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Abstract. Computational modeling and simulation are presented on the motion of
red blood cells behind a moving interface in a capillary. The methodology is based

on an immersed boundary method and the skeleton structure of the red blood cell

(RBC) membrane is modeled as a spring network. As by the nature of the problem,
the computational domain is moving with either a designated RBC or an interface in

an infinitely long two-dimensional channel with an undisturbed flow field in front
of the computational domain. The tanking-treading and the inclination angle of a

cell in a simple shear flow are briefly discussed for the validation purpose. We then

present and discuss the results of the motion of red blood cells behind a moving
interface in a capillary, which show that the RBCs with higher velocity than the

interface speed form a concentrated slug behind the moving interface.

AMS subject classifications: 65M60, 76M10, 76Z05
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1. Introduction

The rheological property of the red blood cells (RBCs) is a key factor of the blood

flow characteristics at the microchannel level, especially the particulate nature of the

blood becomes significant when studying blood drop through a glass capillary within

miniature blood diagnostic kit. The penetration of the blood suspension in a perfectly

wettable capillary has been analyzed in [1, 2]. The failure of such penetration is at-

tributed to three RBCs segregation mechanisms: (i) corner deflection at the entrance,

(ii) the intermediate deformation-induced radial migration and (iii) shear-induced dif-

fusion within a packed slug at the meniscus. The key mechanism responsible for pen-

etration failure is the deformation-induced radial migration, which endows the blood

cells with a higher velocity than the meniscus to form the concentrated slug behind the
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Figure 1: Schematics of the BRCs moving behind a meniscus.

meniscus (see Fig. 1). The results in [1,2] shed light on making the smallest microflu-

idic kit and loading microneedle that require the least amount of blood sample.

Nowadays in silico mathematical modeling and numerical study of RBC rheology

have attracted growing interest (see, e.g., [3, 4]). The immersed boundary method

developed by Peskin, e.g., [5–7], has been one of the popular methodologies for nu-

merically studying the RBC rheology due its distinguish features in dealing with the

problem of fluid flow interacting with a flexible fluid/structure interface. For exam-

ple, in [8–17], immersed boundary methods have been combined with different RBC

membrane models to simulate the motion of RBCs and vesicles in fluid flow. We have

successfully combined an immersed boundary method with a spring model developed

in [18] to simulate the motion of RBCs in shear flows and Poiseuille flows in [15–17].

To simulate the RBCs aggregation behind a moving interface considered in [1, 2], we

have extended the aforementioned methodology since the typical setting of the periodic

boundary condition in the channel wall direction is not well suited anymore. As by the

nature of the problem, the computational domain has to be focused on the marching

frontier, which has no counterpart to go periodic. Instead we have the computational

domain moving with a interface (see, e.g., [26, 27] and references therein for adjust-

ing the computational domain) in an infinitely long two-dimensional channel with an

undisturbed flow field in front of the domain. This approach extends the range of the

methodology from still focus to moving focus. To mimic the motion of the RBCs be-

hind a meniscus in a capillary, we have considered a flat interface moving with a given

constant speed in this paper. The simulating results of the motion of red blood cells

behind a moving interface show that the RBCs with higher velocity in the channel cen-

tral region than the interface speed form the concentrated slug behind the interface,

which resembles the motion of the RBCs observed in [1,2]. The structure of this paper

is as follows: We discuss the elastic spring model and numerical methods in Section 2.

In Section 3, the tanking-treading and the inclination angle of a cell in a simple shear

flow are briefly discussed for the validation purpose. We then present and discuss the

results of the motion of red blood cells behind a moving interface in a capillary. The

conclusions are summarized in Section 4.



