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Abstract. This paper presents a method for solving the linear semi-implicit im-
mersed boundary equations which avoids the severe time step restriction presented

by explicit-time methods. The Lagrangian variables are eliminated via a Schur com-

plement to form a purely Eulerian saddle point system, which is preconditioned by
a projection operator and then solved by a Krylov subspace method. From the view-

point of projection methods, we derive an ideal preconditioner for the saddle point

problem and compare the efficiency of a number of simpler preconditioners that
approximate this perfect one. For low Reynolds number and high stiffness, one par-

ticular projection preconditioner yields an efficiency improvement of the explicit IB
method by a factor around thirty. Substantial speed-ups over explicit-time method

are achieved for Reynolds number below 100. This speedup increases as the Eulerian

grid size and/or the Reynolds number are further reduced.
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1. Introduction

The Immersed Boundary (IB) method introduced by Peskin [19, 20] has been a

popular approach for simulating fluid-structure interactions. Physical variables for the

fluid are discretized on an Eulerian grid while those for the immersed boundary are dis-

cretized on a Lagrangian grid. The fluid satisfies the no-slip condition on the immersed
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boundary, which means that the Lagrangian grid points move at a velocity interpo-

lated from the Eulerian grid. Deformations of the immersed boundary generate elastic

forces which are transmitted to the fluid through a forcing term added to the governing

equations of fluid dynamics. In this manner the IB method provides much flexibility in

modeling the coupling between the Eulerian and Lagrangian variables, since explicitly

enforcing boundary conditions at the fluid-structure interface is avoided.

The popularity of the IB method is partly due to its simplicity. In a typical explicit-

time method, the Eulerian velocity and pressure fields are updated for a fixed configu-

ration of the immersed structure, and then the position of the Lagrangian structure is

updated from the newly computed velocity field. This approach effectively decouples

the Eulerian and Lagrangian equations, and solvers are needed only for the Eulerian

equations (i.e., the incompressible Stokes or Navier-Stokes equations), for which fast

Cartesian grid solution methods are available. The implementation is straightforward

since it only entails augmenting one’s favorite fluid solver with the IB forcing term.

Nonetheless, when an elastic boundary becomes stiff, explicit-time IB methods suffer

from either instability or restrictively small time steps.

To remedy the severe time step restriction of explicit IB methods, a number of

implicit and semi-implicit schemes have been developed. However, their implemen-

tation is much more involved and is a subject of ongoing research; see for exam-

ple [3, 4, 11, 13, 15–18, 22, 24] and references therein. These methods are centered

at answering two essential questions:

(A) How does stiffness affect the stability of the numerical solver?

(B) How to efficiently solve the discretized equations that are highly stiff?

Clearly these two questions are closely related. It had been commonly believed that

only fully implicit discretizations could produce an unconditionally stable IB method

until the work of Newren et. al. [17]. They showed that semi-implicit versions of back-

ward Euler and Crank-Nicolson schemes can be made stable so long as the spreading

and interpolation operators are evaluated at the same time instant and the same spa-

tial location. When this is satisfied, the total energy of the numerical system does not

increase over time even if the evaluation of the spreading and interpolation operators

are lagged in time. This conclusion not only answers question (A), but also partially

answers question (B), since the lagged evaluation of the spreading and interpolation

operators opens up exciting possibilities of unconditionally stable discretizations via

linear systems.

Many implicit methods use a Schur complement approach to reduce the coupled

Eulerian-Lagrangian equations to purely Lagrangian equations [3, 4, 16]. These meth-

ods achieve a substantial speed-up over explicit methods when there are relatively few

Lagrangian mesh nodes. In addition, some methods require that the boundaries be

smooth, closed curves [13]. An open question is whether there exist robust, general-

purpose implicit methods that are more efficient than explicit methods, or whether

specialized methods must be developed for specific problems.
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Newren et al. [18] studied the efficiency of a group of semi-implicit linear solvers

based on double Schur complement. Depending on the parameters of the tests, their

semi-implicit linear solvers were between two times slower and two times faster than

the explicit IB method. However, those results were obtained without preconditioning.

With appropriate preconditioning, we expect that this approach will offer a significant

improvement over explicit methods. In [11], we developed a geometric method for

a model of the implicit IB equations which included the viscous terms and immersed

boundary terms, but it ignored the pressure and the incompressibility constraint. This

multigrid method was an excellent preconditioner for the model problem.

This paper addresses question (B) as a followup of our previous work in [11,17,18].

By eliminating the IB variables via a Schur complement, we formulate the IB equations

as a saddle point problem of the fluid variables. It is well-known that the efficiency

of solving a saddle point problem depends largely on preconditioning. As pointed out

by Benzi, Golub, and Liesen [2], there does not exist a “best” preconditioner for saddle

point problems in a general sense, and frequently efficient preconditioners are designed

by accounting for the physics of the specific problem. Indeed, general preconditioners

based on purely algebraic techniques such as the incomplete LU factorization are found

to perform poorly in the context of incompressible flows.

One possible way to form a preconditioner for the IB saddle point problem is

through projection methods which decouple the equations for the velocity and the

pressure. This decoupling allows us to use the multigrid method from [11] because the

equation to solve the velocity has the same form as that in the model problem for which

the algorithm was developed. Although projection methods are not efficient solvers for

the IB equations [18], they might lead to excellent preconditioners. It is not a new idea

to first precondition a saddle point problem with a projection preconditioner and then

solve it by a Krylov subspace method. For example, Griffith [9] has successfully applied

a projection preconditioner in solving the single-phase Navier-Stokes equations with

general boundary conditions. However, as far as we know, this strategy has not been

explored for IB methods.

Utilizing the stable discretization in [17], we derive an ideal† preconditioner for the

IB saddle point linear system from the viewpoint of projection methods. However, this

prefect preconditioner is prohibitively expensive to apply, and so, we perform efficiency

studies for a number of preconditioners that approximate this ideal one. Finding an

effective projection preconditioner for all regimes of Reynolds numbers proved to be

difficult. By truncating a matrix series, we find a projection preconditioner that leads

to a substantial efficiency improvement over the explicit IB method for low Reynolds

number and high stiffness.

The rest of this paper is organized as follows. In Section 2, we briefly review the

IB method, the adverse influence of stiffness on the stability of the explicit IB method,

and an implicit discretization scheme that is unconditionally stable. In Section 3, we

formulate a generic saddle point framework from the viewpoint of projection meth-

†It is ideal in the sense that the preconditioned linear system always converges after two GMRES iterations.



476 Q. Zhang, R. D. Guy and B. Philip

ods, derive the ideal preconditioner, and approximate it by truncating a matrix series.

