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Abstract 'We consider the problem of existence for viscosity solutions of second or-
der fully nonlinear elliptic partial differential equations F(D'u,Du,u,z) =0. We prove ex-
istence results for viscosity solutions in W™ under assumptions that function F satisfies
the natural structure conditions. We do not assume F is convex.
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1. Introduction

This paper deals with the problem of existence for solutions of second order fully
nonlinear elliptic equations

F(D'u,Duu,z) = 0 in 2 ~ 112
with Dirichlet boundary condition
u =g on Q2 (1.2)

where £2 is a bounded domain in B* with ¢! boundary. Here F is a real function on I
=8(n) * B # B % Q,8(r) denotes the # # n real valued symmetric matrices, and I”
will denote set S(n) % R* » R. We assume g is a C? real function on 0.

The existence results for such problems depend on both the properties of the func-
tion F and the space in which solutions are taken. Using the method of continuity , we
can establish existence result for classical solutions of (1. 1) and (1. 2) under some con-
ditions on F which include the convexity of F. Otherwise ,some existence results of We?
solutions of (1. 1) and (1. 2) can be obtained :for F “linear at infinity” ([67]),for F
“close to linear” ([8]). .

The definition of “viscosity solution” was introduced by [47] as a notion of weak
solution for H-J equations in 1983. Under some assumptions, the uniqueness and exis-
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tence of viscosity solutions can be established. In [10] the definition of viscosity solu-
tion was extended to second order problems, and if F is convex, the uniqueness of vis-
cosity solutions was proved. In 1986, R. Jensen [ 9] proved unigueness of viscosity solu-
tions for (1. 1) and (1. 2). He does not assume F is convex and not allow spatial depen-
dence in z. We extended the result of [9] to the case that F can be dependent on  but
we must assume F is uniformly continuity in = ([2]).

In this paper,we prove the following existence theorem:.

Theorem Let FCC* (") sutisfy natural structure conditions and the follmwing condiiion

|.F1-=|'-'|Frﬂll|.prll‘|Fm|!|Fa.|1|Fﬂ'|?|Fm|igil—kIF|2—|—1T|}

and suppose that g€ C* (). Then there erists a W' (£) viscosity solution for problem (1. 1)
and (1. 2).

The method we use in the proof of the above theorem involves solving a sequence
of approximate problems by the m-accretive operator technique,making W™ estimates
for WP (p=>2n) sclutions and passing to limits by means of a modification of G.
Minty's Hilbert space methaod.

2. Preliminaries

We begin by some definitions.
Definition 2. 1  Let u € € (), the superdif ferential D™ u (x)  (subdif ferential
D ulx)) is defined as the sel

DY u(z) = {(p, M)E R % S(n);u(z + 2)

S ula) + pxz+ (M/2) % 2,2) + o(|2]D)}
(D~ ulz) = {{p,MIE R % 8(n).u(z + 2)

= a(z) + pxz+ ((M/2) % z,2) + o(|2z|)})

Definition 2. 2 & ((Q) is a viscosity supersolufion (subsobdion) of (1. 1) if

F(MjPlu{I}:z} é 0 for all {P,M} & D™ H(I::} T & L2
(F(M,p,ulz),z) =0 for all (p, M) € D7 u(z),r € &)

we O is a viscosly solution of (1. 1) if i is both a viscosity supersolution and subsolufion.
For superdifferential and subdifferential ,we have (see [6])
Lemma 2. 3 Suppose uE W, (L) (p=>n) and let x, € &, Then for any pair (p, M)
& D ulz,) (or DT ulx,)) ,there erids a sequence (@, } CC, (8 such that
(i) @z )>ulxy) s  Dpy(zg)—>p, Dlo(x)—+M
(ii) @ (2) —uz) = || ¢s—u || oy =@ () —ula)
(or H(In}_?‘i(ru}z ” U " ccm:}“{fﬂ'—‘iﬂx(ﬂ)j
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j;'ar rE & 255,
where WP () = (€W () 13| 50=9}, O} (@) = {a € C(L) 1u | 0=49).
Let us now assume that F satisfies the uniform ellipticity

(F1) H%(Fm)iﬂ D<A A< o0
Proposition 2. 4 Let e=>0,F, be conttnuus “unction: on I satisfying (F1) end u, be vis-
cosity solulions of

F(D*u,,Du,,u,2) =0 in 2

We assume that F, converges on compact subsets of I' to some function F and that u, converges on
compact subsets of 2 to some functions u, then u is a viscosity solution of (1. 1).

