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Abstract. We present an efficient implementation of volumetric anisotropic image dif-

fusion filters on modern programmable graphics processing units (GPUs), where the

mathematics behind volumetric diffusion is effectively reduced to the diffusion in 2D

images. We hereby avoid the computational bottleneck of a time consuming eigenvalue

decomposition in R3. Instead, we use a projection of the Hessian matrix along the

surface normal onto the tangent plane of the local isodensity surface and solve for the

remaining two tangent space eigenvectors. We derive closed formulas to achieve this

and prevent the GPU code from branching. We show that our most complex volumet-

ric anisotropic diffusion filters gain a speed up of more than 600 compared to a CPU

solution.
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1. Introduction

Diffusion equations can be considered as physically motivated iterative filters applying

a diffusion process on (mostly) noisy image data. They smooth out noise effectively and

deliver a framework providing a scale space representation of the image, when time is

considered as a natural, continuous scale space parameter [20, 21, 24, 25, 37]. They are

well known in the field of image processing and have been subject to many enhancements

during the last decades, see e.g. the monographs by Weickert [38, 40] for a complete and

comprehensive introduction. Especially the ability to steer the direction and amount of
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Figure 1: S
ale-spa
e representation of homogeneous (left) and inhomogeneous di�usion (right) for a2D image. 200 iterations, ∆t = 0.05.
diffusion in pre-described directions based on local image structure increased the popular-

ity of these processes. Fig. 1 gives a visual example of the effect of two different types of

diffusion on a 2D image extended with a time axes.

Recent publications in both computer graphics and computer vision apply this diffu-

sion for smoothing of normal maps [33], fairing of surfaces and functions on surfaces and

meshes [4,5,27], and image compression and inpainting [11], to mention only some pos-

sibilities. One should note the essential difference between approaches on the full voxel

set and subsets – e.g. meshes – describing shapes. Anisotropic diffusion of whole volume

images or general meshes [1, 26] and smoothing vector valued volume images [41] are

also common tasks arising in medical applications. It has been reported in 3D imaging as

“the most favorable approach regarding the efficiency of noise reduction, signal preserva-

tion and computing effort” [10], but the computation time is a bottleneck on traditional

CPU implementations for (close to) real-time applications. For off-line denoising and en-

hancing of 2D images, impressive and fast results are obtained by Weickert’s (nD) AOS im-

plementation [38]. It can be parallelized for many types of diffusion by exploiting intrinsic

parallelism. Weickert et al. showed this using a regularized Perona-Malik diffusion filter

on a 138× 208× 138 3D ultrasound data set [36]. Alternatively, fast explicit schemes can

be used [13].

Anisotropic diffusion requires to solve second order partial differential equations (PDEs)

numerically. As the amount of discretized data is rapidly increasing, especially in the vol-

umetric 3D case, it is a perfect application for modern graphic cards. Current Graphics

Processing Units (GPUs) can easily handle large medical data sets, for example CT or MRI

images beyond the traditional 5123 voxels boundary [2,18]. The current GPU SIMD (Sin-

gle instruction, multiple data) architecture allows to solve each iteration in a few millisec-

onds due to massively parallel processing [7]. The big “however” is that this holds only

for equations that lead to an efficient parallelization. This is at least difficult for most in-

teresting, non-linear, PDEs. This is due to the local structure in each voxel that determines



74 A. Kuijper et al.

in which direction the diffusion (smoothing) should be performed. Anisotropic diffusion

types in which locally the structure tensor and its eigensystem need to be computed are,

therefore, notoriously badly suited for parallelization on GPUs. Implementing diffusion fil-

ters on GPUs thus requires to analyze the mathematics behind diffusion in order to adapt

the algorithms well to the hardware.

1.1. Contribution

As main contribution we show how one can obtain the so-called local structure frame

for volumetric data sets easily. This leads to nearly unconditional code without the need

for in-voxel iterative loops, performing extremely well on GPUs. For this purpose, we

build on a technique described by Hadwiger et al. [14]. Using a closed form solution for

the computation of the diffusion tensor eigensystem, we obtain a constant time for each

voxel. This is in contrast to the alternative of locally iterative computations to determine

the eigensystem [12], in which convergence cycle and time differs from voxel to voxel.

Anisotropic nonlinear diffusion on symmetric multiprocessor (SMP) clusters for volumetric

data was discussed in [32], showing a maximum speedup of 20 on SMP clusters with up to

30 processors. In our GPU approach, we do not need to slice the volume and distribute it

across a platform, as all shading processors of modern GPUs can access the same memory.

We therefore achieve speedups of up to 640 on a comparably cheap GPU.

Volumetric anisotropic diffusion on GPUs using shader programs in the standard graph-

ics pipeline has been discussed in, e.g, the works by Jeong et al. [15], Zhao [42] or Beyer

et al. [6]. In contrast to this, our approach is based on NVidia’s CUDA which is better

suited for GPGPU (general purpose GPU) algorithms like volumetric diffusion. Intermedi-

ate values, such as the Hessian, are recomputed on-the-fly in each iteration and are stored

temporarily in per-thread local memory. Therefore, larger data sets can be processed on

the GPU. This significantly simplifies the algorithm while the results of the diffusion are

very good, see Figs. 2 (right) and 9. The examples we show are iso-manifolds in the full

3D volume. The diffusion is applied to all voxels, but in order to be able to show relevant

results, we choose physically motivated values - those representing the skull. To generate

a surface from these voxels we need sub-voxel information, for which we implemented

affine transformations (see also Section 6). Full details on implementation issues can be

found in [30]

2. Diffusion on images

The linear homogeneous diffusion equation removes noise from images by solving the

heat equation, a second order parabolic PDE. Initial and boundary conditions are required

to find a particular solution. A general diffusion equation can then be defined as follows:

∂

∂ t
Φ(~x , t) = div (D∇Φ(~x , t)) , for ~x ∈ Ω, t > 0, (2.1)

Φ(~x , 0) = Φ0(~x), for ~x ∈ Ω, (2.2)
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∂

∂ ~n
Φ(~x , 0) = 0, for ~x ∈ ∂Ω. (2.3)

Here, Φ denotes the noisy image function defined on a region Ω of the Euclidean space.

