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Abstract In this paper we have established the existence of global weak solutions
and blow-up properties for the generalized system of ferro-magnetic chain with Gilbert
damping term by means of Galerkin method and concavity argument. In addition, the
convergence as a—=( and =0 have also been discussed.
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0. Intrm:iu{:tinn

The evolution of spin fields in continuum ferromagnets is described by Landau-Lif-
shitz eguations

M, =—aM X (M X H) + M X H* (1)

which bears a fundamental role in the understanding of nonequilibrium magnetism,
where the magnetic field H*=H+vy/ M, a, B,y are constants with a>>0. The first
terfi in the right hand side of (1) is called Landau-Lifshitz-Gilbert or simply Gilbert
damping terim.

Let 2 R be a bounded open domain with boundary 2Q€ €%, The generalized sys-
tem of ferromagnetic chain

7, =— aZ' X (Z X AZ) + 2 X AZ+ flz,t,2) (2>
is obviously a nonlinear degenerate parabolic system of 3-dimensional vector value func-
tion Z= (u,v,w), where f(z,{,2) isa given 3-dimensional vector valued function

with t€ R* and z,Z€ R,
If a=0,f=1, i.e. for the following system

Zy=Z X N2+ f(z:6,2) (3)



there are some works e. g. [2— 8] concerning the global existence of weak solutions for
various boundary value problems and initial value problem.
In Part T of the paper we consider the homogeneous boundary value problem

Z =T — oL X (ZX AZ) + 2 X AL+ f(z,t,2) (4)
(P, {Ehﬂ =0 (5)
Z(x,0) = @lz) ' (6)

where e=0 is a constant. We have established the existence of golbal weak solutions
for the problem by means of Galerkin method. In addition, the convergence, as ()
and a—0, of the weak solutions have also been discussed in this part. Part I is devot-
ed to the blow-up properties for the following problem

Ly =eAL —aZ X (ZX AZ) + BZ X AZ + |Z|*Z
Z(z,0) = Eﬂ(i!:)

where the constants p->0, >0,
Part I. Global Existence for the Problem (P,)

We shall employ Galerkin' s method to show the existence of weak solutions for
the problem (P,). For this purpose, we first deal with an auxiliary problem

. Ze = eAZ — aZ X (ZX AZ) + BZ X AZ + F(z,i,2) (4")
P i
(5),(6)
where the function F{z,t,2) is made as following .
F(iihz} = ﬁ'(z]f{zrirzj (7
where 7(Z) is €' cut-off function such that 0<"(Z)=<C1 for any ZE€ B®, and

1, if |Z] < M,

iy {l}, it 2] > 2M,

where M, is a positive constant to be determined in Section 3.
Let W,_(x) be the eigenfunctions of the problem

OW AW =0, W|,=10



and A, be the relevant eigenvalues. We look for an approximate solution Z,(z,t) of
(P ) in the form

Zi(2,8) = D an(OW,(£), (8= 1,2, k;k = 1,2,

me= |

where the unknown 3-dimensional vector valued functions a,, are determined by the fol-
lowing system of ordinary differential equations

(Efu :W,(I’)}"—_' E{&Enw¢{i'}} g ﬂ:(zj et (51- X .&E';):W;(I}}
+ ﬁ(z'a X .&E”W,(i}} + (F(istsngsw;{f}} (8)

with the initial condition

(Zy(2,0), W, (2)) = (@), W,(2)), s=1,2,,k ' (9)

where (p,q) =J pgdx.
F+

We suppose that f(x,t,Z) and @(x) satisfy the following conditions 3
(IJ)fCx,t,2) is continuously differentiable with respect to r and Z such that
.f(i':ﬁ: 0) Ia;: =0

The 3 X 3 Jacobi derivative matrix % is semibounded with a constant b, i.e. &» g—ég =

b|&|® for any EER®, and (x,¢,Z) ER* X Rt % B®, where " » ¥ denctes the scalar prod-
uct of two 3-dimensional vectors.
( I )The initial data @(z) belongs to H} (&) [ L=(Q).

1. Basic Lemmas and a Priori Estimates

Lemma 1  Suppose that g,9,€ L*(0,T;X) , (1<"p<="oco). Then with the exceplion of a
zero measure subset, the mapping ¢.[0,T]—=X is a continuous mapping.