Cell Suspensions Behind a Moving Interface in a Capillary 501

2. Models and methods

Let Ω be a bounded rectangular domain filled with blood plasma which is incom-

pressible, Newtonian, and contains RBCs with the viscosity of the cytoplasm same as

that of the blood plasma (see Fig. 2). For some T > 0, the governing equations for the

fluid-cell system are

ρ

[

∂u

∂t
+ u ·∇u

]

= −∇p+ µ∆u+ f in Ω, t ∈ (0, T ), (2.1)

∇ · u = 0 in Ω, t ∈ (0, T ), (2.2)

where u and p are the fluid velocity and pressure, respectively, ρ is the fluid density, and

µ is the fluid viscosity, which is assumed to be constant for the entire computational

domain. In (2.1), f is a body force which accounts for the force acting on the fluid/cell

interface. Eqs. (2.1) and (2.2) are completed by the following boundary and initial

conditions:

u = g0 on Γd, (2.3)

µ
∂u

∂n
− np = 0 on Γn, (2.4)

u(0) = u0, (2.5)

where the domain Ω is taken from an infinitely long channel with its boundary denoted

by Γ = ∪4
i=1Γi. In the simulations, we have considered two types of boundary condi-

tions: (i) Γn = ∅ and Γd = Γ, (ii) Γn = Γ4 and Γd = Γ1 ∪ Γ2 ∪ Γ3 with g0 having the

profile of either Poiseuille flow or simple shear flow on Γd.
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Figure 2: An example of the computational domain with a cell.

2.1. Elastic spring model for the RBC membrane

An elastic spring model used in [18] is considered in this paper to describe the

deformable behavior of the RBCs. Based on this model, the RBC membrane can be

viewed as membrane particles connecting with the neighboring membrane particles by

springs, as shown in Fig. 3. Elastic energy stores in the spring due to the change of the

length l of the spring with respected to its reference length l0 and the change in angle
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θ
l

Figure 3: The elastic spring model of the RBC membrane.

θ between two neighboring springs. The total elastic energy of the RBC membrane,

E = El + Eb, is the sum of the total elastic energy for stretch/compression and the

total energy for bending which, in particular, are

El =
kl
2

N
∑

i=1

( li − l0
l0

)2
(2.6)

and

Eb =
kb
2

N
∑

i=1

tan2(θi/2). (2.7)

In Eqs. (2.6) and (2.7), N is the total number of the spring elements, and kl and kb are

spring constants for changes in length and bending angle, respectively. (Another form

of bending energy similar to the one in (2.7) can be found in [19].)

Remark 2.1. In the process of creating the initial shape of RBCs described in [18], the

RBC is assumed to be a circle of radius R0 = 2.8 µm initially. The circle is discretized

into N = 76 membrane particles so that 76 springs are formed by connecting the

neighboring particles. The shape change is stimulated by reducing the total area of the

circle through a penalty function

Γs =
ks
2

(s− se
se

)2
, (2.8)

where s and se are the time dependent area of the RBC and the specified equilibrium

area of the RBC, respectively, and the total energy is modified as E + Γs. Based on the

principle of virtual work the force acting on the ith membrane particle now is

Fi = −
∂(E + Γs)

∂ri
, (2.9)

where ri is the position of the ith membrane particle. When the area is reduced, each

RBC membrane particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi. (2.10)
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Here, ˙( ) denotes the time derivative; m and γ represent the membrane particle mass

and the membrane viscosity of the RBC. The position ri of the ith membrane particle

is solved by discretizing (2.10) via a second order finite difference method. The total

energy stored in the membrane decreases as the time elapses. The final shape of the

RBC is obtained as the total elastic energy is minimized (please see [20]). The area

of the final shape has less than 0.001% difference from the specified equilibrium area

se and the length of the perimeter of the final shape has less than 0.005% difference

from the circumference of the initial circle. The reduced area of a RBC in this paper is

defined by s∗ = se/πR
2
0.

Remark 2.2. When simulating the case involving a moving interface, we have applied a

repulsive force to prevent the overlapping between cell and wall. The repulsive force is

obtained from the following Morse potential, φ(d) = kr(1− e−(d−d0))2, (e.g., see [21])

where the parameter d is the shortest distance between the membrane particle and the

wall and d0 is the range of the repulsive force so that

fi(d) =

{

2kr(1− e−(d−d0))e−(d−d0), d ≤ d0,

0, d > d0,

i.e., when the distance d is greater than d0, there is no repulsive force. The parameter

kr is a constant for the strength of the potential. To save the cost of computing the

repulsive force in simulations, each cell is covered by a disk whose center is the cell

mass center and the repulsive force at each membrane particle is computed only if the

distance from the disk center to the wall is less than the sum of the disk radius and the

range of the repulsive force.