D is a function, which determines the diffusion speed through the medium. D is constant

(usually 1 or 1/2) in the linear case. The initial condition (2.2) initializes the function at

time t = 0 with the original noisy image Φ0. The boundary values are defined in (2.3) by

their derivative in normal direction ~n to the border of the considered volume: Since the

directional derivative is assumed to be 0, no flow through the boundary ∂Ω is induced.

In digital image processing this is usually accomplished by restricting access outside the

volume to the nearest boundary values (clamp values).

Solving the heat equation for D = 1 at time t = 1/2 σ2 equates to convolving the image

function with a Gaussian of size σ (see [3,20,37]):

Φ(~x , t) =

(
Φ0(~x), t = 0,

(Gp2t ∗Φ0)(~x), t > 0.

Thus, this diffusion equation has exactly the same smoothing characteristics as the well

known Gaussian filter. In particular boundaries blur out fast and therefore edge informa-

tion gets lost quickly, see Fig. 2 (left). Although this linear diffusion equation carries a

wealth in itself [20,22,23], the focus in this work is on nonlinear diffusion.

2.1. Inhomogeneous diffusion

In the context of image processing, the heat equation was modified significantly by

Perona and Malik [29] by replacing D in Eq. (2.1) with an edge detector, a monotonically

decreasing non-negative real function g, which attenuates the induced flow close to edges

and therefore effectively prevents edges from being washed out:

∂

∂ t
Φ = div
�

g(|∇Φ|)∇Φ� , for ~x ∈ Ω, t > 0. (2.4)

Perona and Malik proposed the following diffusivity functions

g(∇Φ) = exp

�
−
� |∇Φ|
λ

�2�
,

g(∇Φ) = 1

1+
� |∇Φ|
λ

�2 .

They designated this diffusion anisotropic, but it is only locally adapting and still isotropic,

as it is steered by a scalar diffusion coefficient. Therefore, Weickert calls this locally adapt-

ing diffusion inhomogeneous [37]. Inhomogeneous diffusion is able to preserve edges over

a long period of time, but its smoothing capabilities close to edges are rather poor.
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Figure 2: 100 iterations of di�usion on a volume with a time step ∆t = 0.05, after whi
h an isosurfa
eis extra
ted. Left: Homogeneous di�usion. The frontal sinus destroys the surfa
e stru
ture of theforehead and small s
aled details (e.g. lips, nose, ears) are lost. Right: Nonlinear anisotropi
 di�usion(here: edge enhan
ing di�usion) steered by a di�usion tensor based on lo
al stru
ture preserves �nes
aled features.
2.2. Nonlinear anisotropic diffusion

Weickert introduced a new nonlinear anisotropic diffusion, which replaces the scalar

D in Eq. (2.1) with a tensor, that allows for anisotropic adjustment of the diffusion flow

[35, 37–39]. These works will give the interested reader a sound standing insight to the

whole topic. Weickerts definition of the diffusion equation is as follows:

∂

∂ t
Φ = div (D(S )∇Φ) , for ~x ∈ Ω, t > 0. (2.5)

The diffusion tensor D is a function of the structure tensor S = ∇Φ ⊗∇Φ and used to

steer and align the diffusion flow along the local surface structure. In general the exact

definition of the diffusion tensor depends on the desired results of the smoothing process.

Thus, the nonlinear anisotropic diffusion is a function of the image Φ and therefore a

function of space and time as well.

Edge Enhancing Diffusion (EED) attenuates diffusion flow normal to the edge or surface

but promotes flow along the edge or parallel to the surface, see Fig. 2 (right). Furthermore,

Coherence Enhancing Diffusion (CED) tries to steer diffusion along line-like structures and

is able to reconnect interrupted lines [39]. In a hybrid approach, joining EED and CED to

locally adapting diffusion, one is able to enhance edges, smooth out noise and to connect

broken lines [10].

2.2.1. Volumetric anisotropic diffusion

In all cases the definition of a useful diffusion tensor involves the construction of a local

structure frame: One needs to find a transformation which aligns the coordinate system

orthogonally to the surface of the submanifold. In 2D this is rather trivial once the normal
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vector is given. In 3D one can proceed as follows. Let V be such a coordinate transforma-

tion, aligning the third axis normal to the surface, then we can define the diffusion tensor

D in three dimensions as follows:

D = V D∗V T = V



α 0 0

0 β 0

0 0 γ


V T . (2.6)

Matrix D transformed to the new basis V is a diagonal matrix D∗, as the diffusion flow

is aligned perfectly along the principal directions of the surface structure. For (α,β ,γ) =

(1,1,1) one gets the standard homogeneous diffusion of Eq. (2.1) and by choosing dif-

ferent (but constant) values one can emphasize local smoothing. This obviously becomes

more interesting if local information, e.g. in terms of a weighted local gradient, is taken

into account. Considering all directions equally by α = β = γ = g(|∇Φ|), using the func-

tion g as introduced above, give the inhomogeneous Perona Malik diffusion of Eq. (2.4).

