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Abstract This paper discusses a class of weakly hyperbolic equations with singular
coefficlents. We first set up the energy inequality, and then discuss the wellposedness of
the Cauchy problem by means of the energy inequality, and the relation between the aif-
ferentiability of solution and lower-order terms.
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1. Introduction

Much study has been made to the relation between the differentiability of solution
and lower-order terms of the Cauchy problem for weakly hyperbolic equations. V. Y.
Ivril and V. M. Petkof have shown in [1] that the Cauchy problem for a linear partial
differential operator is L,-wellposed with a loss of one derivative » With a necessary and
sufficient condition that the operator is strictly hyperbolic. M. Zeman pointed out in
[2] that if a linear hyperbolic operator has smooth double characteristics, its Cauchy
problem is L,-wellposed and the solution has a loss of at most two derivatives. T.
Mandai proved in [3] that the differentiability of solution of the Cauchy problem for
weakly hyperbolic operator with constant multiplicity characteristics is determined whol-
ly by the multiplicity of its characteristics. These results show that for the operators
mentioned-above, the loss of the differentiability of solution is determined wholly by
the multiplicity of characteristics, But for general weakly hyperbolic operators, this con-
clusion will not remain true. The problem studied by Qi Minyou in [4 is exactly a
powerful example in this case. T. Mandai studied in [ 3] the relation between the differ-
entiability of solution and lower-order terms for general hyperbolic operators with ener-
gy inequality holding. This paper discusses a class of weakly hyperbolic equations with
singular coefficients. We first set up the energy inequality,and then discuss the well-
posedness of the Cauchy problem by means of the energy inequality , and the relation be-
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tween the differentiability of solution and lower-order terms. Our results show that for
the operator discussed here,the differentiability of solution is determined wholly by the
norm of the lower-order operator with singular coefficients.

9. Notations and Definitions

We are concerned with the following equation

3 3 Ba,tsD) u
(Emﬂaii,hﬂ,)}(a + #fa(z,t;D,) Ju + - - = f(z,i) (1)
1 2 1 2 : ; . .
where z € R',D, = (TE-"" ,TE-} calz, ;D) is a first order pseudo-differential op-
il

erator with respect to z. ¢ is regarded as a parameter with a real symbol a,=a(z,{;£),
which is linearly homogeneous with respect to £ and when £5£0,a(x,4;£) is nonzero.
f(x,t;D.) is an operator of order zero, f(xz,t) is a decently smooth fynction of x and
i, and p is a positive constant.

We shall consider the homogeneous Cauchy problem for equation (L A By
Fu
E =1

Definition 1 We say that the Cauchy problem of a partial dvf ferential operator P of order
m 15 well-posed @ the sense of Hadamerd , 1f @ exists a wnque solutron winch depends contiraousily
on il data and the funclion F(Pu=7).

Definition 2 We soy that the Cauchy problem of a partial dif ferential operator P of order
m 15 Ly- wellposed wnth the loss of r lunes derwalwes, tf o s well- posed i the sense of
Huodamard and there is the followmg energy inequalily

=), but the number of the initial conditions relates to f.

> ).l Ps], (2)
|ﬂ!’5;!ll—r

where || v( » ,2) || , Sands for the norm eqapped to the Sobolev space H,.

Denoting Pu=7#, (2) shows that if fE H,,then uEH, ..

In the above definitions the loss of {-derivative and that of r-derivative are not dis-
tinguished. Since the wvariable ¢ is in a more special position in our discussion,it is neces-
sary to distinguish the loss of the z-differentiability of sclution u from that of the ¢-dif-
ferentiability. For this purpose we shall introduce the notation

!
4o . = ( EJ | D2Dju () |*cim)L I 3)

o=
FE

Definition 3 We say hal the solulion u of the Cauchy problem of a partial dif ferential op-
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ferentiability and with the loss of q times derivafives to the t-dif ferentiability , if # 8 well-posed
ﬂm&manmmdﬂwewﬁmﬁﬂmmgmﬁMﬂ_

| uCe) H stm—p 8 g = C| Pu|l s (4)

