3vEd ) ).

Then

1
— W)

- 1
(w7 + 13- VB + (13 + 7)Y

4 (—1090)uf "3 ’+(259+149\/6)u(_jf%)+(259—149\f) G+s)
(259+149f) G+a) 4 (259— 149v/6)us
+uldT® 4 (13 - 7B + (13 + 7V6)uY )

Using the definition of w,
_ w2a06ihk(j+%)

= 90—; (aoe“"“(j‘%) + (13 — TV6)ay etk =3 +b)
+ (13 + TV6)age™ U1 +) 1 (~1000)age U+ #)
+ (259 + 149v6)ar_1 €G3 70) 4 (259 — 149/6)a_pethk T3 —)
+ (259 + 149V/6)ay U2 ) 4 (259 — 149V/6)age M H T2 +e)
+a06ihk(j+ + (13— 7\/—) Gik(i+3-b)

+ (13 + 7\/6)a_26ihk<j+§—a>)

= gc_;eihk(ﬂ%) (aoeihk( D 4 (13 — 7V/6)ay -1
+ (13 + 7V6)age™ @D 1 (-1090) g
+ (259 + 149v6)ar_1e"F (1) 4 (259 — 149v/6)ar_eMF ()
+ (259 + 149V6) o €% 4 (259 — 149V/6)age?Fe

+ aoeihk L (13- 7\/6)a716ihk(1—b) + (13 + 7\/6)04,26“““(1‘“)),
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Consequently,

2
*ap = < — ihk(—a) ihk(1—a)
Wag = — o {((259 - 149V6)e + (134 7V6)e Jazs

+ (259 + 149V6)e ™™ 1) 4 (13 = TVG)e 0D Yo

+ (e“”f(—” — 1090 + e“”f) @

+ ((13 — 7VB)ethk (=1 4 (250 + 149\/6)61"1“)@1

+ (13 4+ 7VB)e™ D) 4 (259 — 149VE)e ™ s }.
From the fourth equation in (11), we have

1
— W)

(5+1) apUD (41
:3h((8 4/6) po Fs+ave) L (- 16+\/_)dpdi )

:9h2{(8 4\/_)( ug T (- 13+7\/_) U+2) (13 - 7vB)ult
+uf T+ (13- Ve + (134 7VEYS )
+(8+3\/6)((—8+4\/6)u<”%> (=8 — 3vB)uT ) 1 (16— VE)ub+ >)

+ (=16 + V) ((-8 - 4f) (16+\/—) U+2) 4 (g4 3v6)uy 1
= 90; ((104+68\/_) + (=640 + 60v6)ul T + (320 — 20v/6)ul T

+ (8= 4VB)uy T + (272 — 108VE)uY TP + (64 + 4\/6)u<j;§>)_

Then
g
Wl kD)
2

=9 ((104 + 68\/—)a061hk it3) 4 + (=640 + 60\/6)aleihk(j+%+b)

+ (320 — 20v/6)ape™™ U2 +a) 4 (8 — 4/6)age+E)
+ (272 108VB)a 10T 4 (<64 4 4VG)apeHUHE )
- QC_;eihk(jJr%M) ((104 + 68v/6)ape™ (D) 4 (=640 + 60v/6)s
+ (320 — 20V/6)age™ (@78 1 (8 — 4v/6)ape R (1Y)
+ (272 - 108v6)ar_1 1) 4 (64 + 4\/6)a_zeihk(1_a_b)>.
Consequently,

w2a1

2
_ 9%2{( 64 + 4v/6)eF1=a=b) o, 1 (272 — 108v/6)e (1) ¢

+ (1044 68V6)e™ 1) 4 (8 - 4V/G)e 1) Yo

+ (=640 + 60V6)ay + (320 — 20v/6)e k(@b az}.
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From the fifth equation in (11), we have

1
w2u(J 3)

dpTh (J+1) (J+1)

R L A R K A O e

- 9h2{(8+4\ﬂ(_“g+ (—13+7\/5)U§”§>+(—13—7\/€)u§” :
+uf T (13- VO + (134 VB )
+(_16_\/6)((—8+4\/6)u8”%)+(_8_3\/g)u(j+%> (16 — VBl ))
”8‘3“5)((—8—4“5%8”’ + 16+ VB + (-8 +3vBuf ) )

2
(G+3%) (+3%)
:9h2 ((104 68v/6)u' +(320+20\/6)u” 2) 4 (~640 — 60v/6)ul 2

+ 8+ 4VB)u P 1 (—64 — 46T + (272 + 108V6)u )2 )

Then

ihk(j+ 1
_ w2a261hk(g+2+a)

2 . .
= o ((104 = 68VB)age™ 3 4 (320 + 20VG)an e+ 1+)
+ (=640 — 60\/6)a26ihk(j+%+a) +(8+ 4\/6)aoeihk(j+%)
+ (=64 = 4V6)a_1 MU 4 (272 4 108V pe TR

2
— #eihk(j+%+a) ((104 _ 68\/6)0406'”1]6(70.) 4 (320 4 20\/6)0416'”1]6(1770«)

+ (=640 — 60v6) a2 + (8 + 4V6) e F (1)
+ (—64 _ 4\/6)a_16ihk(17a7b) + (272 4 108\/6)04_261.}”“(172“)),

Consequently,

2 .
w2a2 = 9h2 {(272 + 108\/_) ihk(1— 2a)a 5+ ( 64 — 4\/6)ezhk(1fa7b)a_l
+ (104 - 68VB)EHH + (5 1 415)e 0 ) ag

+ (320 + 20v/6)e ™ 0=D oy 4+ (—640 — 60\/6)a2}.