Lemma 2 Let X;,X,X, be three Banack spaces such that X, CXCTX, swhere the injec-
tions are continuous, and X, is reflexive, i=0,1; the injection X,—X 15 compact. Then the -
jection of ¥=1{v€ L%(0,T;X,), » €L (0,T;X,)} into L(0,T; X)) is compact,
where the constanis ay,a,>1. ;

It is well-known that there exists a local smooth solution ¢, (1) for the initial value
problem (8)¢9).

Lemma 3 Let Z,(z,t) be o solufion of the problem (8) (9). Then under the conditions
(I){H],ﬂmmﬁsamﬂmﬂﬂ.ﬁﬁcp&w@ﬂnfﬁamﬂikmmn, such that

ﬂiL:ET | ZyCe0t) || oy = O (10)

Proof Multiplying the s-th equation in (8) by a,(¢), and summing over s from
1 to &, we can obtain



- ¢
120l ey + o 1 V2N St < 00D + [ 11201 gy

By using Gronwall's inequality, it follows that
(FACHIN| :'{m =0,

Which implies (10).
Lemma 4 Under the conditions of Lemma 3, we have

s | VECD | 2o +Va 12X A2 2ay + Ve | AZ ) 26y <O,
(11)

where Qr=8X[0,T],C, is a constant independent of &,a and k but M.
Proof Multiplying the s-th equation in (8) by —A,a,(f), summing over & from
1 to k, we get

(ZH!' &E’i) =E(.&El!&z;} = ﬂ{z| X {51 X &Et) :&E’t)
+ (Flz,t,Z) , ANZ) (12)

Since
(Z, X (2, X AZ),AZ) —— L|z. % AZ |

and

E‘:F(:’;i'ﬂigi} rﬂ.g'jj = J;'-’?[El)fiirhz;} . ﬁﬂjdﬂ
1

— EI Zi * (y . T + 0. "|’: ﬂf,zhlj

%‘ﬂf + G’”J_ ]vﬂil:x,d) |Eiz
o
where we have used the condition ( I ),C" ,C" are constants, thus from (12) we have

d : 2
.d_-t‘v ” ?‘ﬂ'#{-. 1£) ” i.:;_':;l_} + EE || ﬁz"i II :;t{'ﬂ] + E{I “ El: x &Ei ” :f,:p:,

<20 + 20" || VZCH0 | 2

By using Gronwall’ s inequality,, which gives the estimate of the Lemma.
Corollary 1 We have '

{é‘-;gf ” Zy(Cot) || ey T I}::ET ” Zi(e o) X VI H‘r} ” L""{m = Cy (13)




where the constant Cy is independent of ¢, k.
Lemma 5 Under the conditions of Lemma 3, we have

| 2 | e 0,mm oy = O (14)

where the constant C, is independent of e, k.
Proof For any 3-dimensional vector valued test function V{z,) €C1(Q,), the
relevant Galerkin approximation

V() = Eﬂ.{i}“’,(i), = 1,2,

=]

converge strongly to ¥V{z,£), in L=(0,7T,5'(Q)) as m—=oo, where
B.(E) =J_ V(z, )W (2)dz, n = 1;2,%,1m
o

Similarly, by using the condition ( I ) and the estimates €10),¢11), we can obtain
easily that

|| 2 visae = ﬂ Zu + Vidatt <O, ||V, || oo s
Q, a. .

Since
|V, || £, =C| v I doray = C ||V | Lo, rr'y

thus we obtain
ﬂq'ﬂu Vdedt < C, || V || tho, 7 (@)

Which implies the estimate (14).
Lemma 8 Under the conditions of Lemma 3, for any small 620, there exists a function
Z(x,t), and a subsequence {Z¢ (z,8)} of {2y Cxyt) ), such that Ze(x ) —=>Z{x,t) @

L7(Q,) strongly.
Proof From the estimates (11)(14) ,we have

Z,(z,8) € L™(0,T; H (D))

Zy(zyt) € LY20,T; H(Q)) (15)




Since the injection of H'(Q) into L*~*(Q) is compact, by use of Lemma 2 and (15),
we see the assertion of the Lemma.