Proof This is Propesition I. 3 in P. L. Lions [10].

Constructing approximate solutions depends on a “quasilinearization ™ representa-
tion of fully nonlinear function F. This representation arcse in L. C. Evans [ 6] for sim-
pler functions.

Lemma 2.5 Suppose that (F1) holds. Then for (r,p,u,2)E T

F(r s Pa &) = max min I{HEJ(E,I'}{?‘” v Eij)
g EF (nheler

T b.‘“ﬁ"}(?ﬁ T 'ﬁ'l} + c(i,z)(u — ) =+ F(S:E:U:i’}}

where

{ ')
a(l,z) = J: F,“(A,B,El',a:)dt, b({l,z) = J F,‘{A,B,{?,x}:it
0 i :

I
G(f,iﬂ) :-[QF;(A:B:S:-::}&E! [ = ((EI?H}}:{F:E:W)] & Fwl (2-])
:‘1=(1_ﬂ3+3‘?=— B=(1_5)Q+ﬂ5r C=(1— v+ tw

3. Wh = _estimates for W2 ?-solutions

Letting I''=S8(n) * B % [ —k,k] * Q for k€ R*, we adopt the following struc-
tural conditions in this section

(F2) F(r.p,2z,2) s.— i s IF{ﬂ:ﬂsﬂﬂ:)l iﬂz
(F3) |FCOsps2,2) | << (1 + [2|®) Y (,2,2) € T}
(F4) ¥l iF,(T,P:-E;I) | 0F (ryp,2,2) < wmllpl® 4+ |2

for all (r,p,z,2) €T, with |p|=M
Where g o phg s sty =gty (k) , ,=p, (k) and M are positive constants and

6F = F. + sup {(|p.£] + D7'|F,])
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Consider now the Dirichlet problem of the elliptic equation

F(D*,Du,u,z) = 0 a.e.in @ 313
u =g on 9 (312

At first, a priori estimate for solutions of (3. 1) and (3. 2) follows from the maximum
principle of Bony ([ 3 1) and the local maximum principle for strong solutions ([127).

Lemma 3.1 Let uEW*?(p=>n) satisfy (3. 1) and (3. 2) and suppose that (F1),
(F2) and (F3) hold, Then

Iz | e T ” u ” e = C (3. 3)

where a>0 depends on ny Ay A, us (M) and My= || u || oy and C depends ,in addition, on u, ,
i, and diam§2,

By means of well known barrier techniques the boundary gradient estimate of clas-
sical solutions may be extended to that of the WP (p>r) solutions ([137]).

Lemma 3. 2 Let u€E W5 (p>n) satisfy (3. 1) and (3. 2) and suppose that (F1) and
(F3) hold. Then there is a constant C depending only on'nyiy Ay s (M), || ¢ || & and @ suck
that

|u€z) — g(y) | < Cle — y|, forallz € 2,y € 3Q (3. 4)

Finally we have the following interior gradient estimates.

Lemma 3.3 Let ua€W*?(Q) (p>2n) satisfy (3. 1) and (3. 2), and suppose that
(F1) and (F4) kold. Then there exist constants C and 0 depending ondy on n, Ay Ayand p, (M)
such that if B=RB,,(y) is any ball in 2 and a=n§¢u£5,ﬁm

|Duy) | << Ca'*/R + 24M (3.56)
Further the estimate (3. 5) remans valid if B is replaced by B[ Q for any ball B=B,,(y) with
yE Q and |Du|<M on 32(B.
Proof Without loss of generality we can take y=0. For 2z B,(0),&£€ B, (0},
and k€ (0, R) set

m(z) = (1 — |=|*/B) 5,08 = (A — |£]D 0= nm

8 (3.6)
v = 1,(2,& = [ulz + k&) — ulx)]/k,w = 5,0°
Taking the difference quotients for (3. 1) we obtain
12 09, 3¢ 2
a; 0w + BDw =v [ﬂ.‘jﬂijﬂ] -+ bDin — “1}_ {Iﬂ-ﬂi?;r,ﬂj:«g,]
1
~+ 2, (e, DDy — cv® — fv) (3.7)
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where

t
ﬂl-j = JDF,H(EEH“DH“HEjﬂT —|_ Ehé)ﬂ]

