
Numer. Math. Theor. Meth. Appl. Vol. 6, No. 3, pp. 479-498
doi: 10.4208/nmtma.2013.1133nm August 2013

Superconvergence and L∞-Error Estimates of the

Lowest Order Mixed Methods for Distributed

Optimal Control Problems Governed by Semilinear

Elliptic Equations

Tianliang Hou∗

School of Mathematical Sciences, South China Normal University, Guangzhou

510631, Guangdong, China.

Received 25 November 2011; Accepted (in revised version) 28 September 2012

Available online 14 June 2013

Abstract. In this paper, we investigate the superconvergence property and the L∞-error
estimates of mixed finite element methods for a semilinear elliptic control problem. The
state and co-state are approximated by the lowest order Raviart-Thomas mixed finite el-
ement spaces and the control variable is approximated by piecewise constant functions.
We derive some superconvergence results for the control variable. Moreover, we de-
rive L∞-error estimates both for the control variable and the state variables. Finally, a
numerical example is given to demonstrate the theoretical results.
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1. Introduction

It is well known that the finite element approximation plays an important role in the
numerical treatment of optimal control problems. There have been extensive studies in
convergence and superconvergence of finite element approximations for optimal control
problems, see, for example, [1,6,11–13,19–23]. A systematic introduction of finite element
methods for PDEs and optimal control problems can be found in, for example, [9,16].

In many control problems, the objective functional contains the gradient of the state
variable. Thus, the accuracy of the gradient is important in the numerical approximation
of the state equations. In the finite element community, mixed finite element methods are
optimal for discretization of the state equations in such cases, since both the scalar vari-
able and its flux variable can be approximated in the same accuracy by using mixed finite
element methods. For a priori error estimates and superconvergence properties of mixed
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finite elements for optimal control problems, see, for example, [4,5,8]. In [5], Chen used
the postprocessing projection operator, which was defined by Meyer and Rösch (see [19])
to prove a quadratic superconvergence of the control by mixed finite element methods.
Recently, Chen et al. derived error estimates and superconvergence of mixed methods for
convex optimal control problems in [8]. However, as far as we know there is no supercon-
vergence analysis in mixed finite element methods for optimal control problems governed
by semilinear elliptic equations except [7].

The goal of this paper is to derive the superconvergence property and the L∞-error
estimates of mixed finite element approximation for a semilinear elliptic control problem.
Firstly, we derive the superconvergence property between average L2 projection and the
approximation of the control variable, the convergence order is h3/2 as that obtained in [8].
Then, a global superconvergence result for the control variable can be obtained by using
a recovery operator. We also derive the L∞-error estimates for both the control variable
and the state variables. Finally, we present a numerical experiment to demonstrate the
practical side of the theoretical results about superconvergence and L∞-error estimates.

We consider the following semilinear optimal control problems for the state variables
p, y, and the control u with pointwise constraint:

min
u∈Uad

n1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2
o

(1.1)

subject to the state equation

−div(A(x)grady) +φ(y) = u, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divp +φ(y) = u, p = −A(x)grady, x ∈ Ω, (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in R2. Uad denotes the admissible set of the control variable,
defined by

Uad =
�

u ∈ L∞(Ω) : u≥ 0, a.e. in Ω
	

. (1.5)

We assume that the function φ(·) ∈ W 2,∞(−R,R) ∩ H3(−R,R) for any R > 0, φ′(y) ∈
L2(Ω) for any y ∈ H1(Ω), and φ′ ≥ 0. Moreover, we assume that yd ∈ W 1,∞(Ω) and
pd ∈ (H

2(Ω))2. ν is a fixed positive number. The coefficient A(x) = (ai j(x)) is a symmetric
matrix function with ai j(x) ∈W 1,∞(Ω), which satisfies the ellipticity condition

c∗|ξ|
2 ≤

2
∑

i, j=1

ai j(x)ξiξ j , ∀(ξ, x) ∈ R2 × Ω̄, c∗ > 0.
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The plan of this paper is as follows. In Section 2, we construct the mixed finite element
approximation scheme for the optimal control problem (1.1)-(1.4) and give its equivalent
optimality conditions. The main results of this paper are stated in Section 3 and Section 4.
In Section 3, we derive the superconvergence properties between the average L2 projec-
tion and the approximation, as well as between the postprocessing solution and the exact
control solution. In Section 4, we will study the L∞-error estimates for optimal control
problem. In Section 5, we present a numerical example to demonstrate our theoretical
results. In the last section, we briefly summarize the results obtained and some possible
future extensions.

In this paper, we adopt the standard notation W m,p(Ω) for Sobolev spaces on Ω with a
norm ‖ · ‖m,p given by ‖v‖pm,p =

∑

|α|≤m ‖D
αv‖p

Lp(Ω)
, a semi-norm | · |m,p given by |v|pm,p =

∑

|α|=m ‖D
αv‖p

Lp(Ω)
. We set

W
m,p

0 (Ω) = {v ∈W m,p(Ω) : v|∂Ω = 0}.