2. Global Existence for the Problem (P)

For convenience’ sake, in this section we denote the solution of problem (P") by
Z" (z,t), and the solution of (P]) by Z’(z,t) or simply by Z(z,t).
Definition The 3-dimensional veclor valued function

Z(z,t) € L=C0,T; Hy()) N W0, T H'(82))
s called the weak solution of the problem (P )(e=0), if for any function
pla,t) € L7(Qr) [ L™(0, T Hi (D))
we have the following inteqral relation

_[L Z, « pdadt + eﬂ- ZB)E,! o . dzdl

U fom i

3 3 2
~ aﬂ'q 222 X 2,), (2 X $)dadt + ﬂﬂ‘a 2 (B X 2., » piudt

PN | r =]

=ﬂ- Flz,t,Z) - ¢dzdl
q‘l’

with the initial condition Z(z,0) =e(z), a.e @ Q2
Theorem 1 Suppose that the conditions (1 ) (1) are satisfied. Then the problem
(P, )(e=0) has at least one global weak solution Z (z,8) (¢=0) and

Z9(x,t) € L7C0,T; HY)(Q)) N CVY (0, T; H™' ()

Proof For any function $(z,¢) € L=(0,T; H}(&)) [ L™(§,) ,the relevant

k
Galerkin approximation Pl ) = Eﬁ_{:)ﬁ*’_(ﬂ converge to ¥ (z,¢) in

EE |

L=(0,T; Ho(82)) N L™ (Q,) strongly, where

B0 = _qu'(:: JOW (2)dx

From the a priori estimates (10)(11)(14), we see that the function Z,(z,¢) is
bounded uniformly with respect to k=1,2,++ in the following Banach space

B = L7(0,T;: Hy(&)) N WV (0,T: H-'(2))



Accordingly, we can choose a subsequence from Z, (z,¢) (write simply as
{Z,(z,¢)}) and there exists a function Z* (z,t) € B, such that

Zy(z,8) = Z(z,t) in L™(0,T; HL(Q)) weakly star
Z(2,8) = ZV (z,t) in L¥*(0,T; H™1(2)) weakly

Multiplying the n-th equation in (8) by f.(¢), summing over = from 1 to %, and
integrating with respect to £, we get

ﬂq Zy, * podxdt + E_[L

3

&
T, pudeit — o [| 3308 X 2), - (B X pas
1

L ¥ = af =
] | |
— Zy XK &y ), ¢ thdrdl
ﬁﬂﬁ}é}{ X Zg), * ¢
— .ﬂ-q Flayto &y » Pydadi (E..-}-’{]) (16

T

For the purpose of passing to the limit in both sides of the last equality , we need
the following auxiliary results.
Lemma 7 There exists a subsequence of {Z,(z,t)} such that

(i) By X Zyy —~ 7 sz' n L=C0,T; L2 (2)) weakly star

a 3
() DI X B.), = D (20 X 2P),  in L) weakly

o] =]
Proof By using the estimate (11), we can prove the assertion (i) without any
difficulty. *
Now we show the second assertion (ii).
Since 2 (&, X Eh.}’. is bounded uniformly in L*(Q;), therefore there exists a

function »(x,t) € L*(Q,) such that

3
_U-Q E(Elxﬂhg,"%di—‘ﬂ‘ v(x,t) - Pdzdl as k— oo (%)
qf

o]
for any function ®(xz,t) €' (Q,).

On the other hand, by using the assertion (i), we get

L 3
ri=] Y g i i

e i=]

3
R L 25 (2P X 20) « @, dudt (% %)

F i=]



Combining ( # ) with ( #% ), we have

3
ﬂ DIED X 2 o @, dvdt =— ﬂ v(x,t) » Ddrdt
q 1 1

r i=1 U

Which means, by the definition of weak derivative, that the function Z* X Z% is
differentiable weakly with respect to z,(i=1,2,3), and

3

2B X B, = v(z,) € L*(Qy)

The lemma is now proved.
Now we go on with the proof of Theorem 1.
From the previous discussion, it can be derived that (as k—coo)

e

Zy v Podudt — ﬂ- 0 o udrdt
"-'l'l'

4 ﬂ'r

e b i k]

D3 2w+ dudt — ﬂ

e q‘l‘ 1=1 GT {

Z.° » ¢, dadt
i

= 3 3
Z(E,E X Zw ). pudadt — H Z{Em X 2y, v ydadt
i i ﬂ' i i

i 'U,_. = poaes]

e 3 . 3
D2 X Z )y v (B X ) dndt H A ¢ Ty, ¢ (29 X $)dadt
Qg im] % @ re Ly o

pe

F(z,t,2,) » pdadt — E (F(z,t, 2" + dadt
a, e,

Therefore, taking the limiting process k—co in (16), we infer that the function
Z' (z,t) satisfies the integral relation in Definition. It now remains to show that the
limiting function & (z,t) satisfies the initial condition (6.