3. Energy Inéqualitie&
Before setting up energy inequalities, we give three preparation thmrﬁms [ See
[Ej)Prepamﬁun theorem 1 Jf
ty (&) < ay(t) + bty (&) + M,t"g(0) (5)

where g(£) =0 is infegrable, a,b, M,,K , M are positive constants, M >a,and iingaﬂ_“;r{t]=
=
0,then we have

y (L) iﬂrf‘[;g(s)&s DSt T (E}_

4 .
¥ () < E’f_’jng (s)ds - - (7)
Preparation theorem 2 If v€ L,[0,T ], and let

wy ()= J_:i'r(&}u-is

o (s fmt(s)mﬁt} L j:m_. (s)ds

R < *Jaf{ms 0<i< s (8

Preparation theorem 2 Denole
=0<i<wz€ER}, T, D= %

1
1
gt vz, t) € L,(@) ,ﬂfFE L, (G2 ,ﬂ:u] ,_{,zﬂ,ﬂf}*h_u:ﬂ, O0<lksN—1,and lef
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[FI = | 10170 e

then we have
=3 IN41 oy
ﬂ-ﬁiﬁﬂﬂ dﬂ i E”dtd:: - 1?' [Fliat
e, g, !
where § is a positive constant,
Again, let
'!-"1 = U

d :
Yy = (E -+ ﬂﬁa(x,t;ﬂ_}}ﬂl
then equation (1) can be transformed into the system of equations |,

=— Walz,0;D,)v, + v,

R[$ ¥

= W0 tiD)vy + = aCay 30,30, — £y, 4 5

. 0 —
ﬂ=r(1’1:?"z}: A-__(U‘ ﬁt)

p [ — #a(z,4;D,) 0 i (ﬂ)
|\ #paCe,t;D)  taa,uyp))0 F= £
then (11) can be rewritten ag

dy

77 oo —:—AH‘ + #'By -+ F

!fﬂ o —
tﬂ-}*dv—-tﬂv-—w

(9)

(10)

(11)

(12)

(13)

which is just the singular hyperbolic systems of type (a,p) introduced by H. Tahara in
[6]. Here a=1, and P—a11=p>0. Let us make the following assumption for

(12,
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(14)

= 0 IS jsSN—1

fe=iF

where N= [su:p | 4| J,(«] stands for the integer part of z. If we denote

S A4
L= ¢

+ £ —¢'B

L3
7

then equation (12) can be rewritten as Lv=F.

Theorem 1 If B+B" is a L,-bounded operalor under the assumplion of (14), then for
the operator L there is an encrgy inequality

[r@ra<e, 1 2o 1) (15

where N=[sup || 4| J.

Proof Multiplying both sides of (12) by #,and integrating on G, yields

@
¥

T R A ¥ T
HR& v, * Bdadt = — L L(:’—ujdt + Lﬁ“'_'Ra{Hv,v}d# -+ J- Re(F,v)dz
0

Applying preparation theorem 3 by (14) to the last term of the right side of the above
expression, and noting the L,-boundedness of 4 and B+ EB", we have

¥l
[ 2 holza= o |

<sup [ LD gy o[ L@ ) 7

o 4
¥ 2 T

_I_ ,ﬁ—r.n Lv{:)—”ﬁ -+ leﬂﬁifl—[ [F]ilfﬁ
]

1 3 2 T
oeoy | "< af L2 1y LoD I,

il
o

di

+ M, R

since || #€0) || *=0, the integration of the right side of the above expression makes
sense, If let
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T || 2
y(7v) = L KON e?