Numerical tests performed in Section 4 show that the proposed method with a simple

preconditioner is much more efficient than the explicit IB method in the case of stiff

boundaries and large viscosity. Section 5 finally concludes this paper.

2. Analysis

In a bounded domain Ω ⊂ R
D, we numerically solve the incompressible Navier-

Stokes equations with an immersed boundary Γ:

∇ · u = 0, (2.1a)

∂u

∂t
+ u · ∇u = f −∇p+ µ∆u, (2.1b)

f(x, t) =

∫

Γ

F(s, t)δ(x −X(s, t)) ds, (2.1c)

F(s, t) = Af (X(s, t), t) , (2.1d)

∂X(s, t)

∂t
= u (X(s, t), t) =

∫

Ω

u(x, t)δ(x −X(s, t)) dx, (2.1e)

where t is time, x the location, u the velocity field, p the pressure, µ = 1/Re the

kinematic viscosity, and Re the Reynolds number. The IB Γ is parameterized by s and

X(s, t)’s are the Lagrangian points that discretize Γ. f(x, t) is the body force exerted on

the fluid while F(s, t) is the internal IB force along Γ. The force generatorAf represents

the constitutive law of Γ and its form depends on specific applications. Three most

common types are tethering, stretching, and bending. In the case of stretching, we

assume that the IB Γ behaves like an elastic fiber [21] so that

F(s, t) =
∂

∂s

(

T (s, t)τ(s, t)

)

, (2.2)

where the tangent vector τ is

τ(s, t) =
∂X

∂s

/∥
∥
∥
∥

∂X

∂s

∥
∥
∥
∥
, (2.3)

and the tension T (s, t) obeys the Hooke’s law

T (s, t) = γ

(∥
∥
∥
∥

∂X

∂s

∥
∥
∥
∥
− L0

)

. (2.4)

Throughout this work it is assumed that the resting length L0 = 0 so that F(s, t) =

γ ∂2
X

∂s2
, i.e. the force generator is time-independent and has the linear form

Af = γ
∂2

∂s2
, (2.5)
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where γ is the stiffness coefficient.

For (2.1) to be well-posed, the initial condition of Γ, the initial condition and bound-

ary conditions for u are needed. The initial condition and the boundary conditions for

pressure are unnecessary up to an additive constant. Throughout this work, we assume

periodic boundary conditions. Note that this is not restrictive for practical applications

as a wall boundary can be simulated by adding to a periodic domain an additional line

of IB points.

The IB method couples the Eulerian grid and the Lagrangian grid through the fol-

lowing spreading and interpolation operators

S(F(s, t)) =

∫

Γ

F(s, t)δ(x −X(s, t)) ds, (2.6)

S∗(u(x, t)) =

∫

Ω

u(x, t)δ(x −X(s, t)) dx. (2.7)

It follows that (2.1c) and (2.1e) can be rewritten as

f(x, t) = S (AfX) , (2.8)

∂X(s, t)

∂t
= S∗ (u (x, t)) . (2.9)

The two operators are adjoint in the sense that

〈S(F(s, t)),u(x, t)〉Ω = 〈F(s, t), S∗(u(x, t))〉Γ ,

where the inner products are defined on L2(Ω) and L2(Γ), respectively. The total en-

ergy of the system can then be expressed as

E[u,X] = 〈u,u〉Ω + 〈−AfX,X〉
Γ
. (2.10)

2.1. The adverse effect of stiffness on stability

An explicit temporal discretization of (2.1) without the convection term yields

∇ · un+1 = 0, (2.11a)

u
n+1 − u

n

∆t
= SnAfX

n −∇p+ µ∆u
n+1, (2.11b)

X
n+1 = X

n +∆tS∗
nu

n+1. (2.11c)

Here the word “explicit” refers to the treatment of the body force f = SAfX, despite

the fact that the diffusion term is treated implicitly in time.

Following Newren et al. [17], we have

〈
2un+1,un+1 − u

n
〉

Ω
= 2∆t

〈
u
n+1, µ∆u

n+1 −∇p+ SnAfX
n
〉

Ω

= 2∆tµ
〈
u
n+1,∆u

n+1
〉

Ω
+ 2∆t

〈
u
n+1, SnAfX

n
〉

Ω
, (2.12)
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where we have used the fact that a scalar ψ and a divergence-free vector u on periodic

domains satisfy
∫

Ω

∇ · (ψu) = 0 ⇒ 〈u,∇ψ〉Ω = 0.

Also,

〈
X

n+1 −X
n,−Af (X

n+1 +X
n)
〉

Γ

=∆t
〈
S∗
nu

n+1,−Af (2X
n +∆tS∗

nu
n+1)

〉

Γ

=2∆t
〈
S∗
nu

n+1,−AfX
n
〉

Γ
+∆t2

〈
S∗
nu

n+1,−AfS
∗
nu

n+1)
〉

Γ
. (2.13)

Hence the increase of the total energy within one time step for (2.11) is

E[un+1,Xn+1]− E[un,Xn]

=
〈
u
n+1 − u

n,un+1 + u
n
〉

Ω
+

〈
X

n+1,−AfX
n+1

〉

Γ
− 〈Xn,−AfX

n〉
Γ

=
〈
u
n+1 − u

n,−u
n+1 + u

n
〉

Ω
+

〈
u
n+1 − u

n, 2un+1
〉

Ω

+
〈
X

n+1 −X
n,−Af (X

n+1 +X
n)
〉

Γ

=−
〈
u
n+1 − u

n,un+1 − u
n
〉

Ω
+ 2∆tµ

〈
u
n+1,∆u

n+1
〉

Ω

+∆t2
〈
S∗
nu

n+1,−AfS
∗
nu

n+1
〉

Γ
, (2.14)

where we have applied the adjointness of S and S∗,

2∆t
〈
u
n+1, SnAfX

n
〉

Ω
+ 2∆t

〈
S∗
nu

n+1,−AfX
n
〉

Γ
= 0. (2.15)

The first two terms in (2.14) are negative-definite. Eq. (2.5) implies the negative-

definiteness of Af , hence the last term is positive-definite. Asymptotically speaking, the

last term is much smaller than the other terms. However, when the immersed boundary

is stiff, i.e. γ is large, the magnitude of the last term might dominate the first two terms.

Consequently, the increase of the total energy during a time step might be positive. To

maintain numerical stability, ∆t has to be small enough so that the total energy of the

discrete system does not increase over time. This explains the adverse effect of high

stiffness on the stability of explicit IB methods.