In fact,since Z,(x,) and Z,(x,£) converge weakly to £ (x,f) and Z"(z,£) in

LM(0,T; H (L)), thus by Lemma 1 we can directly obtain the following assertion
Zy(x,0) = 2% (x,0) in H™'(2) weakly

On the other hand, from (9) we have Z,(z,0) — @(z) in L* (L) strongly . Combining

the last two limiting process, we get Z”(z,0) = @(z), a.e. in £ . Furthermore




“ Efc!}': . 131) - EM(‘ rﬂz} “ ey v NJ-' EP}{' yE)dt

i oo

igl[tl 11 £2|[;3

where the constant C, is independent of ,¢, and ¢,.

The proof of Theorem 1 is now completed.

Corollary 2  Under the conditions of Theoremn 1, then the weak solution 7% (z ,t) (s=0)
of problem (P.') suck that Z{ (z ,t) € L¥*(Q,)

Proof Since Z (z,t) satisfies the integral relation of Definition, with the a pri-

ori estimates that obtained in last section, we can easily obtain
£l
[z piae<con sl g,

for any y(x,t) €C'(Q;), where C is a constant independent of e.
Which means the result of the Corollary.

3. Global Existence for the Problem ( P)

In the last section we have obtained a weak solution 7z, t) of (P’ ). Now we
show that, if the constant M, is sufficiently large, the function Z°’(z,¢) is also a solu-
tion of the problem (P,)(e=0).

First of all, we shall establish a maximum- norm estimate for the function
Z*(z ,0).

Lemma 8 Let Z(z,8) (e220) be a solution of the problem (P ) oblained in Theorem
1. Then there exists a constani M, independent of &,a, such that

sup |27 (2,00 | < M, (17
Gf

Proof We divide the proof into two parts.
Case 1 (e=>0). Since

E:ia} =E&E 3o HEI{.:} b4 (E{ﬂl e &z(r}}
+ BZ X AZP 4 F(z,t,Z") (4°)



pointwise almost everywhere in Q,, then we take the L* (&)-inner product of (4%) with
| 2 |72, (p=>0) and obtain

Fj_z dtJ. 1zﬂ|}|r+3&r

= J d"sj E(E{']) |E|{a} ];E{;} 2 a.f(-'t:rf’:szhj)
] Q

az E(l}d:r.

= 3(P + ]:JJ- IE{t}lrl?E{-}“dx
é]

_!_J'ﬁmr:.;)]ﬂ{r}“z'm « £(x,t,0)dx (18)

Applying the condition ( I ) and the boundedness of 7(Z), from which we infer
that

|| Z9C0 || ey < (8] 2900 || i + I £t 00 || 22

Using Gronwall's inequality , we get

ﬁ ﬁ':':"{ 15) ” gy S ( || @ E[ kT -+ r || F(=,5,0) ” ;'*'qﬂjdﬁ)ﬁﬁﬂ{ |E}|T}

Which implies the estimate (17).
Case 2 (2=0). For any test function
p(z,t) € L0 T; Ho (@) [ L~ (@)
the function Z' (z,1) satisfies the integral relation in Definition. We now construct a

special test function #, in the form

E{UJ (:I.',!f)
1+ |Eﬁl}|

Polzyt) = h(z,t)

where the scalar function h(z,t) €' (Qs). It can be easily see that the function 3, be-
longs to the following space
G = L7(0,T; Hy(&)) N L”(@p)
10



Substituting the function ¢,(z,¢) for ¥(z,?) in the integral relation of Definition :

we have

Em] 03 o E{D}
_H-#T I _|_ [Efﬂ}i # E; ft(ﬂjﬁ)dmiﬁﬂ = Hﬁr.ﬁ' f::r,t,E ) 5 1 + |E{ﬂ}lfﬂ{£5f:}dlﬂdﬁ

From which, it follows that
Z o 2 — P(2,0,Z2) + ZW, a. e, in Qr

With the condition ( I ), we can easily obtain that

%lz‘”’tx,ﬂl < 812,00 | + |f(z,t,0) |

Which gives

| Z (& 0| << (| p(x) || = + J: | £C»,2,00 ”- = emdtlexp (| b1

The proof of the Lemma is now completed.