For p = 2, we denote Hm(Ω) = W m,2(Ω), Hm
0 (Ω) = W

m,2
0 (Ω) and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ =

‖ · ‖0,2. In addition C denotes a general positive constant independent of h, where h is the
spatial mesh-size for the control and state discretization.

2. Mixed methods of optimal control problems

In this section we shall construct mixed finite element approximation scheme of the
control problem (1.1)-(1.4). For sake of simplicity, we assume that the domain Ω is a
convex polygon. Now, we introduce the co-state elliptic equation

−div(A(x)(gradz + p − pd)) +φ
′(y)z = y − yd , x ∈ Ω, (2.1)

which can be written in the form of the first order system

divq +φ′(y)z = y − yd , q = −A(x)(gradz + p − pd), x ∈ Ω, (2.2)

and the boundary condition

z = 0, x ∈ ∂Ω. (2.3)

Let

V = H(div;Ω) =
�

v ∈ (L2(Ω))2, divv ∈ L2(Ω)
	

, W = L2(Ω). (2.4)

We recast (1.1)-(1.4) as the following weak form: find (p, y,u) ∈ V ×W × Uad such that

min
u∈Uad

n1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2
o

, (2.5a)

(A−1p , v)− (y, divv) = 0, ∀v ∈ V, (2.5b)

(divp, w) + (φ(y), w) = (u, w), ∀w ∈W. (2.5c)
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It follows from [16] that the optimal control problem (2.5a)-(2.5c) has a solution
(p, y,u), and that a triplet (p, y,u) is the solution of (2.5a)-(2.5c) if there is a co-state
(q , z) ∈ V ×W such that (p, y,q , z,u) satisfies the following optimality conditions:

(A−1p, v)− (y, divv) = 0, ∀v ∈ V, (2.6a)

(divp , w) + (φ(y), w) = (u, w), ∀w ∈W, (2.6b)

(A−1q , v)− (z, divv) = −(p − pd , v), ∀v ∈ V, (2.6c)

(divq , w) + (φ′(y)z, w) = (y − yd , w), ∀w ∈W, (2.6d)

(νu+ z, ũ− u)≥ 0, ∀ũ ∈ Uad , (2.6e)

where (·, ·) is the inner product of L2(Ω).
In [19, 20], the expression of the control variable is given. Here, we adopt the same

method to derive the following operator

u=max{0,−z}/ν . (2.7)

Let T h denotes a regular triangulation of the polygonal domain Ω, hT denotes the
diameter of T and h = max hT . Let Vh ×Wh ⊂ V ×W denotes the lowest order Raviart-
Thomas mixed finite element space [10,24], namely,

∀T ∈ Th, V(T ) = P0(T )⊕ span(x P0(T )), W (T ) = P0(T ),

where Pm(T ) denotes polynomials of total degree at most m, P0(T ) = (P0(T ))
2, x =

(x1, x2), which is treated as a vector, and

Vh := {vh ∈ V : ∀T ∈ Th, vh|T ∈ V(T )}, (2.8a)

Wh := {wh ∈W : ∀T ∈ Th, wh|T ∈W (T )}. (2.8b)

And the approximated space of control is given by

Uh := {ũh ∈ Uad : ∀T ∈ Th, ũh|T = constant}. (2.9)

Before the mixed finite element scheme is given, we introduce two operators. Firstly,
we define the standard L2(Ω)-projection [10] Ph : W →Wh, which satisfies: for any φ ∈W

(Phφ −φ, wh) = 0, ∀wh ∈Wh, (2.10a)

‖φ − Phφ‖0,ρ ≤ Ch‖φ‖1,ρ , 2≤ ρ ≤∞, ∀φ ∈W 1,ρ(Ω). (2.10b)

Next, recall the Fortin projection (see [3] and [10]) Πh : V → Vh, which satisfies: for
any q ∈ V

(div(Πhq − q), wh) = 0, ∀wh ∈Wh, (2.11a)

‖q −Πhq‖0,ρ ≤ Ch‖q‖1,ρ, 2≤ ρ ≤∞, ∀q ∈ (W 1,ρ(Ω))2, (2.11b)

‖div(q −Πhq)‖ ≤ Ch‖divq‖1, ∀divq ∈ H1(Ω). (2.11c)
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We have the commuting diagram property

div ◦Πh = Ph ◦ div : V →Wh and div(I −Πh)V ⊥Wh, (2.12)

where and after, I denote identity operator.
Then the mixed finite element discretization of (2.5a)-(2.5c) is as follows: find

(ph, yh,uh) ∈ Vh×Wh× Uh such that

min
uh∈Uh

n1

2
‖ph− pd‖

2 +
1

2
‖yh− yd‖

2 +
ν

2
‖uh‖

2
o

, (2.13a)