2.2. Immersed boundary method

The immersed boundary method developed by Peskin, e.g., [5–7], is employed in

this study because of its distinguish features in dealing with the problem of fluid flow

interacting with a flexible fluid/structure interface. Over the years, it has demonstrated

its capability in study of computational fluid dynamics including blood flow. Based on

the method, the boundary of the deformable structure is discretized spatially into a set

of boundary nodes. The force located at the immersed boundary node ri = (ri,1, ri,2)
affects the nearby fluid mesh nodes x = (x1, x2) through a 2D discrete δ-function

Dh(x− ri):

f(x) =
∑

FiDh(x− ri) for |x− ri| ≤ 2h, (2.11)

where h is the uniform finite element mesh size and

Dh(x− ri) = δh(x1 − ri,1)δh(x2 − ri,2), (2.12)
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with the 1D discrete δ-functions being

δh(z) =























1

8h

(

3− 2|z|/h+
√

1 + 4|z|/h− 4(|z|/h)2
)

, |z| ≤ h,

1

8h

(

5− 2|z|/h−
√

−7 + 12|z|/h− 4(|z|/h)2
)

, h ≤ |z| ≤ 2h,

0, otherwise.

(2.13)

The velocity of the immersed boundary node ri is also affected by the surrounding

fluid and therefore is enforced by summing the velocities at the nearby fluid mesh

nodes x weighted by the same discrete δ-function:

U(ri) =
∑

h2u(x)Dh(x− ri) for |x− xi| ≤ 2h. (2.14)

After each time step, the position of the immersed boundary node is updated by

rn+1
i = rni +∆tU(rni ). (2.15)

2.3. Space approximation and time discretization

Concerning the finite element based space approximation of {u, p} in problem (2.1)-

(2.5), we use the P1-iso-P2 and P1 finite element approximation (e.g., see [22, Chapter

5]). For a rectangular computational domain Ω ⊂ R2, let Th be a finite element trian-

gulation of Ω for velocity and T2h a twice coarser triangulation for pressure where h is

a space discretization step. We introduce the finite dimensional spaces:

Wh = {vh |vh ∈ C0(Ω)2,vh|T ∈ P1 × P1,∀T ∈ Th},

W0h = {vh |vh ∈ Wh,vh = 0 on Γd},

L2
h = {qh | qh ∈ C0(Ω), qh|T ∈ P1,∀T ∈ T2h},

L2
h,0 =

{

qh
∣

∣ qh ∈ L2
h,

∫

Ω
qh dx = 0

}

,

where P1 is the space of polynomials in two variables of degree ≤ 1. We apply the Lie’s

scheme [22, 23], which is a first order method in time, with the above finite elements

to Eqs. (2.1)-(2.5) with the backward Euler method in time for some subproblems and

obtain the following sequence of fractional step subproblems (some of the subscripts h
have been dropped):

u0 = u0 is given; for n ≥ 0, un being known, we compute the approximate solution

via the following fractional steps:

1. Update the position of the membrane by (2.14) and (2.15) and then compute the

force fn based on the fluid/cell interface by (2.9) and (2.11).
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2. Solve



















∫

Ω

∂u(t)

∂t
· vdx +

∫

Ω
(un ·∇)u(t) · vdx = 0, on (tn, tn+1), ∀v ∈ W−

0h,

u(tn) = un,

u(t) ∈ Wh, u(t) = g0,h on Γ− × (tn, tn+1),

(2.16)

and set un+2/3 = u(tn+1).

3. Finally solve











































ρ

∫

Ω

un+1 − un+2/3

△t
· vdx+ µ

∫

Ω
∇un+1 : ∇vdx

−

∫

Ω
pn+1(∇ · v)dx =

∫

Ω
fn · vdx, ∀v ∈ W0h,

∫

Ω
q∇ · un+1dx = 0, ∀q ∈ L2

h,

un+1 ∈ Wh, u
n+1 = g0,h on Γd; pn+1 ∈ L2

h (pn+1 ∈ L2
h,0 if Γn = ∅).