Consequently, by the maximum-norm estimate (17), we know that the weak so-
lution Z“ (x,t) of problem (P, ) is also a solution of the problem (P,) (¢=0).

Theorem 2 Under the conditions of Theoremn 1, then the homogeneows boundary value prob-
lem (P,) has , af least, one global weak solution Z™ (x,1) (=0, and

ZNzyt) € L=(0,T; Hy(2)Y) N W20, T; ¥ (@) N L=(Q,)

4. The Convergence as &0 and a—0

Theorem 3 Let 2 (x,8) (e220) be a weak solution of the problem (P,) obéained in The-
arem Z. Then there exists a function Z€ B and a sequence of number &,=0(s,—0) as k—>oo),
such that the solution Z (z,0) of the problem (P_,.) converges weakly o Z{x,t) in B, ond the
limiting function Z(z,t) is a weak solution of the problem (Py).

11



Proof Taking notice of the estimates (10), (11) and (14), we can easily prove
the result of the Theorem. Which is omitted.

In the rest of the section we denote by Z” (z,¢) the weak solution of the prablem
(P,). We shall verify that the solution 7 (>0 converges to a function Z(z,t) €
@, as a—0, and Z(z,t) is a weak solution of the following problem

7. = BZ X AZ + f(=x,t,2) (3')
| @

where £ is an arbitrary constant.

Theorem & Let Z@ (z,8) (a=>0) be a solution obtained in Theorem 2. Then there exists
¢ function Z(z,6) € G and a subsoquence 2 of T (x 1) such that 7 converges weakly star
to a funclion Z(z,1) @ G as a—0, and the miting function Z(x,t) is a weak solution of the
groblem (3')(5)(6).

Proof For any function

¥(z,8) € C'(Qp) with p(z,T) =0
we need to prove that there exists a limiting function Z(x,t), and which satisfies the

following integral relation

_u.ﬂ [$,+2— BVP* (ZX VI + ¢+ fldedt + quz,d} . p(2)dz = 0

(19)

where % denotes the scalar product in R® with respect to z.
Indeed, the weak solution Z“ (z,t) of the problem (P,) satisfies the equality

_[L [9 » 2© — BV (2 X VZ°) + ¢ » F Jddt
it Laﬁ(::,ﬂ} Lole)ds

—af @ x 2, - @ X izt (@>0) (19"
q i

v im]

By the conclusion of Lemma 4 and Lemma 8, we see that there exists a constant
12



M' independent of a, such that

up 12900 | wey + || 29¢,0) | 2=y << M

3 (20)
B¢ BN N et

'l-..-‘ .
i=1 ad P

Feor the purpose -:}f taking the limiting process a—( in the equality (19'), we need
the following estimates

Lemma 8 For the weak solution Z' (z,1), there exisls a constant M mdependent of «,
suck that

sup || Z(-,8) I oy = My (21)
G T

Proof By using the estimates (20) and the. definition of weak solution, "w& can
obtain easily that '

| 2 e <11 o

for any function y(z) € C*(Q).
Which implies the estimate ( 2T
Lemma 10 We have

FZ2C6) — 29C ) || oy < Oty — 1] (22)

Proof With the estimates (20) anr.:l. (21), repeating the procedure exactly as in
[6], we can immediately get the result of the Lemma.
Therefore, by using the estimates (20)(22), we have, (as a—()

Z Nz, t) = Z(z, 1) in L=(0,T; Ho (@) N L7(Q,) weakly star
Z2 X'VZ® =2 X VZin L™(0,T; L¥*(Q)) weakly star
Z (x4t) — Z(z,£) in LEH(Q) strongly for any ¢t € [0,7]

We can now pass to the limit (a—=0) in the equality (19'), and which yields
(19) ~

13




The proof of Theorem 4 is now completed.
Part I . Blow-up Property for the Problem (P,)

In this part we restrict our investigation on the following special problem

Zy=e/AD—aZ X (ZX AZ)+ BZ X AZ+ |Z|Z (23)
(P,) E’Iaﬂz 0 (24)
Z(z,0) = Z,(z) (25)

where the constant p==0.