2.2. An implicit discretization

Applying the backward Euler method to the time integration of both velocity and

the IB points, we have the following implicit discretization [17] of (2.1):

∇ · un+1 = 0, (2.16a)

u
n+1 − u

n

∆t
= SnAfX

n+1 −∇p+ µ∆u
n+1, (2.16b)

X
n+1 = X

n +∆tS∗
nu

n+1. (2.16c)
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Again, “implicit” refers to the treatment of the position of Lagrangian IB markers, not

that of the diffusion. Note that the only difference between (2.11) and (2.16) is the

change of Xn to X
n+1 in the momentum equation, which adds a new term to (2.12):

〈
2un+1,un+1 − u

n
〉

Ω
=2∆tµ

〈
u
n+1,∆u

n+1
〉

Ω
+ 2∆t

〈
u
n+1, SnAfX

n
〉

Ω

+ 2∆t2
〈
u
n+1, SnAfS

∗
nu

n+1
〉

Ω
. (2.17)

Applying (2.17), (2.15), and (2.13) to (2.10), the energy increase of one time step for

(2.16) is then

E[un+1,Xn+1]− E[un,Xn]

=
〈
u
n+1 − u

n,−u
n+1 + u

n
〉

Ω
+

〈
u
n+1 − u

n, 2un+1
〉

Ω

+
〈
X

n+1 −X
n,−Af (X

n+1 +X
n)
〉

Γ

=−
〈
u
n+1 − u

n,un+1 − u
n
〉

Ω
+ 2∆tµ

〈
u
n+1,∆u

n+1
〉

Ω

−∆t2
〈
S∗
nu

n+1,−AfS
∗
nu

n+1
〉

Γ
. (2.18)

Note how the last term has become negative-definite due to the change of Xn to X
n+1.

Now that all terms in (2.18) are negative-definite, clearly the implicit IB method (2.16)

is total energy diminishing. Also, changing Sn and S∗
n to Sn+1 and S∗

n+1 does not affect

this statement.

Although first-order temporal discretizations are used for the exposition, we empha-

size that the analysis in this section generalizes in a straight-forward way to second-

order temporal discretizations such as the Crank-Nicolson scheme.

3. Algorithms

As discussed in Section 1, obtaining a discretization is one problem, how to solve

the resulting linear system efficiently is another. This section discusses the latter.

3.1. Spatial discretization on staggered grids

A staggered Eulerian grid is used to store discrete variables of the flow phase. Re-

ferring to Fig. 1, the discrete divergence D, the discrete gradient G, and the discrete

Laplacian L
‡ are defined as

(Du)i,j =
ui+ 1

2
,j − ui− 1

2
,j

h
+
vi,j+ 1

2

− vi,j− 1

2

h
, (3.1)

(Gp)i+ 1

2
,j =

pi+1,j − pi,j
h

, (Gp)i,j+ 1

2

=
pi,j+1 − pi,j

h
, (3.2)

(Lp)i,j =
pi+1,j + pi−1,j − 2pi,j

h2
+
pi,j+1 + pi,j−1 − 2pi,j

h2
, (3.3)

‡We use boldface fonts for discrete operators acting on the quantities over the Eulerian grid and normal

fonts for those over the Lagrangian grid.
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bc bc×

×

×

×

×

×

×
pi,j pi+1,j

ui− 1

2
,j ui+ 1

2
,j ui+ 3

2
,j

vi,j− 1

2

vi,j+ 1

2

vi+1,j− 1

2

vi+1,j+ 1

2

Figure 1: The staggered Eulerian grid. The pressure p is located at the cell centers marked by ◦’s while the
velocity components u, v the edge centers marked by ×’s.

where h is the uniform spacing of the Eulerian grid. It follows that L = DG.

To numerically implement the spreading and interpolation operators (2.6) and

(2.7), we replace the delta function with a regularized discrete delta function presented

in [19],

δh(x) = δh(x, y) = δh(x)δh(y), (3.4)

δh(x) =

{
1
4h

(
1 + cos πx

2h

)
, |x| ≤ 2h,

0, |x| > 2h,
(3.5)

where δh(x) has a compact support of 4h, and this localizes the communication between

the Eulerian and the Lagrangian grids. As another important feature of δh(x), the

Lagrangian IB force is entirely transmitted to the Eulerian grid. Eq. (3.4) leads to a

discrete version of the spreading operators,

S(F u)i+ 1

2
,j =

∑

k

F u
k δh(xi+ 1

2
,j −Xk)∆s, (3.6a)

S(F v)i,j+ 1

2

=
∑

k

F v
k δh(xi,j+ 1

2

−Xk)∆s, (3.6b)

and the interpolation operators,

S∗(u)k =
∑

i,j

ui+ 1

2
,jδh(xi+ 1

2
,j −Xk)h

2, (3.7a)

S∗(v)k =
∑

i,j

vi,j+ 1

2

δh(xi,j+ 1

2

−Xk)h
2. (3.7b)

Here F = (F u, F v) and u = (u, v)T . ∆s is the spacing of the Lagrangian grids. The

subscript k denotes the index of the Lagrangian IB points. With cyclic indexing, the

discrete force generator is

(AfX)k =
γ

∆s2
(Xk+1 +Xk−1 − 2Xk) . (3.8)
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Both (3.6) and (3.7) can be expressed as one equation if different components of

the velocity vector and the force vector collocate at the cell center. In contrast, on

staggered grids the actions of spreading and interpolation are different for the same

IB because the components of a vector to be spreaded and interpolated are at different

locations. Consequently, the corresponding matrices for the same operator are different

for the vector components.

Despite the additional complexity of the discrete spreading and interpolation oper-

ators, we still strongly favor the staggered grid over the collocation grid because the

projection operator as in (3.10) satisfies the idempotent condition. Consequently, vol-

ume conservation on staggered grids is much better than that on cell-centered grids;

this is confirmed by our numerical results.

3.2. A projection solver for the explicit discretization

In 1968, Chorin [6] introduced the projection method with first-order accuracy for

the incompressible Navier-Stokes equations. Since then, projection methods have been

widely used in computational science and engineering. Meanwhile many variants with

second-order accuracy have been developed; some successful examples are those of

Kim and Moin [14], Bell et al. [1], and E and Liu [7]. The first author of this paper also

proposed a fourth-order approximate projection methods on locally-refined periodic

domains [25].