The most interesting, but also complicated, types of diffusion like CED and EED are ob-

tained by choosing different values. For CED one can set all but one eigenvalue (entry)

constant, and adapt the largest - the one denoting the flow direction - using an exponential

function [39]. For EED the axis normal to the surface - the normal direction - is adapted

using g, i.e. (α,β ,γ) = (1,1, g(|∇Φ|)), see Fig. 2 (right).

The crucial point when designing anisotropic diffusion based on local surface infor-

mation (for instance when the local flow direction is used) is the efficient construction of

this frame V . The traditional way is to obtain this basis by analyzing the structure tensor,

defined as the outer product of the gradient ∇Φ with itself. Obviously, the structure ten-

sor is a symmetric matrix. Therefore, the existence of three real eigenvalues is assured.

We can find a representation S = VΛV T through eigendecomposition which gives us an

orthonormal basis V and its inverse V−1 = V T : The columns of V consist of the eigenvec-

tors of S. In this representation Λ is a diagonal matrix whose diagonal elements are the

corresponding eigenvalues. Performing an eigendecomposition in each voxel using standard

methods is hard to parallelize, though. Most algorithms require either in-voxel iterative

methods. Conditional code leads to branching and thus to divergent program execution

and sequential calculations of the GPU multiprocessors. They reduce speed advantages

significantly, so it is important to find a reduction of the dimension. In the next section, we

present such a method and find a local frame efficiently by analyzing the Hessian, which

holds structural information, as it describes the change of the surface normal.

3. Surface structure and the Hessian

When defining a diffusion tensor, it is utterly important to find a basis V whose axes

are aligned exactly along the principal curvature directions of the surface, as we do not

want to restrict ourselves to diffusion tensors that depend on the gradient direction only.

Theoretically, this basis can be found via an eigen-decomposition of the structure tensor in

3D space. As the structure tensor is a real symmetric matrix, the eigenvalues are real and
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the eigenvectors are existent. However, the characteristic polynomial of a 3× 3 matrix has

degree 3 and therefore it is rather time consuming to solve for the roots.

On the other hand, the eigenvalues of a 2×2 matrix are computed easily by evaluating

only a few closed formulas. Especially for machine code executed on modern GPUs, this is

of advantage as the single execution paths are not divergent (not branching) and parallel

execution on the hardware is achieved ideally. In the following, we will show how to obtain

the structure frame V by evaluating closed formulas only.

3.1. Tangent space projection of the Hessian

The following considerations are aimed at finding a basis transformation V : R3 7→ R3

with as few computations as possible and which will describe a coordinate system normal

to the tangent plane of the isosurface at a given point. Despite that, the remaining two basis

vectors of V spanning the tangent plane should be aligned with the orthogonal principal

curvature directions.

Assuming that the inner region of a volume consists of higher density volumes, we

define the surface normal by the gradient ∇Φ = � ∂Φ∂ x

∂Φ
∂ y

∂Φ
∂ z

�T
as ~n = −∇Φ/|∇Φ|. Since

∇Φ points towards the direction of the greatest density ascent inside the volume, ~n lies

inside the linear span of the gradient. Therefore it points into the direction the surface

moves when the iso value is increased. We can choose ~n(~x) to be the first vector of our

frame V . Note that very small gradients imply that there are no edges. So there we can

simply smooth with D = Id .

The curvature of a surface is defined as the ratio between change of surface normal and

change of position, which is described by the gradient of ~n: If we move in an infinitesimal

close area around the point ~x , the normal will change according to the surface. In [14]

and [19] one finds methods on how to characterize the curvature of a surface based on

gradient information and, moreover, how to obtain the principal curvature directions we

are looking for the construction of V . The derivative of the normal field ∇~nT at some

point ~x contains curvature information of the surface. Note that ∇~nT is a 3× 3 matrix.

According to Kindlmann et al. [19] it holds that

∇~nT = − 1

|∇Φ|(I − ~n~n
T )H. (3.1)

Here, I denotes the 3× 3 identity matrix, and H = ∇(∇Φ)T is the Hessian containing all

combinations of partial second order derivatives of the image Φ.

While the gradient describes the amount of change of Φ, the Hessian describes the

amount of change of the gradient, that is the amount of change of the surface normal in an

infinitesimal close region to a given point ~x . This amount of change of the gradient can be

decomposed into two components, namely the changes along the gradient direction and

changes in the tangent space. Only the latter is required for isosurface principal curvature

directions computation.

To perform the tangent space projection, we proceed as follows: We may omit the scaling

factor |∇Φ|−1 in Eq. (3.1) and concentrate on the remaining term. It is easy to see that
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Figure 3: Left: Proje
ting a point ~x into the span of the normal ~n and its 
omplement. Right: Thelo
al surfa
e frame.
(~n~nT )~x = (~n~x)~n, and the operator (~n~nT ) projects any point ~x ∈ Ω onto the linear span of

the normal. Therefore we are able to define a linear map

P = (I − ~n~nT ) =

�
I − ∇Φ(∇Φ)

T

|∇Φ|2
�

. (3.2)

which projects any given point ~x into the complement of the linear span of ~n, which is the

iso surface (see Fig. 3). The projection P extracts the gradients change of direction from

the Hessian inside the tangent space. By using P we thus define the shape operator

S = PT
H

|∇Φ|P. (3.3)

This matrix S contains by construction exactly the eigensystem we want, with eigenvectors

in the tangent space that are aligned with the principal curvatures directions. Since S is

symmetric, solving the characteristic polynomial gives us three real roots and associated

orthogonal eigenvectors. As long as the image is not degenerated, this yields a non-trivial

decomposition. Still, the computational overhead of a full eigen-decomposition of a 3× 3

matrix is rather high, especially as one eigenvector, the normal ~n, is already known. The

remaining eigenvectors in the tangent plane are the principle curvature directions with

corresponding eigenvalues λ1,2 which amount to the principle curvatures.