Combining the above 5 equations, we obtain the following eigenvalue problem:

a_o a_9

2 a1 a1

——A g = w? Qg
9h2

aq ap

Q2 Q2
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where the 5 x 5 matrix A = (a;;) is defined by

a1 = —20(32 + 3V6)

a1s = 20(16 + v/6)e M (V)

a3 = 4(2 + V6)e* (a3 (1O 1 (104 — 68v/6) e (20 (6+V5)
ayq = —4(16 + \/é)eihk(%)

a15 = 4(68 + 27V/6)e (15 (~4+V0))

az1 = —20(—16 + V6)eMH(FV3)

aze = (—640 4 60v/6)

sz = 4(26 + 17V/6)e* (30 (=6+VE) _ g(_2 4 /§)eihk(zs (14+V6))
(g4 = —4(—68 + 27/6)e (5o (1V6))

ass = 4(—16 + \/é)eihk(%z)

ag; = e 6+VE) (959 — 149v/6 + (13 + 7v/6)e'*)

ago = M35 (=0+V0) (959 4 149v/6 + (13 — TV6)e'*)

ags = —1090 + ¢~ "* 4 "

asy = (259 + 149v/6)et k(70 (=6+VB) 1 (13 — 7\/6)ethk(z0 (14+VE)
ass = (13 + 7v6)e (a0 (~144V8) | (259 — 1491/6)e (a0 (6+V6))
as; = 4(—16 + \/é)eihk(%)

(42 = —4(—68 + 27+/6)e!* (35 (4+V6))

ag3 = M0 (“6TVO £104 1 68v/6 — 4(—2 + V6)eF})

a4s = —640 + 60V6

a45 = —20(—16 + v/6)e MG VE)

as1 = 4(68 + 27V/6)e (5o (~4+V6)

asy = —4(16 + V6)e " ()

as3 = 46 (30 GHVE) £96 _ 17v/6 + (2 + v6)e*)

ass = 20(16 + V6)eMH VD

ass = —20(32 + 3v/6)

By using a computer package, we find that the characteristic polynomial of the
following problem

a_9 a_9
a_q a_q
Al ap | =W)?*| o
a1 a1
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is
— 4837294080000
- :v{257989017600 + :c(1903315968 + 2{4356864 + (3650 + :c)}) }
+2{1555200 4 (—1728 + x)x}* cos(hk) = 0.

Using Taylor’s expansion for the physically correct eigenvalue, we have

wh (WK (hR)S  229(hK)'°  333121(hk)"2 +O((hk)13)
w? 8064000 2073600000 6082560000000 105670656000000000 '

5. CFL stability analysis

In this section, we will analyze the stability of the staggered discontinuous
Galerkin method (3)-(4) with the leap-frog time discretization. More precisely,
let @ = cAt/h, we will find aps such that the method is stable for all a < ayy.
We will, in the next section, compare the results for our staggered discontinuous
Galerkin method with the classical conforming finite element method, which has
apyr = 1 for piecewise linear elements and ajp; = 0.4082 for piecewise quadratic
elements [10].

5.1. Stability for piecewise linear elements. By using the leap-frog scheme for
time discretization, we have the following relations for the piecewise linear method:

2

o (228 2 (0 iy 80,

At2 2 T 2n2 3b 3

4, wpalty 2l (1+iv3)a (1 —ivV3)b
Esnl (—2 ) = —W(g{—145+cos(h]h>} — 6b + 6 ),
4y qwpsAty ol (1—14v3)a  (1+ivV/3)b
A S ( 5 )= 2h2(3{ 145 + cos(hk)} o 6 )

where

a = —6337 + 1154 cos(hk) — cos? (hk),
b= (133921 — 508899 cos(hk) 4 1731 cos®(hk) — cos®(hk)

1

+ 7776V/3/—1304 + 15 cos(hk) 4+ 1290 cos?(hk) — cos3 (hk)) °

By the method in [10], it suffices to consider the characteristic polynomial
23 + {145 — cos(hk)}a? 4 {4896 + 288 cos(hk)}x + {20736 — 20736 cos(hk)} = 0.

Notice that this is the characteristic polynomial of the eigenvalue problem without
2
the factor —57- in the matrix. Writing hk = 27K, we have

(12)
234 {145 —cos(2n K ) } a2 + {4896 +288 cos(27 K ) } x4+ {20736 — 20736 cos(2n K )} = 0.