(2.17)

In Eq. (2.16), we have Γ− = {x |x ∈ Γ, g0,h(x) · n(x) < 0} and W−
0h = {vh |vh ∈

Wh,vh = 0 on Γ−}. The quasi-Stokes problem (2.17) is solved by a preconditioned

conjugate gradient method (see, e.g., [22]). The subproblem (2.16) is an advection

type subproblem. It is solved by a wave-like equation method, which is described in

detail in [24] and [25].

Remark 2.3. In simulations, the computational domain Ω moves to the right with ei-

ther the mass center of a RBC or the interface (see, e.g., [26,27] and references therein

for adjusting the computational domain according to the position of the particle). Due

to the use of structured and uniform mesh in our simulations, it is relatively easy to

have the computational domain moving with either a designated cell or an moving

interface without the need of generating any new meshes. Here is the general idea:

When the mass center of a RBC moves to the right in an infinitely long channel, we

add one vertical grid line to the right end of the computational domain if the cell mass

center crosses one vertical grid line after we predict its new position and at the same

time we drop one vertical grid line at the left end of the computational domain. In the

meantime at these new grid points added at the right end, we assign the values of an

undisturbed field according to either Poiseuille flow or simple shear flow depending on

the flow condition. When following an interface moving to the right with a constant

speed, we have applied the same strategy. The comparison of the simulation results

associated with different boundary conditions are discussed in the following section.
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3. Numerical results and discussion

3.1. Tank-treading of a single cell in shear flow

We have first validated the computational methodology with two types of bound-

ary conditions discussed in Section 2 by comparing the inclination angle and the tank-

treading frequency of a single RBC in shear flow. The values of parameters for modeling

cells are same with [15–17] as follows: The bending constant is kb = 5 × 10−10N ·m,

the spring constant is kl = 5 × 10−8N ·m, the penalty coefficient is ks = 10−5N ·m,

the repulsive force coefficient is kr = 10−9N ·m, and the range of the repulsive force

is d0 = 2h where h is the mesh size for the flow velocity field. The cells are sus-

pended in blood plasma which has a density ρ = 1.00g/cm3 and a dynamical viscosity

µ = 0.012g/(cm · s). The viscosity ratio which describes the viscosity contrast of the

inner and outer fluid of the RBC membrane is fixed at 1.0. The dimensions of the com-

putational domain are 112µm×7µm (the longer domain) and 80µm×7µm (the shorter

domain). Then the degree of confinement (2R0/H) is 0.8 where H is the height of the

channel. The grid resolution for the computational domain is 80 grid points per 10µm.

The time step ∆t is 1 × 10−5ms. The initial position of the mass center of the cells are

(56, 3.5) and (40, 3.5) for the longer domain and the shorter domain, respectively. To

have a shear flow, a Couette flow driven by two walls at the top and bottom which

have the same speed U/2 but move in directions opposite to each other is applied to

the suspension, where the speed U is given by U = γ ∗ H with a given shear rate γ.

The shear rate used in the simulation is γ = 275/s. The steady inclination angles of

the tank-treading for four values of s∗=0.6, 0.7, 0.8 and 0.9 are presented in Fig. 4,

which show the very good agreement with the lattice-Boltzmann simulation results
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Figure 4: (Color online). Steady inclination angle versus the cell swelling ratio (left) and membrane tank-
treading velocity (scaled by γR0/2) versus the cell swelling ratio (right) in comparison to Shi et al. [15] and
Kaoui et al. [13] in different cases. Case I: 112µm× 7µm domain with Dirichlet boundary conditions, Case
II: 80µm× 7µm domain with Dirichlet boundary conditions, Case III: 80µm× 7µm domain with Neumann
inflow condition and Dirichlet outflow condition.
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in [13] and those previously obtained with periodic boundary conditions in [15]. The

membrane tank-treading velocity (scaled by γR0/2) is also in good agreement with the

results in [13, 15]. In Fig. 4, the results of the inclination angle and the tank-treading

velocity are almost the same when having either the Dirichlet boundary conditions on

Γ with the length L = 112 and 80 µm or the conditions (2.3) and (2.4) on the bound-

ary of the shorter domain. For the above single-cell validation, the maximal relative

change of the spring length during the simulation, max1≤i≤N |li − l0|/l0, is less than

0.01%, which shows that the cell is almost inextensible.