¢

then

w(s) = || v(¥) il -

and we have
7y (7) << ay(s) + Wy{f) + M, 7% g(%) (16)

where a=sup || A || +48, and & can be taken as a sufficiently small positive number
such that [sup || A || +6]=[sup || 4 || J. Since N=[sup || A || ], it is obvious that
¢ i I

1) 2N+1>a;
2) lﬁx;e‘.“‘y{t) =],
Thus (16) satisfies the condition of preparation theorem 1 and we have

| o) || 2 << 0y # j g

Since

o) = [[[FRas, [F% = |0¥Fie,

thizs expression can be rewritten as

ROV EECANES R AP A

Because the conjugate equation of the system (12) has essentially the similar form to
that of (12),the inequality with the similar form to (15) can be also proved for the
conjugate equation. Denoting by L* the conjugate operator of I, we have

EROY AR W PANY 15

It follows from the well-known theorem (cf. [7]) that under the assumption of Theo-
rem 1, the system (12) has a weak solution under the additional condition (14). And
by (15) the unigueness and continuous dependency of the solution are obvious.

It follows from u=w, in transformation (10) that || u(%) || << || v(+) || % Since
Lv=F,F="(0,), | FII*= || £ || ?, if denote
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R

Pu= (3 — itaz,1:0)) (5 + aC,t3D.))u + £
then by (15),we have

lao) |1 < j"ll Pu || 2, it

Integrating both sides of this expression with respect to v yields

r | u () || v r:-'_” | Puce) || 2 pitis
0 0d 0
= cq-jﬂc—: — O | Pu) || 2yt < crrj: | Puce) || 2 iv

lull <cll Pull o

Note the relation between # and v and condition (14). If we add the following Cauchy
condition to equation (1)

Fu

v = 0 l<j<N+1 (14,)

f== ¥

and demand it to satisfy the condition

21

= =_ﬂ 0= j==N—1 (14,)

==

then by definition 3 we get the following
Theorem 2 If B+B" isa L,- hmnﬂaiﬂm'atmmiﬁ—[sup [[AII:I then under the

addulional conditions (14,) and (14,) the Couchy problem for equation (1) is L,~wellposed with
the loss of two derivalives with respect fo variable x and with the loss of N2 times derivatives
with respect o variable .

Theorems 1 and 2 are derived under the assumption the B+B" is a L,~-bounded op-
erator. Generally speaking, this condition is rather stronge, which will be relaxed in
what follows. For this purpose we shall transform equation (12) by means of the
method offered by A. Menikoff in [8]. Let

B (—;fz ;})
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then

-1 __ lft ﬂ)
i (ﬂfr:zs.) 1

and
K“1£K=(

"‘"i!ﬂ'(ﬁ:f;r;) 0 )=D
0 Ha(x,t38)

Let G be the pseudo-differential operator with symbol g= (KK " )", then the symbol
of the operator G™'BG is (KK*)~"?BKK* (KK")~Y?, Since BKK"* = KDK" is sym-
metric, it is easy to find out that (KK * ) " Y!BKK* (KK *)~"*is also symmetrm then
the operator G~ 'BG is a symmetric operator. This fact is very important to the following

discus:-;ion. Again,

L Tt o
=iz LB
Ui i sl

For @€ R* we have
(KK'w,0) = (K'0,K'0) = |K'0|* = 0|0

for 0=Ct=CT, because the matrix

: =5 (=
o e ) | = 0
N "zﬁ" e
4T
¢ =1
is bounded independent of z,¢ and & 2T Y is bounded by El.-f if ¢=<_T. Thus
k¢l

(g0,@)=Ct|w|*. By the Lax-Nirenberg theorem [97, we can choose a lower-order
term of ¢ so that

Re(Gu,u) = vl'_"f‘.!'.|1.1|= # € O (R)?