1. Local Existence

We apply the Galerkin procedure as above. For each N we define an approximate
solution Z,(¢) of (23)—(25) as follows

Zy(®) = D aw(OW,() (26)

1|
and

(Zx (D), W, )= e(AZy,W,) — a(Zy X (By X AZy),W,)
+ F(Zy X AZy, W) + (F(2y) ,W,) (27)
{Ehr(ﬂ)?wﬂj: (En :Waj1 &= 1!"'!---!1""Jr (28}

where f(Z)=|Z|Z.

The local existence of solution of the problem (23)— (25) is ensured by the fol-
lowing theorem .

Theorem 5  Suppose that 0<"p<_2 and Zo(2) € H* (@) N HL(). Then there exists a
positive constant Ty suck that in the mierval [0, Ty ] the problem (23)—(25) (e=>0) has a gen-
eralized solution Z(zx,t), and

Z(z,t) € B= L=(0,T;H') ) L*(0,T; H?) 1 w330, 7, L3

Proof We multiply (27) by — A,a,,(¢) and add the resulting equations for s=
11 25 ot ,.LH'I'T+ We hﬁ\-"E-‘

z

d
T 1 V20 | By + 2l AZ (o0 || 2,

14




+ 20112y X Ay | sy < O] 12417+ (29)

Since the constant p€ (0,2], by using Sobolev’'s embedding theorem and Poincare's in-
equality , we get

” E}f ” a1 % l':'“1 ” EH ” H:{n} i {,'2 i[ T-"f-'u !E e

Therefore, from (29) it follows that

d :
F7 | V25 Ces8) || B2eay + 2 || AZRCout) || i’-{a}

+ 20 || Zy X AZy || 1oy < Coll V2400 | 552 (30)

where the constant O is independent of N.
From (30), we see that if 0 <7, << 1/(2Cp || Z, |l ::':} ythen there exists a con-
stant C'(T,) independent of N, such that

| AZyCx,8) | '@, ) + a || Zy X D2y |l t'tg, ) i c(Ty)
sup || Zy(e,0) | gy = C(Ty)
T,

With the above a priori bounds, we repeat the same procedure, which is omitted,
exactly as in Part I, the existence of generalized solution Z (z,¢) of the problem
(23)—(25) can be immediately obtained and Z(z,t) € B, such that

Zy =2 AZ — aZ X (2 X AD) 4+ Z X AZ + F(D)

pointwise almost everywhere in L
The proof of the Theorem is now completed.

2. Blow-up Property

Without loss of generality, we assume that e=1, and denote

AL =— AZ
BZ =— af X (Z X AZ) + BZ X AE

1
S (7 2 j (52>, 2)as

and Z,= — AZ+-f(Z). Then obviously we have the following results .

1’5




{E”E:: — (E:rz)! E{an —|_ IJE{E’) % (z!fiz':}}
where 0<Za,<p/2.

Theorem 6 Let Z(x,t) be a generalized solution to the boundary value problem (23) —
(25). Suppose that

 Zo(z) € HEHQ) N HAD
7 (Zy) > é—(zﬂmzn)

Then there exists a finile time T, estimable from above, such that

i
im [ 112¢,0) | ot =+ o0

=T

lim su[;;‘ | Z(+ %) || L2y =+ o0

PR

" Proof We employ the so-called concavity argument. Setting Eﬁx,a] =Z(t). Let
Ta» fy» 7 be positive constants to be determined later. We construct a function as fol-
lows (I'-E [ﬂjT{}]}

F (D =£<z,zmu+ (To — ) (ZorZs) + Bot + 7)° 31)

From which we infer that

() = EJ:(E.Eq}dH 1 28t + (32)

Obviously, we see that F' (0) = 28,7 = 0O and that F(¢) = 0 for t € [0,T,]. There-
fore, F~%(t) is defined on [0,T,] with a,>0.
Supposing we could show that

FP'— Cag = 1)(F)* 220
then since
(F™%) =— aoF % *(FF — (ay + 1)(F)?)
it follows that F~%(¢) is concave, and