¢ {

2
by = jnF,Fiﬂ, ¢ = Lﬂiﬁ?: B, =b — _T?"]“iiﬂ:"?l
Uy = Ou(z + k&) + (1 — Du(z)

By the Sobolev imbedding theorem we know »€ €' () with f=1—n/p. By us-
ing structure condition (F1) and (F4),it follows that,on the set §, — FOELEVE Bhw
By: |Du|Z=2M }for (M / || u || grregy ) *

H:jﬂi.r'5+ B-'D-'E; 2An, |ﬂ1-"2 — 16a,m7, (1 + FE:JUB“F 1 |ﬂ2u|}
— v"[3684/R* + 4un*/R(|Du| + |D%|/|Du|) — £ (3. 8)

where

ey =o(h) = dp, (0° + 2 + ) (e, + &,)
+ 4#4323';3[511"}1“ + &(1 + rﬂzul;’rM}]
g, =, (k) = |Dulz + k&) — DPu(x) |
& = |Du(z + hE) — Duz) |* + || DuCz + k&) |2 — |DuCz) |?|
+ [Duz + k&) — Du(e) | + | |o(z) |2 — [DuCa) |*] + |v(e) — Daulz) |

MNow we set

M, = supu, M, = sup m’, & = OSCY
B

& B8, B

" = exp({u— M)/ a), w=w(x,&) = p* 4+ """ Mu"
8= {(z,5) € ;S'Mw;—g- sup w}

4 .Fr;a-l:.iEI1

By the inequality " <1, we infer that 30,/ 4w g’ +a'* M, on the set &, that is e
= (3/4—a"*)M,. Take 6, = (1/16)?, then for as_0, we have m*==M,/2 on set S. Fur-
thermore using »" =e™'>>1/3,we know that if as<_#, and M, =2 then

M A
“i.iﬂij'_’” + BDaw =2iy|Dv|* — ¢, E}%Jﬂzul o WMLFD“F

— v*[32u9|Du|* + 36nAR* + 4un"?R™" | Du| ]

M, 7 BnA
o172 Las | Du|® + 7IR

|Du|] — e, (3.9
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where (', is a constant depending on =, A, A and u, and
e =y — Ma a7 *[(|Dul + |Du|/M)e, + 26, ] + 20, M2 | D'u| (RM) e,

Writting D, for 8/3&,i=1,2,++,n, and let ¢, v he indices running from 1 to
2n, setting

iy T = 1,7 =}
Ay =4C 2" osgn{DuCz + 1)} e=n-ti,r=jore=1,7=n-+ j
Civ* (Qa) ™8, g=n-+i,T=mn-+j

and B,=(,0=na+1,1=1,2, *+,n, then we obtain by calculation and estimate, if
a0,

A D,w~+ B.Dw = |Du|*[A(6a¥) ™' M, — C,(a'*R)'M}* — 36rA/R*] — 2(k)
for a.e. (z,5) € &, (3. 100

where

O, = 4u, + 16r4 + 24C,
S, ={(,) € S: EIP<k/G+ D}, k=1,2,
8, = A*[6(33n, + 40,47 4 16CT(k 4 1)%a7!
+ (dn 4 16)CHE + 1A~ ]2
e(h) = Az, (k) + Be; (B) + Ch| Mulx + 1E) |
AyB,C are all independent of k. Setting

Oy = 36(36nd + C,)%/2%, 0, = min{#,,6,}
G=MHK{G;;1}', h¢=nﬁn{Rf2,(Mf ”H” c"'cm)”ﬁ}

Then we have from (3. 10) for a=0,,h="k, and M,=Ca/R*+ 2
A D w—+ BDw_—=— (k) fora.e (z,&) € 5 (3.11)

Using Alexsandrov maximum principle we obtain from (3. 11)

/(3]
supto < supwo + B(A) U 68 /D* |t (3.12)

where D" ==det(A,,) and B(k) depending only on =,diam(s,) and | B;/D* || ;». By es-
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timation we obtain from the definition of #(k), B; and A..
1/02n)
T B(f;)U-S le(k)/D* |E'-i¢icf] — (0 ash—1{ (3.13)

provided a<_f,, M,—=C"/R*+ 2, uniformly with respect to k Furthermore we have by
the condition u& ¢ F(2) (ﬁ=1—ﬂfp}l;’2) ,t?h(.::',ﬁjl—l'ﬂgu(z] (h—0) uniformly
with respect to (x,4),and M,— sup »| (Du(z) [f=M,.