According to Hadwiger et al. [14], we can solve for the eigenvalues directly in 2D

tangent space without explicitly computing S. The transformation of S into any arbitrary

orthogonal basis (~u,~v) of the tangent space is defined as

S′ =

�
s11 s12

s12 s22

�
= (~u,~v)T

H

|∇Φ|(~u,~v). (3.4)

For finding an arbitrary orthogonal basis ~u, ~v in the tangent plane, we may proceed as

follows: We choose the canonical unit vector ~e1 = (1,0,0)T assuming that ~e1 ∦ ~n holds and

compute the cross product ~u = ~e1 × ~n. In case ~u = ~0 we compute the cross product again,

now using the second unit vector, ~e2 = (0,1,0)T . ~u is now normal to ~n and therefore it

must be part of the tangent plane. We finish the new basis by adding ~v = ~u× ~n.
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By using Eq. (3.4) we are now able to compute the eigenvalues λ1,2 of S′ by solving

the characteristic polynomial

det(S′ −λI) =

����
s11 −λ s12

s12 s22 −λ
����= 0

⇒ λ1,2 =
trace(S′)

2
±
r

trace(S′)2

4
− det(S′). (3.5)

From the eigenvalues λ1,2 we compute the corresponding eigenvectors. The appropriate

formula in [14] is incorrect and can be found in the correct formulation in [31, p. 96]. The

eigenvectors ~w∗1,2 are computed with reference to the basis (~u,~v) at first, and afterwards

they are transformed back into 3D space:

~w∗1 =

�
w∗1u

w∗1v

�
=





�
λ1− s22

s12

�
,

�
1

0

�
,

for s12 6= 0,

for s12 = 0,

(3.6a)

~w∗2 =

�
w∗2u

w∗2v

�
=





�
λ2− s22

s12

�
,

�
0

1

�
,

for s12 6= 0,

for s12 = 0.

(3.6b)

The transformation of the 2D eigenvectors into object space is accomplished by extending

the tangent space basis with ~n to 3D and a retransformation into the original orientation

by means of V = {~u,~v,~n}:

~wi =




ux vx nx

uy vy ny

uz vz nz







w∗iu
w∗iv
0


 =




ux w∗iu + vx w∗iv
uy w∗iu + vy w∗iv
uzw∗iu + vzw∗iv


 . (3.7)

3.2. Summary: retrieving the diffusion tensor in closed form

Building on the results of the previous sections, we now depict a compact and easy

to implement method to define the anisotropic diffusion tensor. The core of our method

is a 2× 2 eigen-decomposition of the Hessian projected into the tangent space of the iso

surface, computed with simple, closed formulas in the second part below. The method can

be outlined with the following three computational blocks:

1. Calculate the gradient ∇Φ, the normalvector ~n = −∇Φ/|∇Φ| and the Hessian H =

∇(∇Φ)T . To get a 3D set of vectors, complete ~n with any arbitrary vectors ~u and ~v

in the tangent space to an orthonormal basis.

2. Perform actual computations in 2D: Using Eq. (3.4), project H into the tangent plane

and obtain the 2×2 matrix S′. Calculate its eigenvalues λ1,2 using Eq. (3.5) and the



3D Anisotropic Diffusion on GPUs 81

corresponding eigenvectors ~w∗1,2 with respect to the (~u,~v) basis using Eq. (3.6). With-

out loss of generality we can – if this is necessary for the definition of our diffusion

tensor e.g. for CED – reorder the eigenvalues and eigenvectors: λ1 < λ2.

3. Getting back to 3D: Transform the 2D eigenvectors to the 3D eigenvectors ~w1, ~w2

using Eq. (3.7). Then set V = (~w1, ~w2,~n) and V−1 = V T and define D = V ·
diag(α,β ,γ) · V−1.

The last step defines the desired diffusion tensor. For instance, one can choose α= β =

1 and γ = g(|∇Φ|) for smoothing along the isosurface and attenuating the diffusion flow

normal to the edge (EED). In that case the local re-orientation is not essential, but it is

obviously further possible to define other diffusion tensors with different properties upon

the frame V , like CED and variants.

4. Prefiltering

The diffusion tensor might be a direct function of the gradient of the image or, speaking

more generally, a function of any interest operator I . Nevertheless, the bottom line is, that

the interest operator itself is a function of Φ(~x , t). Hence, one could also write:

∂tΦ = div(D(I(Φ))∇Φ). (4.1)

Here we can see clearly how the image function is used both for inducing the flow (∇Φ)

and for steering it (D(I(Φ))). Overall it is important to acquire high-quality first and second

order derivatives, namely for the gradient as well as the Hessian. Especially at the begin-

ning of the diffusion process small noise components may disturb the discrete computation

of the derivatives enormously.

To initialize the diffusion process optimally, one usually applies some sort of prefiltering

Fpre to the image. In this context, Eq. (2.2) is modified to

Φ(~x , 0) = Fpre(Φ0(~x)). (4.2)

Prefiltering can thus be seen as a generalization of the diffusion process: By setting Fpre

to the identity function, we can consider diffusion filtering without prefiltering as a special

case.