Chorin’s projection method first computes an auxiliary velocity field u
∗ from the

momentum equation by ignoring the pressure gradient term and then project u∗ onto

the divergence-free space to fulfill the incompressibility constraint. Apply this approach

to the explicit temporal discretization (2.11) and we have

u
∗ − u

n

∆t
= µLu∗ + SnAfX

n, (3.9a)

u
n+1 = Pu

∗, (3.9b)

X
n+1 = X

n +∆tS∗
nu

n+1, (3.9c)

where the discrete projection operator

P = I−GL
−1

D (3.10)

extracts the solenoidal component un+1 from the vector field u
∗. On staggered periodic

grids, the discrete operators defined in the previous section satisfy D = −G
T , L = DG,

so that P is idempotent, i.e. P2 = P. By (3.9) and (3.10), the divergence-free velocity

u
n+1 can be obtained by first solving an elliptic system for a scalar field φ and then

subtracting from the intermediate velocity u
∗ a scaled gradient of φ:

Lφ =
1

∆t
Du

∗, (3.11a)

u
n+1 = u

∗ −∆tGφ; (3.11b)

hence the projection method can be regarded as a fractional-stepping method.
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3.3. Projection method preconditioning

Projection methods provide a means of decoupling the equations for the velocity

and the pressure. In most cases, the velocity and pressure from the projection method

are not identical to the velocity and pressure that would result from solving the unsplit

system. In [9], Griffith showed that projection methods can be very effective precon-

ditioners for solving the unsplit system using Krylov methods. To understand how to

use projection methods to precondition the fully coupled system of equations, we begin

with the unsplit system of equations for the velocity and pressure:

u
n+1 − u

n

∆t
+Gp = µLun+1 + f , (3.12a)

Du
n+1 = 0. (3.12b)

This system of equation can be rearranged and expressed as the block matrix equation
[

BL ∆tG
−∆tD 0

] [
u
n+1

p

]

=

[
N

0

]

, (3.13)

where

BL = I− µ∆tL, and N = u
n +∆tf .

Note that the divergence constraint has been scaled by −∆t to make the matrix sym-

metric.

Similar to the projection method algorithm, we introduce the change of variables

u
n+1 = u

∗ −∆tGφ, (3.14a)

p = Yφ, (3.14b)

where the matrix Y maps φ to the pressure and is to be determined. By substituting

this change of variables into (3.13), we arrive at a system of equations for the auxiliary

variables [
BL −∆tBLG+∆tGY

−∆tD ∆t2DG

] [
u
∗

φ

]

=

[
N

0

]

. (3.15)

If it is possible to choose Y so that

−BLG+GY = 0, (3.16)

the change of variables results in a block-lower-triangular system
[

BL 0

−∆tD ∆t2DG

] [
u
∗

φ

]

=

[
N

0

]

, (3.17)

in which one can solve for u
∗ and φ sequentially. The inverse of this matrix can be

expressed as

[
BL 0

−∆tD ∆t2DG

]−1

=

[
I 0

0
1

∆t2
(DG)−1

] [
I 0

∆tD I

] [
B

−1
L 0

0 I

]

. (3.18)
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Reading these operators from right to left, they correspond to solving for u∗, taking

the divergence of u
∗, and solving a Poisson equation for φ. Therefore, solving this

system for the auxiliary variables and then recovering the velocity and pressure using

(3.14) is algebraically equivalent to the projection method described in the previous

section. Thus, projection methods exactly solve the system (3.17) which approximates

the system (3.15). The difference between the solutions of the two systems depends

on how closely (3.16) can be satisfied by an appropriate choice of Y.

Perhaps the simplest choice is Y = I, which corresponds to the pressure update

in early projection methods. A better choice for Y is motivated by Eq. (3.16). If one

assumes that BL commutes with G, then Eq. (3.16) is satisfied exactly with Y = BL
§.

For domains with periodic boundaries BL does commute with G [25, Lemma 4], in

which case, a projection method with Y = BL exactly solves the unsplit system (3.12).

For other boundary conditions, BL commutes with G at the interior points, but not

at points near the boundary. In this case the choice Y = BL only approximately satis-

fies (3.16), and the projection method alone gives an approximate solution to (3.12).

In [9], Griffith showed that a projection method with Y = BL is a very effective pre-

conditioner for solving the unsplit system using a Krylov method for general boundary

conditions. Combining (3.18) and (3.14) the projection method preconditioner can be

expressed algebraically as

Pproj =

[
I −∆tG
0 Y

]

︸ ︷︷ ︸

transform to original variables

[
I 0

0
1

∆t2
(DG)−1

] [
I 0

∆tD I

] [
B

−1
L 0

0 I

]

︸ ︷︷ ︸

projection method algorithm

. (3.19)

We adapt this same idea to the implicit-time immersed boundary equations in the next

section.

3.4. Implicit-time scheme

We begin with implicit-time scheme from Eq. (2.16) and use Eq. (2.16c) to elimi-

nate X
n+1 from Eq. (2.16b) to arrive at the system

∇ · un+1 = 0, (3.20a)

u
n+1 − u

n

∆t
= ∆tSnAfS

∗
nu

n+1 −∇p+ µ∆u
n+1 + SnAfX

n. (3.20b)

We replace the differential operators with their discrete counterparts and express the

resulting linear system as the matrix equation

A

[
u
n+1

p

]

=

[
B ∆tG

−∆tD 0

] [
u
n+1

p

]

=

[
N

0

]

, (3.21)

§We note that this is a slight abuse of notation because BL is an operator on vector fields, and Y is an

operator on scalar fields. However, BL is block-diagonal with the same operator on the diagonal. One

can interpret the scalar version as one of those blocks.
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where A is the saddle point matrix and

B = BL − J, J = ∆t2SnAfS
∗
n. (3.22)

This linear system has exactly the same algebraic form as Eq. (3.13), except that the op-

erator B includes contributions from both the viscous terms and the immersed bound-

ary terms.

The operator B only differs from BL at grid points around the immersed boundary

which is a set of codimension one. Thus, it is reasonable to try as a preconditioner

Pproj =

[
I −∆tG
0 Y

] [
I 0

0
1

∆t2
(DG)−1

] [
I 0

∆tD I

] [
B

−1
0

0 I

]

, (3.23)

which is equivalent to (3.19) with B in place of BL.

To determine the “ideal” form of Y, left-multiply Pproj to (3.21), and the matrix on

the left side of this equation becomes

Pproj

[
B ∆tG

−∆tD 0

]

=

[
I V

0 W

]

,

where V = −∆t
{
B

−1
G+GL

−1
DB

−1
G
}

and

W = YL
−1

DB
−1

G. (3.24)

Ideally, the choice of Y should make W close to an identity matrix, which can be

accomplished with the choice

Y =
(
DB

−1
G
)−1

DG. (3.25)

However, the construction of Y is prohibitively expensive, and the application of Y

involves solving two nontrivial linear systems. We are thus interested in an efficient

approximation of Y.