(The lower-order term depends on z- and §-derivatives of g(x,¢, &) dnd therefore is
bounded by at worst 1/¢,which as will be seen does not hurt our argument. )In addition
@ will be bounded above. Thus || @, || <C and || @' || <€/t Make the change of
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variables GU/=yv, Thus equation (12)

d_,” — g1 e i
o - "By tAt.r + F
becomes
L = B 4 671Gy — %G"'AGU + G'F (17)

By the symmetry of G~'BG,among which each element with first order operafor is pure
imaginary, and the properties of @,G 'and @,,equation (17) can be rewritten into

E_ —1 _ﬂ :

esiee VT tU—l—F i b
or

z% ol = B (17"

where F, =tF,H+ H"and H, are L,-bounded operators and equation (17') has the
same form as {12} The results corresponding to theorem 1 and theorem 2 can be ob-
tained from the analﬂgnus discussion with a modification that here N is J:sup |2l

H, depends on & and A4,G and A depend on B, therefore H, depends on f£.In a word,
for equation (17') if we assume

2 —0 o<i<w
h o (18)
[E T

where N=[sup || H, || J. Denote
'

L= 8 gams Sponp
then we have the following

Theorem 3 If condition (lﬂ]hﬂsﬂmfwﬂmawmeﬂw#wmmgyuMy

j () |2 < —;WHJ | 20 || 2 odw (19
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where N=[31§p | Hq |l 1.

Since v=06U,U=6G""v, and G~ is bounded and each differentiation by ¢ adds a
factor of 1/¢ to the bound (see [8]). We obtain that

N1

lo@ 1< 35 I oiF | e

of course it works under condition (18). Since

V=g F=06""F,"
will add a factor of 1/t at each differentiation by ¢ In order to ensure condition (18)
it needs only that

fe= {13r}

holds. We obtain the following
Theorem 4  Assume that condition (18) holds, then the Cauchy problem for equation
(12) is well-posed , and there is an emergy wmegquality

| o) || 2 << Co || FCO | 6041 (19°)

From the relation between v and u,it is immediate to transform this result to the
Cauchy problem for equation (1).

4. The Relation Between the Loss of the Diffferentiability
of Solution and Lower-order Terms

For equation (1)

2 — ita(e, ;D)) (& + iwaCe, D+ L 5 = 5 (1)

what does Theorem 2 (Theorem 4) show? From
|u(®) || < C| .f | o,x (20)

it follows that
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1) If f€ Hy, then € Hy. Since m=2, and it can be also regarded as u €
Hp i y—24n» therefore the Cauchy problem for equation (1) is L,-wellposed with a
loss of N+2 times derivatives. But V= [sup | All J¢sup || Hy || ), H, depends on @

] [

and 4,7 and A depend on B, therefore the greater the norm of the operator £ is, the
greater the loss of the differentiability of u is. '

2) If only the loss of the #—differentiability of solution u is cencerned, then it
has a loss of at most two derivatives » which coincides with the results by M. Zeman in
[2] (depending only on the multiplicity 2 of characteristics). If the loss of the f-differ—
entiability of solution u is concerned, then it has a loss of N+ 2 times derivatives,
which depends on #. The greater the norm of B is, the greater the loss of the {-differen-
tability of u is.

3) If g=0, there is no longer singular coefficients in equation (1). This fact
was discussed by M. Zeman in [27. If ¢ is taken as sufficiently small in Theorem 2 so
that sup | 4]l =0, then our results coincide with that by M. Zeman in [2].

The following example is a special one of equation (1),
P(t,z;D,,D,) = D} — ¢*D? — 1D, forz & R

Here f=0,k=1. Since

PUyzit, )= 7 — 88 + L (— itg)

e @Eﬁﬂ:ifﬂ":} + %@|(LI;T:£§]

where
ngﬁ,if;’t_‘?t;} = 7 — iz‘;aj Qlurrifst;) =

Here

0 —¢ “n, 0
A‘(ﬂ u)’ B‘(u —t"rﬂ,)

hence B-+-g* iﬂ.Lz—bﬂuﬂdﬁd, 50 is A of course. Therefore by Theorem ? there is an en-
ergy inequality

"“”ﬂ% IIP“”H

By calculation,
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0,(0,0, + 1) +§15<¢ 1920,€0,05 4+ 1,1)

o 3,6,(0,0; + 1,1) a

and ¢g+m—1—p=1+XN, therefore the result of Theorem (3. 3) of [ 3] holds. (see

(3D
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