3.2. Multi-cell aggregation in a capillary behind a moving interface

For the cases involving a moving interface in a capillary, we have considered the

one moving to the right with constant speed U to mimic the motion of the RBCs behind

a meniscus in a capillary. Then the associated boundary condition in (2.3) on Γd is

g0 = 0 on Γ1 ∪ Γ3 and g0 = (U, 0)t on Γ2 and the boundary condition (2.4) is satisfied

on Γ4. We have kept all the related parameters the same except the following. We

have first considered the case of 12 cells of swelling ratio s∗=0.481 in a capillary of the

height 10µm. The computational domain Ω is 80µm × 10µm. The grid resolutions for

the computational domain are 64 and 80 grid points per 10µm. The interface speed is

U = 8/3 cm/s. In the simulation, the cells at the central region of the channel move

faster than those next to the top and bottom walls do due to fact that the velocity field

behaves like Poiseuille flow as the fluid flow is away from the interface and the speed of

the interface is slower than the velocity of the fluid flow in the channel central region

away from the interface (see the velocity field in Figs. 5 and 6). Thus the cells in the

central region are piled up behind the interface while those next to the walls migrate

toward the central region (as the cell in red in Fig. 5). Then the cells form a slug behind

the moving interface and move with the interface as in Fig. 5. The position and shape

of the cells obtained with two different mesh sizes are about the same for the first 4 ms

as in Fig. 5 and then they become different since the effect of the round-off errors and

approximation errors can kick in. For the above case of 12 cells, the maximal relative

change of the spring length during the simulation, max1≤i≤N |li − l0|/l0, is less than

0.5% but slightly larger than the one of one cell case due to the strong interaction

among cells in the region of slug. For the case of 68 cells of swelling ratio s∗ = 0.481
in a capillary of the height 20µm, we have considered the computational domain Ω =
160µm × 20µm. The interface speed is U = 8/3 cm/s. These 68 cells behave similarly

behind the moving interface like the motion of the 12 cells considered in the previous

case. But it is much clearly for us to see that the cells in the channel central region

move faster to the right due to the relatively faster flow field. For the cells moving

away from the interface, they move back to the central region of the channel due to

either the interaction among the cells or the lateral migration of the cells in a flow field

like the Poiseuille flow. Then the cells are piled up behind the interface and move with

the interface as in Fig. 6.
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Figure 5: (Color online). The positions of 12 cells in a capillary behind a moving interface at t = 0.01, 0.5,
1.5, 2.5, 3, 3.5, 4, 4.5, 5 and 6.25 ms (from top to bottom) obtained with the mesh size 64 grid points
per 10µm (left column) and 80 grid points per 10µm (right column). The velocity field with 12 cells at
t = 6.25 ms is obtained with the mesh size 64 grid points per 10µm. The position of the ”red” cell shows
its lateral migration toward the central region.
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Figure 6: (Color online). The position of 68 cells in a capillary behind a moving interface at t = 0.01, 1.8,
5.37, 6.81 and 10 ms and the velocity field with 68 cells at t =10 ms (from top to bottom). The position
of the ”red” cell shows its lateral migration toward the central region.

4. Conclusions

In summary, we have developed computational modeling and methodologies for

simulating the motion of many RBCs in a capillary behind a moving interface in this

paper. The methodology is based on an immersed boundary method and the skeleton

structure of the red blood cell (RBC) membrane is modeled as a spring network. The

computational domain is moving with either a designated RBC or an interface in an

infinitely long two-dimensional channel with an undisturbed flow field in front of the

domain. The tanking-treading and the inclination angle of a cell in a simple shear
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flow are briefly discussed for the validation purpose. The results of the motion of red

blood cells behind a moving interface in a capillary show that the RBCs with higher

velocity than the interface speed form a concentrated slug behind the interface, which

is consistent with the results in [1,2]. The lateral migration is a also key factor for the

formation of a slug behind the moving interface. For the cases in which the swelling

ratio of cells or the marching velocities are different, the cells should behave similarly

as the simulating results since the they all behave similarly in Poiseuille flow.
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