B.}{H:

Setting 4, = {(z,6)E By * By : | Dulz) | =2M, | &> <<k/(k+1)} we have

Supw = Max{supw ,supw )
A A NS

L] bk [

Case 1 supw=_supw. This implies sup w%-&a— sup w. Setting
,dl ﬂlj{B!

By={(2,8) € By* By [E|° < ¥/ + 1))

and letting &==0,we thus obtain
supy| D) |* << 4M* + S0 + 6" (1 + +° supy| Dy ?

Using inequality o=, and taking k=#%,=[(20/17)"*—17"" we have by calculation
supy | Dyu(z) |* << 64M°
&
i

Consequently |Du(0) |=-24M.
Case 2 supw=_supw. W.l. o.g. we can assume M,=C"/R*+42. By the inequali-
A Foy

b ]

ty (3.12) we have

supw = supw + 4,
agl

&

According to the structure of set 35; and relation (3. 13) we obtain by the same argu-
ment with the case 1 )

| Du(0) | = 24M

By combining the case 1 wtih case 2, it follows that, for a<=_¢ = 0, and C =
max{C (k) ,1}
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| Du(0) | << Ca'*/R + 24M

Now we obtain

Theorem 3. 4 Let u€ W™ (Q) (p>>2n) satisfy (1. 1) and (1. 2) and suppose that
structure conditions (F1)— (F4) hold, Then there is positive conslant € depending only on n, A,
Aoty g fhy o tiy 5 1, and diam&2 such that

| vl = < €

4. Existence Results

Let us assume that FE C*(I™ and augment conditions (F1)— (F4) by
':FS:]' |Fn|!|Fm|!|F#I?IFmi*|FtI!|FH|!‘|F=#|
< (1 + [p|*+ |r])  forall (r,p,2,2) € Iy

where u; is a positive constant.

The purpose’ of this section and the fundamental result of this paper is the follow-
ing existence theorem.

Theorem 4. 1 Suppose that F satisfies structure conditions (F1)— (F5). Then there ez-
ists @ w€ W™ () solving (1. 1) end (1. 2).

Proof (See the appendix of [ 6] for accretive and m-accretive operator theory ).

Let us define for (r,p,2,2)E T

H(r,psz,z) = F(r,p,z,2) — %— trace(r) (4. 1)

It is clear that H satisfies (F1)— (F5) (elliptic constant is changed) also. Define again
H(r,p,2,2) =— H(—r, — p, — 2,2) (4. 2)

then H satisfies (F1)—(F5) and (3. 1) can be rewritten into
—%&u-%ﬂ(—- Puy, — Duy, — u,z) = 0 a.e. in &2 (4. 3)

Define a,;,b.,¢ by (2. 1) with F=H and

ijY
_f{'!bl'} = ﬁ(&'ﬁpt’;ﬂ — E,'_{(Epz}ﬂu — 'E’.;{E!I:]g.; = C{E,l‘:}’b‘
By Lemma 2. 5 (applied to H instead of F)

H(— PPuy, — Du, — usz) =
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= max min {— a;{,2)Du — b(l,z)Du — c(l,x)u + f(l,z)} (4. 4)
g €L (g.badET

Hypothesis (F1) and (4. 2) imply

< @) < 4= 31

Ldu = aij(fti")ﬂﬁu e ﬁ;{f,#)ﬂiu = G‘(!,f]#

for u€ D(L) = (u€eW"(Q) W,?(Q) (r<lp<<oo),Lu€ (@)}, Then L,is the uni-
formly elliptie lineat operator for each € I' % I and

H(— D’, — Du,u,2) = max min {Lu+ f(l,2)) (4. 5)
(a0 ED (g ET A

is the max-min of affine elliptic operator.

According to standard elliptic theory the operator L, D(L,) CCO(2)—=C(Q) is-m—
accretive in (L) ([5]). Fix #2>0,let J,(I) denote the #-th resolvent of L;and A,(I)
denote #-th Yosida approximation of L. We know that each A, (1) is a defined every-
where , Lipschitz ,accretive operator on C(&) ([67).