3.4.1. Series approximations

Consider the following series expansion for B−1:

B
−1 = (BL − J)−1 = B

−1
L

(
I− JB

−1
L

)−1
= B

−1
L

∞∑

k=0

(
JB

−1
L

)k
. (3.26)

Approximate B
−1 with the very first term in the above expansion and we have

(BL − J)−1 ≈ B
−1
L ,

which, together with (3.25), yields an approximation to the ideal Y,

Y ≈ BL, (3.27)
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where we have used the commutativity of BL and G on periodic domains.

Note that this form of Y is exactly the same as that used for projection method

preconditioning without the immersed boundary. In an effort to include some effect of

the immersed boundary, we consider the approximation to B
−1 with the first two terms

in the expansion (3.26):

B
−1 = (BL − J)−1 ≈ B

−1
L +B

−1
L JB

−1
L = (I+B

−1
L J)B−1

L .

Substituting the above into (3.25)

(
DB

−1
G
)−1

DG ≈
(
D(I+B

−1
L J)B−1

L G
)−1

DG

= BL

(
I+ (DG)−1

DB
−1
L JG

)−1

≈ BL

(
I− (DG)−1

DB
−1
L JG

)

= BL − (DG)−1
DJG.

Our second approximation of the ideal Y is thus

Y ≈ BL − (DG)−1
DJG. (3.28)

In the above manipulations, we used the fact that BL commutes with D and G, and we

assumed that
∥
∥(DG)−1

DB
−1
L JG

∥
∥ < 1. While this last assumption may not be valid

for large elastic stiffness, we are seeking an approximation to produce an effective

preconditioner which does not require convergence of these series.

3.4.2. Diagonal approximations

We introduce two more choices for Y that include the immersed boundary by intro-

ducing an scalar version of the operator B. The operator B acts on vector fields while

the operator Y acts on scalar fields. We will define BS = (Bu+Bv)/2 as scalar version

of B, where Bu and Bv are the diagonal blocks of B. By assuming that

B
−1

G ≈ GB
−1
S , (3.29)

Eq. (3.25) generates our approximation

Y ≈ BS . (3.30)

Finally, we approximate B
−1 in Eq. (3.25) by B̂

−1
S where B̂S = diag(BS). Our final

approximation to Y to explore is

Y ≈
(

DB̂
−1
S G

)−1

DG. (3.31)
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3.4.3. Summary

Above we have presented a formula for the “ideal” form of pressure update Y for pre-

conditioning and four different approximations to it given by equations (3.27), (3.28),

(3.30), and (3.31). In the next section we test these five different choices for Y along

with Y = I, because this is sometimes used in projection methods. In summary, the

choices of Y we test are

Y(1): Y =
(
DB

−1
G
)−1

DG,

Y(2): Y = BL = I− µ∆tDG,

Y(3): Y = BL − (DG)−1
DJG,

Y(4): Y = BS ,

Y(5): Y =
(

DB̂
−1
S G

)−1

DG,

Y(6): Y = I.

To solve the fully coupled system (3.21) we use GMRES with right preconditioning

with the projection method preconditioner defined by (3.23). The relative convergence

criteria is set to 10−8. Note that the application of the preconditioner involves inverting

the matrix B = I − µ∆tL − ∆t2SnAfS
∗
n. For this step we use the multigrid method

we developed in [11]. The only difference is that the smoother in this work uses block

relaxation instead of point relaxation for a better efficiency of damping high-frequency

modes at the IB [12]. Each block contains 5 × 5 control volumes with an overlap of

one control volume in each direction. Within one full multigrid cycle, one presmooth

and one postsmooth are performed. Unlike the approach in [12], the smoothing is

applied to pressure and different components of the velocity field separately. Due to

the staggered grids, the forms of the prolongation operator and the restriction operator

differ for pressure and each velocity components [23]. For efficiency we approximate

the application of B−1 and (DG)−1 by a single F-cycle of multigrid, which is similar to

the approach in [9].

4. Tests

A commonly used test problem for immersed boundary methods involves a circular

membrane under tension, which is initially stretched in one direction and is then al-

lowed to relax [4, 13, 15, 16, 22, 24]. In this problem, stiffer structures result in faster

fluid velocities, and hence the physical time scale is set by the choice of elastic stiffness.

However, for efficiency comparison of the explicit method to the proposed method, it is

more suitable to use a test problem in which the physical time scale is set by the back-

ground flow, not by the stiffness of the structure. In other words, the time step sizes of

the test problem should be solely constrained by the stiffness of the immersed structure.
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To this end, we choose to simulate the forced double-gyre test [10] with the convection

term dropped from the governing equations. We nonetheless use Courant number as

the measure of time-step sizes so that our results are applicable to the case with the

convection terms included. We also restrict Courant numbers to be less than one in the

tests since a typical explicit-time discretization of the convection terms would have the

same restriction on the time-step sizes.

Out of the different choices of Y, it is found that Y(2) = BL is the best choice for

constructing the projection preconditioner.

4.1. Forced double-gyre flow

Consider the double-gyre flow field given by

uss =

(
+sin(2πx) cos(2πy)
− cos(2πx) sin(2πy)

)

. (4.1)

Following [10], an additional forcing of the background flow is added to the RHS of

(2.1b) as

fbg = −(1− e−t)µ∆uss, (4.2)

which is chosen to drive the steady flow of uss as t→ ∞ in the absence of the immersed

boundary.

We use the implicit IB method proposed in the previous section to solve the saddle

point problem (3.21) with the projection preconditioner (3.19) and Y = BL to advance

(2.1) from the initial condition u(t0 = 0,x) = 0 to te = 2 on a unit periodic domain

[0, 1] × [0, 1]. Fig. 2 illustrates the interaction between the IB and the background

flow. To verify the correctness of the program, a refinement study is carried out on five

successively refined grids and the results are shown in Table 1, where the first-order

convergence on velocity is clearly demonstrated; note that the L1 and L2 convergence

rates of velocity are limited to one by the temporal discretization of backward Euler.

Furthermore, Table 1 demonstrates first-order convergence rates of IB points in 1-norm

and confirms the known fact [5] that the pressure computed by IB methods has O(1)
error in max-norm, is first-order accurate in 1-norm, and is half-order accurate in 2-

norm. We also note that the explicit IB method discussed in Section 3.2 is also used to

perform the same tests, and its results differ from those in Table 1 for only a fraction of

one percent.

The results shown in Table 1 and Fig. 2 are obtained using the proposed method

with Y = BL as the choice of the projection preconditioner. For the same test problem,

we also compare the effectiveness of the six choices of Y. The numbers of iterations

of GMRES with different choices of Y are shown in Fig. 3, from which we make the

following observations.