For prefiltering one could generally use any known filter, as for instance the box-,

Gaussian- or median filter. Bajaj et al. propose to use bilateral prefiltering: “Since bilateral

filtering can remove noise as Gaussian filtering can do, · · · we replace Gaussian prefiltering

with bilateral prefiltering. Additionally, bilateral filtering has the advantage of preserving

edge or curvature information, which is better for constructing anisotropic diffusion ten-

sors” [3].

4.1. Bilateral filter

The bilateral filter can be seen as an expansion to Gaussian filtering by applying an

additional edge term [34]. Applying a Gaussian filter, the values of close up regions are
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Figure 4: Stru
ture of the bilateral �lter kernel. A

ording to [28℄ and [9℄. 
©ACM 2002.
rated higher than values of voxels that are further away. The weighting function is a normal

distribution with variance σ and the weight depends on the distance solely. The bilateral

filter extends the weighting function by an additional term accounting for the difference in

the intensity domain. Bilateral means to differentiate the distance into a spatial component

and an intensity component as well.

The graphical interpretation in Fig. 4 shows, how the combined weights of spatial

and intensity domain result in a highly adaptive filter kernel that will keep edges despite

smoothing noise efficiently.

The discretized formulation is as follow:

BI[Φ]y =
1

Wy

∑

x∈Ω
ϕσs
(||y − x ||)ϕσi

(|Φy −Φx |)Φx . (4.3)

Here ϕσs
denotes a n-dimensional normal distribution in the spatial domain and ϕσi

is a

one dimensional normal distribution with variance σi. Choosing a large intensity range,

the bilateral filter degenerates to a Gaussian: For σi → ∞ we obtain ϕσi
≈ 1. Gaussian

filtering can thus be seen as a special case of bilateral filtering. The coefficient 1

Wy
is used

as a normalizing weight and can be obtained by summing up the weights of evaluated

normal distributions.

Fig. 5 shows on real data visually the different components of the bilateral filter ker-

nel. Considering this it is easy to see that the bilateral filter is not separable. Due to

change of intensity, the kernel must be recomputed according to the actual center voxel.

An implementation can profit from being executed massively parallel on a modern GPU.

5. Implementation

Our program was implemented using C for CUDA which allows for high-parallel com-

putations on NVidia GPUs. As divergent program execution – arising from conditional code
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Figure 5: Visualizing the bilateral �lter kernel using the data set Skull (2563 voxels). 1) Isomanifoldsof the original noisy image; 2) Enlarged se
tion from image (1), enhan
ed by a transfer fun
tion; 3)Filter kernel in the spatial domain; 4) Convolution of the original image (2) with the spatial kernel(3); 5) Filter kernel in the intensity domain; 6) Bilateral �lter kernel as the produ
t of (3) and (5); 7)Convolution of the original image (2) with the bilateral �lter (6).

Figure 6: Edge enhan
ing di�usion with bilateral pre�ltering. Top left: Iso-manifold in the originalimage. Top right: Noisy image (approx. 5% of the voxels a�e
ted, additive Gaussian noise, varian
e10%). Bottom left: Result after bilateral pre�ltering. Bottom right: After 50 iterations of EED(∆t = 0.05).
which leads to branching – and sequential calculations of the GPU multiprocessors could

eliminate speed advantages it is important to find a reduction of the dimension: As one

surface frame basis vector – the normal – is known, we can search for the remaining ones

in the 2D hyper plane. This avoids, for instance, iterative methods to compute the full 3D
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eigensystem [12] resulting in varying execution times between voxels as their convergence

is not a priori given and therefore in inefficient GPU use.

The volume data was stored as a 3D texture on the GPU. Coalesced memory access is

not possible when processing volumetric data, so the best speedup was achieved by using

cached texture memory. Clamping the textures automatically keeps track of all the border

values: As gradients at the borders equal zero, no flow will be induced and we avoid

conditional code which would slow down the program.

Besides, we can access values between the grid centers and request the hardware to

do trilinear interpolation. This gives us a slight speedup for discretizing the Hessian as ex-

plained below. Finally, and most important, texture memory is cached, which compensates

for the uncoalesced access and results in faster access to neighboring voxels. Performing

multiple iterations can be achieved by synchronizing all threads and copying the output

back to the texture memory. Copying memory within the device is a fast solution to cir-

cumvent the read only issue of texture memory. Each CUDA thread processes one voxel at

a time. The code was straight forward developed from the discretized formulation of the

anisotropic diffusion.

5.1. Discretization

In the following bΦ denotes the discretized image function Φ : Ω ⊂ R3 7→ R. Each grid

point is associated with a value bΦx ,y,z. Neighboring voxels are labeled bΦx− =
bΦx−1,y,z ,

likewise bΦx+
, bΦy− , bΦy+

, bΦz− and bΦz+
.

The isotropic grid structure provides a natural spatial discretizing scheme for cen-

tral differences. For temporal discretization we use forward differences. For nonlinear

anisotropic diffusion we obtain the following discretization:

bΦ(t +∆t)≈ bΦ(t) +∆t · div(D(∇Φ)∇Φ)

= bΦ(t) +∆t ·
�
∂

∂ x

�
d11

∂ bΦ
∂ x
+ d12

∂ bΦ
∂ y
+ d13

∂ bΦ
∂ z

�

+
∂

∂ y

�
d12

∂ bΦ
∂ x
+ d22

∂ bΦ
∂ y
+ d23

∂ bΦ
∂ z

�

+
∂

∂ z

�
d13

∂ bΦ
∂ x
+ d23

∂ bΦ
∂ y
+ d33

∂ bΦ
∂ z

��
. (5.1)

The entries di j represent the components of the diffusion tensor D and also depend on the

spatial coordinates. We discretize Eq. (5.1) over an isotropic grid with central differences.