Next let 220 and select some smooth function f=g,(x) such that

f(z) =z, le] =< 1/e—1
B(x) = 1/, |z] = 1/e (4. 6)
ey |

MNow we define the nonlinear operator

By(u) = f{ max min (A4(Du+ Fl,2))) (4. 7)

EE.E.D}EI‘I (r b0y €1

Since f(l,z) is uniformly continuous with respect to z for |s|, |¢|, |v|, |¥], | %],
|w|<(1/6)'*, B, is defined on all of C(&@). Furthermore B, is Lipschitz (since each A
(1) is Lipschitz with the same constant 2/6) and B, is aceretive on C(2) (see [67]).

Hence the Perturbation Lemma (applied to A=—% 2 oand B=B,) from Evans
[6] implies the existence of unique u,=u,(e) € W2?(Q) MW, 7 (&) solving

B, — %&ﬁﬂ -+ B,Gi,) =0 a.e.in @ (4. 8)

Since |B,|<Isup|f,|="1/e,we have
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|t || w2+ << C(p,8)  for each p == (4.9)

the constant depends only on p and e.
Owing to (4. 9) there exists a sequence &,— 0 and a function u & War {2y N
W, (£2) such that

Uy —>U weakly in WH(Q) (p=n)

¥

Du, — Du uniformly on 2 (4. 10)

Uy == U uniformly on 2
By calculation we have for some given @€ C7°(Q) with || @ || 2 <T(1/0)15

| 4D — L |l oy < O || L)@ | oy
max min {Lp+ f{l,z)} = H(— Di"}"p — Dy, — p,z)
lelvlal Iol=e YE lylo ks ol sce~ 4

Therefore by (4. 7) and structure condition (F5) we obtain for @ small enough

I By(p) — B(H(— D, — D, — @,2)) || oy

<oc - max (sl + gl B+ 10l ol ) <TO
| |g]ale|=g
Irls 1% |we|ess™ VE

Consequently
B,(¢) =+ p(H(— IPp, — Dp, — p,z)) (4. 11)

uniformly on £ as ¢—0.

Now according to the accretiveness of —%&.—{—Bﬂ we have

A
[t — ) — 520 + BeGap) — (— A9+ B(9)],3 0
for any @& 07 (&) ; (4. 8) then implies
[t — @) — 0ty + 5 A9 — By(9)],> 0

Let = 8,—0, by relations (4. 10) and (4. 11) and the upper semicontinuity of
L+ 14 with respect to uniform convergence
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[“ — ‘i’i%&? e ﬁ(-ﬁ-(_ ﬂz?: — Ly e T!x:}j]-}-; 0,for any s 3 E:H(Qj
(4.12)

Fix a point z, € £ and a pair (p, M) € D" u(x,). By the characterization of
[+, + 1:([6]) and Lemma 2. 3 there exists a sequence @, & ;" (&) such that

AR — A Do), — Dpr(ae) s — 9u5) ) <0 (4. 13)

Let koo and use Lemma 2. 3 to find

%M — BCH(— M, — p, — u(%,) ,2,)) < 0 (4. 14)

This inequality implies that » Is a viscosity supersolution of the following equation
i s
s — pCH(— Duy, — Duy — u,2) = 0 (4.15)

In the same way we can prove u is a viscosity subsolution of (4. 15) ,s0 that uis &
viscosity solution of (4. 15).
We can rewrite (4. 15) into

6.[u] ='~l§~gu — = FD'u,Duyuye) + 5A0 =0 (4.16)

Next we remove the f, from equation (4. 16) and denocte by u, the viscosity solution of
(4. 16) constructed above.
According to Theorem 3. 4 (applied to @, instead of F) we have

| 2 || gt=eey =< C (4. 17)

where €' is independent of &.
Estimate (4. 17) implies the existence of a subsequence (also denoted by »,) and a
function € W™ (£2) W, (L) such that

U, —u weakly in W™
i, —> uniformly on £

Furthermore by (4. 6) we see that G, converges on compact subsets of I" to F, So accord-
ing to Lemma 2. 4 we know that u is the viscosity solution of (1. 1) and (1. 2).
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This completes the proof of Theorem 4. 1.
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