F(t) = FOHY9 (0 (FC0) — agtF (0))715%
16




Therefore, as t — T(= F(0)/a,F (0)) , from below, we see that F(t) =<4 oo,
Which means the assertion of the theorem.
In fact, returning to (32), we have

PO = 22,2 + 26, = | @20+ 220D, + 26,

F (&) =4(a + IJ(J';(E.:E.H"? + ﬁu)

+2[ (2,2, — 238 + D@, Z)in
-+ 2((5:95}11 - {Eﬁn = l)ﬁn) (33)

Combining the identities (31)— (33), we get

FF' — (ay + 1)(F )= F[4(a, + IJ(J;(E#,E,H*-*; e ﬁn)
i zﬂ({z_,z}, — 2Ca, + 1) (Z,,2,))dn
+ 20(Z,,B)s — 200 + 18]
1 Gon'F 1)(2J:(z,z.m+ 28, (¢ + f:})z
= 4(a, + 1D5* +
e 1)L ::uczn,zn}u;{z,,zgaa + ﬁ.;.]

" zFJ;q:(z,,zj, — 2€ay + 1)(Z,,Z,))d
+ 2F((Z, 2}y — (20, + 1) 8,) (34)

where

= (J’;(z;z}dn + f. (¢ + 1:)2)- U;(E.”E,)'dn - ﬁn)

i 2
- (L(E.E,,}iﬂ + Bolt + ﬂj =0

where we have used the Schwarz' inequality. Thus from (340, it follows that
FF' — (a, + 1)(F)?
> or ;({z,,z:r., — 2(ay + 1)(Z,,Z,))dn
+ 2F((Z,Z)y — (200 + 1))
=<~ 2F ﬂ{(E,AEr}, — 2Cay + 1)(Z,,AZ))dy

17



+ 2F| ((2,£(2)), — 2(a6 + 1D (Z,, (2D
+ 2F((Zy 2o — ay + 1))

s ;((z,az), — 2(ay + 1)(Z,,42))dy
T EFL((EJ(E}). — 2(ay + 1)(Z,, £ (Z))in
— AR 1Y J': (BZ, AZ)dn

+ 4F(a, + l}j;(.ﬂﬂjf{ﬁﬂiﬁ
+ 2F((Z0 B)s — (20 + 1D 85)

Applying the facts,

Z, = E: + BZ, (EE’:AE) i.. 0
and

whichr-gives

FF — (@ + D (F)=— 27| ((3,42), — 2(a, + 1)(Z,,4Z)Ydn
0

+ EFL({E,J"(E}), — 2(ay + 1)(Z,, £(Z))dn
+ 2F((Ziy Z)o — (25 + 1) 80

On account of

(Z,AZ), = 2(Z,,AZ)
and

STy _[ (B, (@)in + 9(Z)

we have

FF = (ﬂu '+" 1){}#}2
> 40,F| (B, 42)in + 2P ((2,5(2)) — 20a + Dg(2))

Sl I)F(gfﬂg) — Lez,,42,) - fz’;ﬁfff“) (35)

Therefore, for any f,>>0 satisfies

(Eﬁu 1) = 2(a + 1)(!}{59} == ,]/ﬁ{znrd‘l,zn:’}
18




from (35), we finally obtain

FF'— (ay+ I)(FP =0 or (FH@)'<K0, Yee [0;7,]

Which means that the generalized solution Z(z,f) blow-up in a finite time T,

Furthermore, by a straightforward computation, we can check easily that the con-
stant T such that

T << (Ty(Zy,Zy) + Bov )/ (Payfyv)

where

1 (ZosAZy))

i s Bo = 20aq + 1) (g(Zy) — 2 Qa1

(ZgsZy)
fy

The assertion of the theorem is now proved.
Remark We state that there are many initial vectors Z, such that

0(Z0) > 5 (Zo, AZy)

and r=

In fact, for any function V,{(x) € H*[| H., which satisfies
Vo F Vo)) =10

we set Z,=sV;, here s is a constant such that

|
97 =5 G,V

1
P 2

SEWVD V) > 5Ty, 4V
Then we have

i S,r-l-i
9(Zy) = L(fusm VOl = (FT), V)

s (Vo2 AVy)  (Zy, AZy)

£ 2 2
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