Clearly, more sophisticated discretisation schemes exist (see, for example [8,40]), but for

our purpose – a fast and efficient GPU scheme for anisotropic diffusion – this suffices.

5.2. The diffusion tensor

The diffusion tensor as defined in step 10 of the algorithm outlined in Section 3.2 as

D = V · diag(α,β ,γ) · V−1, yields a symmetric matrix D consisting of the eigenvectors ~w1
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and ~w2 of the Hessian projected along ~n to the tangent plane of the isosurface:

D =




d11 d12 d13

d12 d22 d23

d13 d23 d33


 , (5.2)

with

d11 = w1x w1xα+w2x w2xβ + nx nxγ,

d12 = w1x w1yα+w2x w2yβ + nx nyγ,

and accordingly for the remaining cases. The eigenvalues from Eq. (3.5) and eigenvectors

from Eq. (3.6) are obtained directly in tangent space and are transformed back to object

space, see Eq. (3.7).

The step size ∆t needs to be small enough in order to guarantee numerical stabil-

ity. Following [32], ∆t < 0.5/Nd , with Nd the dimension of the problem, i.e. 3. In the

following examples we used the conservative value ∆t = 0.05.

6. Results

In the following two section we present the results on two different types of settings.

First, we consider a relatively cheap mid-end consumer system, consisting of an NVidia

GeForce 9800GT (say 100 USD) and an Intel Core 2 Duo E8500 CPU clocked at 3.16 GHz

(round about 200 USD). Next, we focus on the diffusion gain when a high end state of the

art system is used: an Intel Xeon E5430 CPU (2.66 GHz) and an NVidia GeForce GTX 480

with 480 shader cores. This GPU can handle a data set that is 8 times as large as the first

test data set.

In the diffusion experiments we considered one time step for the following three dif-

fusions: homogeneous (linear), inhomogeneous (Perona Malik), and anisotropic (EED).

The reason to choose EED is merely that the denoising properties of EED are superb. The

obtained clean images are easier to evaluate than, say, CED images that have a certain Van

Gogh appearance. The main issue to show here is that the orientation of the local tangent

plane is feasible at very limited computational cost on the GPU whilst gaining a significant

speed-up compared to the CPU implementation.

Finally, the diffusion is performed on the full 3D data set. The images we show are

iso-surfaces extracted from this data set by selecting a physically relevant value. For our

experiments we used medical data sets from two freely available repositories: the Volume

Library† and the VolVis Archiv‡. In order to extract the surfaces, we need sub-voxel infor-

mation. This is done using affine transformations for nearest neighbor, trilinear filtering

and trivariate cubic B-Splines.

†http://www9.informatik.uni-erlangen.de/External/vollib/
‡http://www.volvis.org/
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6.1. Mid-end consumer system

Tables 1, 2, and 3 show the measured results of our implementation. The runtimes of

single iterations are also visualized in Fig. 7. The results presented in this section refer

to a volume with 256× 256× 256 voxels. We evaluated several volume sizes, but as the

filters are independent of the data, we found, that the execution times are proportional

and particularly the fraction of CPU to GPU times is constant, so one can easily extrapolate

to other data sizes. As modern GPUs provide up to 4 GB memory (i.e. NVidia Quadro

FX5800), it was easily possible to process datasets with up to 8003 voxels on the graphic

card. The timings were taken on a system consisting of an Intel E8500 CPU (Intel(R)

Core(TM)2 Duo CPU, 3.16GHz) and a NVidia G92 GPU (GeForce 9800 GT).

Each record of the tables contains the following information:

Code: We measured the execution time for CPU code (cpu), GPU code (gpu) and GPU code

with texture memory caching (tex) for one iteration of the filter.

MemCpy: For GPU based code we measured up- and download time of the volume data.Table 1: Measurements for the Pre�lter, volume size: 2563.
Code MemCpy [ms] Filter [ms] Total [ms] Gross Net

Boxfilter (5× 5× 5 Kernel):

cpu 0.00 6 222.91 6 222.91 1.0 1.0

gpu 52.60 1 189.98 1 242.58 5.2 5.0

tex 51.42 271.73 323.16 22.9 19.3

Boxfilter (separated, 5× 5× 5 Kernel):

cpu 0.00 1 115.91 1 115.91 1.0 1.0

gpu 50.82 96.16 146.97 11.6 7.6

tex 51.57 78.90 130.47 14.1 8.6

Gaussfilter (3× 3× 3 Kernel):

cpu 0.00 91 396.26 91 396.26 1.0 1.0

gpu 50.87 1 272.99 1 323.86 71.8 69.0

tex 51.33 710.52 761.85 128.6 120.0

Gaussfilter (separated, 3× 3× 3 Kernel):

cpu 0.00 10 678.07 10 678.07 1.0 1.0

gpu 50.81 121.95 172.76 87.6 61.8

tex 51.45 114.58 166.03 93.2 64.3

Medianfilter (3× 3× 3 neighborship):

cpu 0.00 14 754.21 14 754.21 1.0 1.0

gpu 50.82 1 832.01 1 882.83 8.1 7.8

tex 52.36 1 623.84 1 676.20 9.1 8.8

Bilateraler Filter (3× 3× 3 Kernel):

cpu 0.00 301 215.50 301 215.50 1.0 1.0

gpu 50.93 1 452.63 1 503.56 207.4 200.3

tex 52.69 1 371.56 1 424.25 219.6 211.5
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Code MemCpy [ms] Filter [ms] Total [ms] Gross Net