Differentiating the characteristic polynomial with respect to K and setting it to
zero, we have
2msin(2m K ) (x — 144)% = 0.
Hence, we have either x = 144 or K € Z or K + % € Z. Note that the solutions of
(12) are always non-positive, thus x # 144. For the case K € Z, the equation (12)
becomes
2?4 1442° + 5184z = 0.
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The solutions are 0 and —72. Note —72 is a double root. For the case K + % €,
the equation (12) becomes

22 + 14622 + 4608z + 41472 = 0.

The solutions are —18 and 16(—4 4 /7). Comparing the five solutions, the one
with greatest absolute value is 16(—4 — /7). Thus, the method is stable if

2V2 1
apn = =
VI6@+vT) 24+ V)

5.2. Stability for piecewise quadratic elements. By the calculations from the

a <

~ 0.2743.

previous section, the characteristic polynomial without the factor —90% is
— 4837294080000
— 2{257989017600 + 2{1903315968 + x(4356864 + (3650 + x))}}
+ 2{1555200 + (—1728 + x)x}* cos(hk) = 0.

Writing hk = 27K, we have
— 4837294080000

(13) — 2{257989017600 + x{1903315968 + (4356864 + (3650 + z))}}
+ 2{1555200 4 (1728 4 2)x}? cos(2rK) = 0.

Differentiating the characteristic polynomial with respect to K and setting it to
zero, we have
—47{1555200 + (—1728 + 2)x}? sin(27rK) = 0.

Since the equation 1555200 + (—1728 + )z = 0 has no real solution, we have
either K € Z or K + 3 € Z. For the case K € Z, the solutions of (13) are
0 and 48(—19 + 24/34). Note each 48(—19 4 2v/34) is a double root. For the
case K + % € Z, the solutions of (13) are —1734.45,—-1092.94, —646.97, —89.0305
and —88.6033. Comparing the solutions, the one with greatest absolute value is
—1734.45. Hence, the method is stable if

a<ay= _ V36 ~ (0.1441.

\V1734.45

6. Comparison

In this section, we will compare the stability and dispersion results for the stag-
gered method [3, 4] with those for the classical finite element method [10] and
discontinuous Galerkin method [1, 11].

First, we see that numerical methods for the first order form of the wave equa-
tion typically give better dispersion error. More precisely, for the same degree of
approximation polynomial, the staggered method (3)-(4) gives more accurate dis-
persion relation than that of the standard conforming finite element applied to the
second order wave equation. In particular, for piecewise linear element, the error
of the wave speed for the staggered method is O((hk)?*) while that of conforming
method is O((hk)?) [10]. Moreover, for piecewise quadratic element, the error of the
wave speed for the staggered method is O((hk)®) while that of conforming method
is O((hk)*). Similar comparison holds for interior penalty discontinuous Galerkin
method for the wave equation in second order form [1].

Second, we compare the dispersion errors of staggered DG and non-staggered
DG methods. Consider a closed interval with an even number of subintervals and
the wave equation with periodic boundary condition. We use h to represent the
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length of primal and dual cells for the staggered method. Assume also that the
upwind and central discontinuous Galerkin methods [1, 11] are defined so that the
numerical solutions are piecewise polynomial on subinterval with length h/2. In
this sense, one can see that the finite element spaces for our method (3)-(4) are a
restriction of the finite element spaces for classical upwind and central discontinuous
Galerkin methods. Note that we need to replace h by % in the dispersion relations
from [1, 11]. For piecewise linear elements, the leading term for upwind and central

hk)*
discontinuous Galerkin methods [1] are 1+ (k) and 1—|—O((hk)6) (with an optimal

2880
choice of parameters) respectively while the leading term for staggered method is
hk)*
1- (86 4)0 . Thus we see that the dispersion error for staggered DG method is smaller

than that of upwind DG method. For the central DG method, with a special choice
of parameter, has better dispersion error than that of staggered method. On the
other hand, for the piecewise linear DG method in [11], the dispersion error is O(h?)
with the choice of centered flux, and is O(h*) with the choice of uncentered flux.
Therefore, we see that the staggered method has a smaller dispersion error than
the centered DG method of [11], and has similar dispersion error to that of the
uncentered DG method of [11]. Finally, we note that only the centered DG method
of [11] has energy conservation.

Finally we will compare the CFL number aj; for the staggered method and the
classical conforming finite element method. From the above calculation, we see that
apr = 0.2743 for the linear staggered method while ap; = 0.1441 for the quadratic
staggered method. Moreover, for the conforming FEM, we have aj; = 0.5 for
piecewise linear elements and aj; = 0.2041 for quadratic elements. Notice that we
have divided the ajs for the conforming method by 2 since we are considering a
mesh size of h/2. Thus we see that the staggered methods have a little bit more
restrictive stability condition.

7. Conclusion

In this paper, we present dispersion analysis for the staggered DG method for
wave propagation. Both the linear and the quadratic elements are considered. In
addition, we derive stability conditions on the time step for the leap-frog time
discretization. The results of the paper provide a better understanding of the
dispersion and stability properties of the staggered DG method developed in [3, 4].
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