• The iteration number for Y(1) (the ideal choice of Y) is equal or less than 2 for

all cases. This confirms the validity of the derivation in Section 3.4. and verifies

the correctness of the program.
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Figure 2: Snapshots of the velocity field and IB points produced by the proposed method for the forced
double-gyre test on a 32-by-32 grid. γ = 5, Re= 1. ‘*’s represent the IB Lagrangian points and the arrows
the velocity field.

• Aside form Y(1), the best choice of Y appears to be either Y(2) or Y(3), which

are based on the series expansion.

• The iteration numbers for Y(2) and Y(3) decreases as Reynolds number decreases.

Indeed,
∥
∥JB

−1
L

∥
∥ decreases as µ increases, and consequently B

−1 in (3.26) are

better approximated by taking the first term or the first two terms in the series

expansion.

• The simple pressure update of the identity is almost always the worst choice.
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Figure 3: The effectiveness of preconditioning for different choices of Y. The abscissa is the stiffness
coefficient γ and the ordinate the iteration count of GMRES for solving the saddle point equation (3.21)
of the double-gyre problem on a 642 grids. Within each iteration, Pproj in (3.19) is used as the right-
preconditioner with a single F-cycle block smoothing for approximating B

−1 and (DG)−1. The relative
convergence criteria is set to 10−8. Cr = 1.
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Table 1: Errors and convergence rates of the proposed method for the double gyre test. Re= 1, γ = 5,
Cr = 0.5. Since no analytic solution is available, the convergence rates are calculated by Richardson
extrapolation with an error defined as the difference of the results on two adjacent grids. For example,
the column titled 1

32
– 1

64
represents the difference between the 322 grid and the 642 grids. To calculate

the convergence rate of the IB points on two adjacent grids, we first connect the IB points to form two
polygons and then compute the volume of the exclusive disjunction of the two polygons using algorithms
from computational geometry. Note that this algorithm for evaluating the errors of IB points is sufficiently
accurate because (1) both the expected and the actual convergence rates of IB points are one due to the
first-order accuracy of the velocity, (2) the representation of 2D regular semi-analytic sets with polygons is
second-order accurate.

h 1

16
− 1

32
rate 1

32
− 1

64
rate 1

64
− 1

128
rate 1

128
− 1

256

u L1 2.88e-2 1.00 1.44e-2 1.00 7.20e-3 1.00 3.60e-3

u L2 3.86e-2 1.00 1.93e-2 1.00 9.65e-3 1.00 4.83e-3

u L∞ 1.28e-1 0.73 7.76e-2 0.76 4.58e-2 0.80 2.63e-2

v L1 2.76e-2 1.12 1.27e-2 1.04 6.18e-3 1.00 3.09e-3

v L2 3.49e-2 1.14 1.58e-2 1.05 7.63e-3 0.99 3.84e-3

v L∞ 8.54e-2 0.68 5.33e-2 0.75 3.17e-2 0.77 1.86e-2

p L1 1.27 0.90 0.68 1.05 0.33 0.96 0.17

p L2 1.91 0.56 1.30 0.70 0.80 0.50 0.56

p L∞ 9.82 -0.08 10.38 0.20 9.04 -0.10 9.68

X L1 8.52e-3 0.99 4.28e-3 0.72 2.61e-3 1.05 1.26e-3

4.2. Efficiency of the implicit method

For the same setup with Reynolds numbers Re= 0.1, 1, 10, 102, 103, and stiffness

coefficients γ = 1, 10, 102, 103, 104, 105, we list the values of Cr
exp
max, the maximum stable

Courant numbers, for the explicit IB method in Table 2. For fixed h and Re, Cr
exp
max

becomes smaller as γ gets bigger; this confirms the analysis in Section 2.1 that a stiffer

IB requires a smaller time step size so as to maintain numerical stability of the explicit

IB method. For fixed γ and Re, Crexp
max becomes smaller as h is reduced. This is not

surprising since a smaller h with the same γ implies a stiffer problem. For a given h,

the Reynolds number does not appear to have a substantial influence on Cr
exp
max for stiff

IBs. The values of Cr
exp
max for tests different from the forced double-gyre flow are also

calculated and found to be qualitatively the same as those in Table 2.

The similarity between (3.13) and (3.21) is amenable to comparing the efficiency of

the proposed implicit IB method to that of the explicit IB method. More specifically, we

replace B
−1 by B

−1
L in (3.19), choose Y = BL, and use the corresponding Pproj to pre-

condition (3.13) before solving it by GMRES. Because multigrid is a very efficient solver

for this problem, it makes an excellent preconditioner, and GMRES always converges

within two or three iterations [8]. This formulation of the explicit method enables the

iteration counts of GMRES to be the single metric for the efficiency comparison as it is

independent of machine-specifics such as CPU speed.

In the numerical test, the explicit and implicit IB methods are advanced for ntest
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Table 2: The maximum Courant numbers for the explicit method (3.13). They are determined by the
criterion that (3.13) runs stably for 100 time steps while a 10% increase would yield instability within the
same number of time steps. Alternatively, they can be computed via the inequality that maximum eigenvalue
of the operator corresponding to the explicit method be less than one. The maximum difference between
the results of these two approaches is less than 5%.

γ = 100 γ = 101 γ = 102 γ = 103 γ = 104 γ = 105

Re=0.1 1.00 1.00 6.83e-1 1.12e-1 1.03e-2 1.85e-3

Re=1 1.00 7.51e-1 1.02e-1 1.83e-2 4.37e-3 1.26e-3

h = 1

32
Re=10 9.09e-1 1.80e-1 4.74e-2 1.37e-2 3.96e-3 1.26e-3

Re=102 4.67e-1 1.35e-1 3.91e-2 1.25e-2 3.96e-3 1.26e-3

Re=103 4.24e-1 1.23e-1 3.91e-2 1.25e-2 3.96e-3 1.26e-3

Re=0.1 1.00 1.00 6.83e-1 8.39e-2 9.37e-3 1.53e-3

Re=1 1.00 7.51e-1 9.23e-2 1.51e-2 3.28e-3 9.51e-4

h = 1

64
Re=10 9.09e-1 1.49e-1 3.56e-2 9.37e-3 2.97e-3 9.47e-4

Re=102 3.51e-1 9.23e-2 2.94e-2 9.37e-3 2.97e-3 8.65e-4

Re=103 2.90e-1 9.23e-2 2.94e-2 9.37e-3 2.97e-3 8.65e-4

Re=0.1 1.00 1.00 6.83e-1 8.39e-2 9.37e-3 1.27e-3

Re=1 1.00 7.51e-1 9.23e-2 1.25e-3 2.71e-3 7.15e-4

h = 1

128
Re=10 8.26e-1 1.23e-1 2.67e-2 7.04e-3 2.04e-3 6.47e-4

Re=102 2.63e-1 6.93e-2 2.01e-2 6.40e-3 2.04e-3 6.47e-4

Re=103 1.98e-1 6.30e-2 2.01e-2 6.40e-3 2.04e-3 6.47e-4

time steps with Cr = Cr
exp
max and Cr = 1, respectively. Let N

exp
i and N

imp
i be the

iteration counts of the explicit and implicit IB methods for the ith step, respectively, the

speedup of the explicit IB method by the implicit IB method can be measured by the

ratio of the averaged iteration count of the former to that of the latter:

Rsp =

∑ntest

i=1 N
exp
i

Cr
exp
max

∑ntest

i=1 N
imp
i

. (4.3)

The values of Rsp for the double-gyre tests are shown in Table 3 for Y = BL. When

the immersed boundary has low stiffness (γ = 100, 101, 102), the efficiency advantage of

the proposed projection-preconditioning approach is not obvious. In particular, explicit

IB method is even faster for γ = 100. However, as the stiffness increases, the efficiency

improvement of the proposed method becomes more prominent. We also performed a

subset of these test cases on an even finer grid with h = 1

256
. As shown in Table 4, the

choice of Y = BL yields a speedup of 29.6 for the highest stiffness of γ = 105 and the

lowest Reynolds number Re=0.1.

Besides Y(2), the only other competitive choice of Y was Y(3) (results not shown).

For most cases of γ = 104, 105 and Re<10, our numerical results show that Y(3) per-

forms slightly better than Y(2) for large grid sizes h = 1
32
, 1
64

, as shown in Fig. 3(a).

This is not a surprise. The test cases with large grid sizes correspond to a large ratio of
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Table 3: The values of Rsp, ratio of the averaged iteration count of the explicit IB method to that of the
implicit IB method, for the double-gyre test. Y = BL. ntest = 20.

γ = 1 γ = 10 γ = 102 γ = 103 γ = 104 γ = 105

Re=0.1 0.6 0.3 0.4 1.8 6.8 15.0

Re=1 0.5 0.5 1.4 4.4 8.1 12.1

h = 1

32
Re=10 0.5 1.5 2.5 2.9 4.0 13.4

Re=102 0.7 1.2 1.4 1.7 4.0 0.7

Re=103 0.7 1.0 1.1 1.2 0.8 0.7

Re=0.1 0.7 0.4 0.4 2.3 7.9 18.9

Re=1 0.6 0.4 2.1 5.4 12.3 12.7

h = 1

64
Re=10 0.5 1.3 4.0 4.9 4.4 4.1

Re=102 1.0 1.7 2.2 1.9 1.4 1.3

Re=103 0.8 1.1 1.3 1.0 1.0 1.1

Re=0.1 0.7 0.5 0.4 2.4 8.9 23.3

Re=1 0.7 0.4 2.2 7.6 16.9 13.7

h = 1

128
Re=10 0.5 1.6 4.3 7.4 5.3 2.2

Re=102 1.0 2.2 3.1 2.1 1.1 0.7

Re=103 1.0 1.2 1.1 0.8 0.7 0.6

Table 4: Results of the double gyre test for h = 1

256
. The test cases here are from a subset of those in

Tables 2 and 3.

γ = 103 γ = 104 γ = 105

Re=0.1 8.39e-2 9.37e-3 1.04e-3

Crexp
max Re=1 1.03e-2 2.24e-3 5.91e-4

Re=10 5.29e-3 1.05e-3 4.02e-4

Re=0.1 2.4 11.2 29.6

Rsp Re=1 10.2 27.1 17.6

Re=10 10.5 7.2 1.9

the number of interface cells to that of all cells; thus we expect that a preconditioner

that incorporates some effects from the boundary would perform better. However, as

the grids are refined, the ratio of the number of interface cells to that of all cells be-

comes smaller and smaller for a given test. Consequently in our numerical tests, the

values of Rsp for Y(2) increases while those for Y(3) decreases. Considering the ad-

ditional expense of applying (DG)−1 in preconditioning with Y(3), we prefer to use

Y(2) = BL in constructing the projection preconditioner. Nonetheless, the grid size of

any numerical simulation is nonzero. If a test has many immersed structures, then a

preconditioner that incorporates the effects of the immersed structures may be more

effective and worth the extra cost.
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The data in Table 3 demonstrate a tendency that a higher stiffness leads to a bigger

speedup. In the flow regime of Re≥100, this tendency comes to a stop after the stiff-

ness reaches a certain threshold value. At these threshold values, the speedup drops

dramatically; for example, Rsp drops from 13.4 to 0.7 from Re= 10 to Re= 100 for

h = 1
32

and γ = 105. In the flow regime of Re≤ 10, (3.26) and (3.22) suggest that

the bigger µ, the better the approximation of B−1
L to (BL − J)−1. This is confirmed in

Table 3 and Table 4: the projection preconditioner is more effective when the Reynolds

number is low.

4.3. Effect of preconditioning on the spectrum

To better understand the results shown in the previous subsection, we plot the

spectrum of the saddle point matrix before and after the projection precondition for

Re= 1 in Fig. 4 and for Re=103 in Fig. 5. As shown in both figures, the eigenvalues
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Figure 4: Spectrum of the saddle point matrix before (A) and after (W with Y = BL) the projection
precondition for Re= 1 and h = 1

64
in the double-gyre test at t = 0. The eigenvalues of each matrix is

sorted in magnitude; the x-axis represents the index of an eigenvalue in the sorted array and the y-axis
the magnitude of the eigenvalue. The ratio of the number of eigenvalues with their magnitudes less than
1 − 10−6 to that of all eigenvalues is 0.0569 for γ = 1 and 0.0600 for γ = 104. These ratios are roughly
halved when the grid size is reduced to h = 1

128
.
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Figure 5: Spectrum of the saddle point matrix before (A) and after (W with Y = BL) the projection
precondition for Re= 103 and h = 1

64
in the double-gyre test at t = 0. The eigenvalues of each matrix

is sorted in magnitude; the x-axis represents the index of an eigenvalue in the sorted array and the y-axis
the magnitude of the eigenvalue. The ratio of the number of eigenvalues with their magnitudes less than
1 − 10−6 to that of all eigenvalues is 0.0588 for γ = 1 and 0.0605 for γ = 104. These ratios are roughly
halved when the grid size is reduced to h = 1

128
.

of the original saddle point matrix A span ten orders of magnitudes for the stiff case

γ = 104; this is true in both the low Reynolds number case Re= 1 and the high Reynolds

number case Re= 103. For the nonstiff IB γ = 1, the eigenvalues of the matrix BL with

high viscosity are bigger than those with low viscosity, hence the low Reynolds number

case is more stiff than the high Reynolds number case. Fortunately, the projection

preconditioner (3.19) with Y = BL drastically reduces the range of the saddle point

matrix to within several orders of magnitudes. As another evidence of the efficiency

of the projection preconditioner, the eigenvalues of the preconditioned saddle point

matrix W are highly clustered at one for all the four cases shown in both figures.