Linear homogenous diffusion:

cpu 0.00 8 107.83 8 107.83 1.0 1.0

gpu 50.85 247.04 297.89 32.8 27.2

tex 51.37 147.25 198.61 55.1 40.8

Non-linear inhomogenous diffusion:

cpu 0.00 1 916.54 1 916.54 1.0 1.0

gpu 50.95 35.26 86.21 54.4 22.2

tex 51.47 41.30 92.78 46.4 20.7

Nonlinear anisotropic diffusion (EED):

cpu 0.00 5 954.42 5 954.42 1.0 1.0

gpu 54.15 184.28 238.43 32.3 25.0

tex 51.34 98.75 150.09 60.3 39.7Table 3: Measurements for the A�ne Transformations, volume size: 2563.
Code MemCpy [ms] Filter [ms] Total [ms] Gross Net

Affine Transformation (Nearest Neighbor):

cpu 0.00 1 173.75 1 173.75 1.0 1.0

gpu 50.75 33.53 84.28 35.0 13.9

tex 51.34 17.59 68.93 66.7 17.0

Affine Transformation (Trilinear):

cpu 0.00 1 664.23 1 664.23 1.0 1.0

gpu 50.77 246.15 296.93 6.8 5.6

tex 51.86 31.46 83.31 52.9 20.0

Affine Transformation (Cubic B-Splines):

cpu 0.00 4 151.91 4 151.91 1.0 1.0

gpu 51.75 1 846.91 1 898.66 2.2 2.2

tex 51.39 341.39 392.79 12.2 10.6

Filter: Execution time of the filter code.

Total: Total runtime including possible up- and download times.

Gross: § The gross value is a speedup factor based on the CPU time of the given filter

(excluding any MemCpy timings).

Net: The net value is a speedup factor based on the CPU time of the given filter (including

any MemCpy timings).

§Example: In case the CPU uses 80 ms and the GPU 20 ms for the filtering itself, the gross speedup is

80ms/20ms = 4. If the GPU code additionally needs up- and download times of 10 ms for the volume data

this is a net speedup of 80ms/(20ms+ 10ms+ 10ms) = 2.
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Figure 7: Runtimes for one iteration of the presented kernels from Tables 1-3 on a logarithmi
 s
ale(CPU: Intel E8500; GPU: NVidia G92).
Our program is capable of affine transformations above the before mentioned prefilters.

Affine transformations are realized by applying 4×4 matrices on the data, containing rota-

tions and translations in homogeneous coordinates. Accessing the volumes values between

the existing grid points was done with nearest neighbor, trilinear filtering and with trivari-

ate cubic B-Splines [16]. The measured results are contained in the following tables as

well.

Bilateral prefiltering on the GPU achieves more than 210-times the execution speed

than its corresponding CPU implementation. Although bilateral filtering seems to be a

good choice for prefiltering, it is very time consuming, as it is not separable like the box or

Gauss filters. Arithmetic intensity is slightly higher than for Gauss filtering – four weights

have to be calculated – and because it is not separable, the GPU implementation gains a

huge benefit from being executed in parallel. Bilateral prefiltering obviously is a perfect

candidate for GPU implementations.

The GPU net speedup of affine transformations via nearest neighbor access is roughly 15-

20 times faster than the CPU code. Trilinear filtering can be accomplished with just one line

of code: When working with 3D texture memory, the hardware will use built-in trilinear

filtering. As affine transformations lack a high arithmetic intensity – the transformation

matrix is precomputed for all voxels – these variants would not exceed net speedups higher

than 20 times the CPU speed. As affine transformations and prefilters might be used before

the diffusion process starts, one might also take the gross speedup as a basis, which is in

the range from 60 up to 75 times the execution speed of the CPU. Affine transformations

using B-Splines might be a promising candidate at first glance, but two facts count against

it: On the one hand 64 samples must be fetched from memory, on the other hand one

can use lookup tables to speed up CPU implementations. By using texture memory we can

attenuate at least the ramifications of the many memory fetches and achieve up to 10 times

faster execution times than on the CPU.
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As the diffusion filters will typically need many iterations, we may neglect the net

speedup and only take into account, what gross timings got measured for the diffusion filter

itself. We can achieve about 55 times the execution speed for linear homogeneous diffusion

filtering, 45 times the execution speed for nonlinear inhomogeneous diffusion filtering

and 60 times the execution speed for nonlinear anisotropic diffusion filtering (EED). In

our program we were able to hide the latency induced by memory access by optimizing

and reordering of the source code. As other anisotropic diffusion filters have even higher

arithmetic intensity one can expect them to be even faster compared to their CPU variants.

Comparing CPU and GPU speed is a rather complicated issue. One must carefully

choose what to oppose and how to draw reasonable conclusions. Let us consider a real-

world application on a mid-end consumer system. The program was measured on a NVidia

GeForce 9800GT being available for 100 USD. The CPU used in that system was an Intel

Core 2 Duo E8500 CPU clocked at 3.16 GHz having a market value of round about 240

USD. As the reader has to judge for himself how to weight the presented facts and results,

we would like to mention a few more aspects, which must be seen in this context: We used

a rather strong CPU, GPUs are evolving much faster, we have optimized GPU and CPU code

independently, as both architectures have their own advantages and constraints and we did

not make use of the CPUs concurrency which might be used for different calculations as

long as the GPU is busy.

A typical example for a complete chain of all implemented filters might be the follow-

ing: A data set consisting of 2563 values is translated, rotated and scaled by an affine

transformation with trilinear filtering. The resulting data set is then prefiltered with a

bilateral filter and afterwards one hundred iterations of EED are applied. Based on the

results of our test system, we could expect the following timings:

tcpu = tafftri_cpu + tbilat_cpu + 100 · teed_cpu

= 1664 ms+ 301216 ms+ 100 · 5954 ms= 898 280 ms,

tgpu = tmcpy_gpu + tafftri_gpu + tbilat_gpu + 100 · teed_gpu

= 51 ms+ 31 ms+ 1372 ms+ 100 · 99 ms= 11 354 ms.

So the GPU code is
tcpu

tgpu
≈ 80 times faster than the CPU solution. The result of such a

calculation was available in 11 seconds rather than approximately 15 minutes – without

using high end GPU hardware or the usage of idle CPU Threads.

6.2. State of the art GPU

The single step diffusion results of our GPU implementation as well as a CPU implemen-

tation for a volume with size 5123 voxels are given in Table 4. Unless specified otherwise,

the timings were taken on a system consisting of an Intel Xeon E5430 CPU (2.66 GHz) and

a NVidia GeForce GTX 480 with 480 shader cores. The CPU variants were ported from the

GPU code in a straightforward way without any further optimizations.

The table shows the timings, separated into transfer times of the volume to the GPU

(obviously not applicable to CPU) and the times needed for one iteration of the code. The
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retized PDE, Eq. (5.1), with a data setof size 5123 voxels (CPU: Intel Xeon E5430; GPU: NVIDIA GTX 480).
Time ([ms]) Speedup

MemCpy Iteration Iteration

Linear cpu 0 1 917 1

homogeneous gpu 256 11 173

Nonlinear inhomo- cpu 0 33 499 1

geneous (Perona-Malik) gpu 281 105 320

Nonlinear cpu 0 118 717 1

anisotropic (EED) gpu 276 185 641

speedups are given for one iteration alone. Since diffusion equations typically need many

iterations we neglect the transfer times and only take the iteration timings into account. We

achieve a speedup of about 170 to 320 for the homogeneous and inhomogeneous diffusion.

For the nonlinear anisotropic diffusion (EED) the results are even better: Five iterations

require 10 minutes CPU time compared to 1 second on the GPU. As other anisotropic

diffusion equations have even higher arithmetic intensity one can expect them to be even

faster compared to their CPU variants.

The runtimes of single iterations are also visualized in Fig. 8. As the filters are inde-

pendent of the data, execution times are proportional to volume sizes and particularly the

fraction of CPU to GPU times is constant, so one can easily extrapolate to other data sizes.

Modern GPUs provide up to 4 GB memory, so it is possible to process data sets with up to

8003 voxels on the GPU.

Figure 8: Runtimes for one iteration of the presented kernels from Table 2 on a logarithmi
 s
ale (CPU:Intel Xeon E5430; GPU: NVIDIA GTX 480).
As mentioned before, it is important to acquire high-quality first and second order

derivatives for the gradient as well as the Hessian. Especially at the beginning of the

diffusion process significant noise components may disturb the discrete computation of

the derivatives enormously. Also in these experiments we applied several sorts of (pre-
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Figure 9: Restoring the fun
tional data Φ(x , y, z) = |x |+ |y|+ |z| (2563 voxels). From Left to Right:Isosurfa
e of the ground truth, Gaussian noise added (≈ 20% voxels a�e
ted, zero mean and varian
e30%), after bilateral pre�ltering, after 100 iterations (∆t = 0.05) of homogeneous and edge enhan
ingdi�usion, respe
tively, of the pre�ltered data set.
)filters and tested their GPU-CPU performance. In our GPU implementation we achieve

a speedup of 800 for the bilateral filter. The simpler filters also benefit from massively

parallelization, albeit less due to their simplicity. The box filter has a speed up factor of

43, the Gaussian filter one of 151, and the median filter is 76 times faster. All filters took

around 1 to 2 seconds on the 5123 data set, showing the benefit of the newer generation

of GPUs enabling larger images without serious extra timing costs. In Fig. 9 an example of

a 3D model endowed with a significant amount of noise on the ca. 20% of the voxel values

is given. Here applying the bilateral filter before the diffusion definitely makes sense.

7. Conclusions

In this work we have shown that volumetric nonlinear anisotropic diffusion can be

mapped efficiently onto the GPU. As efficient GPU code should avoid branching if possible,

we derived closed formulas for the 3D eigenvalue analysis of the shape operator that allows

for reducing the problem from 3D object space onto 2D tangent space: We have presented

closed formulas for creating a structure frame along the three principal curvature direc-

tions, which is especially attractive when local shape structure needs to be considered.

Building on that, we defined the diffusion tensor for nonlinear anisotropic diffusion and

achieved over 600 times the speed compared to a conventional CPU solution. Among the

different possible pre-filters for very noisy images we have seen that the bilateral filter is a

promising candidate for being processed on the GPU, achieving 830 times the speed of our

CPU solution.

As the technical development of GPUs is rapidly progressing and available memory

expands, increasingly larger data sets can be processed directly on the GPU. Apart from

scalar volume data, one could also process vector data sets on the GPU, as they arise, for

example in DW-MRI (diffusion-weighted magnetic resonance imaging). A starting point

for this could be 3D-RGBA-textures, representing 4D vectors. Another question concerns

automatic parameter detection. Presumably it was necessary to construct and analyze

complete or statistically representative image and gradient histograms, which could be
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done directly on the GPU. Also, one could examine how CED or hybrid diffusion performs

on GPUs, as the arithmetic intensity is higher. Building on successful (pre-)filtering and

the diffusion process one could try to deal with segmentation as well, in order to present a

seamless GPU solution.
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