The condition numbers of the saddle point matrix before and after precondition-

ing are shown in Table 5. Clearly, the projection preconditioner based on Y = BL

drastically reduces the conditioning of the original saddle point system by orders of

magnitudes, especially in the case of low Reynolds numbers. It is important to empha-

size that the matrix B is inverted in computing the eigenvalues of the preconditioned
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Table 5: Condition numbers of the saddle point system (3.21) before and after the preconditioning for a
64 × 64 grid of the double-gyre test (Cr = 1.0) at t = 0. C(A) is the condition number of A without
preconditioning, C(W) that of W by computing B

−1
G with Gaussian elimination, and C(WM ) that of

W by using one F-cycle block iteration to estimate B
−1

G. Y = BL for both C(W) and C(WM ). For
low stiffness, the condition numbers quadruple as the grid size is halved. For high stiffness, the condition
numbers double as the grid size is halved. Note that the original saddle point matrix A is symmetric and its
condition numbers C(A) corresponds to its spectrums in Figs. 4 and 5. In comparison, the preconditioned
matrix W and its approximation WM are not symmetric and their condition number is defined as the ratio
of the singular values with the largest and smallest magnitudes.

γ = 1 γ = 10 γ = 102 γ = 103 γ = 104 γ = 105

C(A) 1.65e+3 2.31e+4 1.24e+6 1.13e+8 9.98e+9 5.15e+11

Re=103 C(W) 1.25e+1 7.31e+1 4.34e+2 4.34e+3 3.89e+4 2.03e+05

C(WM ) 1.26e+1 7.35e+1 4.34e+2 4.40e+3 4.02e+4 2.05e+05

C(A) 6.08e+4 7.82e+4 1.49e+6 1.18e+8 1.15e+10 1.13e+12

Re=1 C(W) 1.19e+0 2.38e+0 3.88e+0 4.67e+1 4.57e+02 4.51e+03

C(WM ) 1.22e+0 2.38e+0 5.54e+0 4.67e+1 4.57e+02 4.52e+03

matrix W whereas only one full multigrid cycle is applied for those of WM . In other

words, λ(W) and C(W) in Figs. 4 and 5 and Table 5 show the best potential of the

projection preconditioner with Y = BL while C(WM ) show the actual performance.

As another notable feature, the reduction of the conditioning is very effective when the

inverse of B is approximated by one full multigrid cycle. These observations not only

suggest that the projection preconditioner has a great potential but also imply that this

potential can be achieved very efficiently.

To compare the efficiency of the proposed method in different regimes of Reynolds

numbers, we first note that the numbers of iterations for the explicit methods for high

stiffness are not sensitive to Reynolds numbers: in the case of γ = 104, the iteration

number of Re=103 is about 10% greater than that of Re=1. Therefore, the results in

Table 3 indeed show that the efficiency of the proposed method in the high Reynolds

number cases is much worse than that in the low Reynolds number cases. To explain

this, the spectrum of W and WM for 200 eigenvalues with the smallest amplitudes are

plotted in Fig. 6. For low stiffness, the eigenvalues of W and WM coincide, regard-

less of the Reynolds numbers. For high stiffness, the eigenvalues of W and WM has a

substantial difference for the high Reynolds number case, as shown in Fig. 6(b). In ad-

dition, there is only one eigenvalue smaller than 0.01 for Re= 1 whereas there are tens

of eigenvalues smaller than 0.01 for Re= 1000. This might explain the unsatisfactory

performance for the proposed implicit IB method in the case of high stiffness and high

Reynolds numbers.

5. Conclusion

Based on an unconditionally stable discretization of the IB equations, we have pro-

posed a nonstiff IB method for efficiently simulating fluid-structure interactions at low
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Figure 6: The first 200 eigenvalues with smallest amplitudes for W and WM . h = 1

64
. ∗’s and ◦’s represent

those of W and WM respectively for Re= 1; +’s and �’s represent those of W and WM respectively for
Re= 103;

Reynolds number. The Lagrangian variables of the IB are eliminated from the gov-

erning equations via a Schur complement approach to form purely Eulerian equations,

and the corresponding linear system is solved by a Krylov subspace method after being

preconditioned by a projection operator.

The projection preconditioner for immersed boundary equations involves approxi-

mately inverting an operator for the intermediate velocity and finding an update opera-

tor which relates the pressure to the projection variable. We showed that our previously

developed multigrid algorithm [11] provides a very good approximate inverse for up-

dating the velocity with just a single multigrid cycle. For the pressure update operator,

we used the framework of projection methods to derive an ideal preconditioner, which

is essentially the operator resulting from the Schur complement if one were to solve

for the pressure first [2]. This operator is very computationally expensive to construct,

although we note that in some cases fast algorithms for constructing a similar operator

were proposed for implicit immersed boundary equations [4].

We explored a number of choices that approximate the ideal preconditioner. It is

found that the proposed method could be thirty times faster than an explicit IB method

for low Reynolds number 0.1≤ Re ≤10 and high stiffness. In addition, the speedup

increases as h and/or the Reynolds number are further reduced. Interestingly, the best

choice of pressure update operator is the same as that used in projection precondition-

ing without the immersed boundary [9]. This update operator ignores the presence of

the immersed boundary. While the method worked very well at low Reynolds numbers,

the performance suffered above Reynolds number about 100. It may be possible to

find a different pressure update operator to provide effective preconditioning at higher

Reynolds numbers, but this is beyond the scope of this paper.

Although the values of the speedup for high Reynolds numbers are much less than
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those of low Reynolds numbers, this may not be a serious limitation of the proposed

method. First, fluid-structure interaction at low Reynolds number covers a vast range

of applications, and in the past there have been many applications of the immersed

boundary method at low Reynolds numbers. Second, at high Reynolds number it is

essential to capture the correct physics of boundary layers. Because of first-order accu-

racy of the immersed boundary method near the structure, resolving boundary layers

requires an extraordinarily large number of grid points. Thus the immersed boundary

method is not well suited for applications at very high Reynolds numbers.

Projection methods are appealing because they decouple the pressure and the veloc-

ity, and solvers can be built from existing solvers for scalar equations. Another approach

is to solve for the pressure and velocity simultaneously. We developed a multigrid-based

preconditioner based on this approach for Stokes equation [12], where the time inde-

pendence precludes the use of projection methods. It remains to be explored whether

this approach will be effective at higher Reynolds numbers.
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