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ Vh, (2.13b)

(divph, wh) + (φ(yh), wh) = (uh, wh), ∀wh ∈Wh. (2.13c)

The optimal control problem (2.13a)-(2.13c) again has a solution (ph, yh,uh), and that a
triplet (ph, yh,uh) is the solution of (2.13a)-(2.13c) if there is a co-state (qh, zh) ∈ Vh×Wh

such that (ph, yh,qh, zh,uh) satisfies the following optimality conditions:

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ Vh, (2.14a)

(divph, wh) + (φ(yh), wh) = (uh, wh), ∀wh ∈Wh, (2.14b)

(A−1qh, vh)− (zh, divvh) = −(ph− pd , vh), ∀vh ∈ Vh, (2.14c)

(divqh, wh) + (φ
′(yh)zh, wh) = (yh− yd , wh), ∀wh ∈Wh, (2.14d)

(νuh+ zh, ũh− uh)≥ 0, ∀ũh ∈ Uh. (2.14e)

Similar to (2.7), the control inequality (2.14e) can be expressed as

uh =max{0,−zh}/ν . (2.15)

In the rest of the paper, we shall use some intermediate variables. For any control function
ũ ∈ Uad , we first define the state solution (p(ũ), y(ũ),q(ũ), z(ũ))∈ (V ×W )2 associated
with ũ that satisfies

(A−1p(ũ), v)− (y(ũ), divv) = 0, ∀v ∈ V, (2.16a)

(divp(ũ), w) + (φ(y(ũ)), w) = (ũ, w), ∀w ∈W, (2.16b)

(A−1q(ũ), v)− (z(ũ), divv) = −(p(ũ)− pd , v), ∀v ∈ V, (2.16c)

(divq(ũ), w) + (φ′(y(ũ))z(ũ), w) = (y(ũ)− yd , w), ∀w ∈W. (2.16d)

Then, we define the discrete state solution (ph(ũ), yh(ũ),qh(ũ), zh(ũ)) ∈ (Vh ×Wh)
2 asso-

ciated with ũ that satisfies

(A−1ph(ũ), vh)− (yh(ũ), divvh) = 0, ∀vh ∈ Vh, (2.17a)

(divph(ũ), wh) + (φ(yh(ũ)), wh) = (ũ, wh), ∀wh ∈Wh, (2.17b)

(A−1qh(ũ), vh)− (zh(ũ), divvh) = −(ph(ũ)− pd , vh), ∀vh ∈ Vh, (2.17c)

(divqh(ũ), wh) + (φ
′(yh(ũ))zh(ũ), wh) = (yh(ũ)− yd , wh), ∀wh ∈Wh. (2.17d)
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Thus, as we defined, the exact solution and its approximation can be written in the
following way:

(p, y,q , z) = (p(u), y(u),q(u), z(u)),

(ph, yh,qh, zh) = (ph(uh), yh(uh),qh(uh), zh(uh)).

3. Superconvergence analysis

In this section, we will give a detailed superconvergence analysis.
Now, we are in the position of deriving the estimate for ‖Ph y(uh)− yh‖ and ‖Phz(uh)−

zh‖, we need an a priori regularity estimate for the following auxiliary problems:

− div(A∇ξ)+Φξ = F1, x ∈ Ω, ξ|∂Ω = 0, (3.1a)

− div(A∇ζ)+φ′(y(uh))ζ= F2, x ∈ Ω, ζ|∂Ω = 0, (3.1b)

where

Φ =







φ(y(uh))−φ(yh)

y(uh)− yh

, y(uh) 6= yh,

φ′(yh), y(uh) = yh.

Lemma 3.1. (see [17]) Let ξ and ζ be the solutions for (3.1a) and (3.1b), respectively.

Assume that Ω is convex. Then we have

‖ξ‖H2(Ω) ≤ C‖F1‖L2(Ω), (3.2a)

‖ζ‖H2(Ω) ≤ C‖F2‖L2(Ω). (3.2b)

Then, we will give the following superconvergence results for the intermediate solu-
tions which are very important for our following work.

Lemma 3.2. Let (p(uh), y(uh),q(uh), z(uh)) ∈ (V ×W )2 and (ph, yh,qh, zh) ∈ (Vh ×Wh)
2

be the solutions of (2.16a)-(2.16d) and (2.17a)-(2.17d) with ũ = uh respectively. Assume

that

p(uh), q(uh) ∈ (H
1(Ω))2 and y(uh), z(uh) ∈W 1,∞(Ω),

then we have

‖Ph y(uh)− yh‖ ≤ Ch2, (3.3a)

‖Phz(uh)− zh‖ ≤ Ch2. (3.3b)

Proof. From Eqs. (2.16a)-(2.16d) and (2.17a)-(2.17d), we can easily obtain the follow-
ing error equations

(A−1(p(uh)− ph), vh)− (y(uh)− yh, divvh) = 0, (3.4a)

(div(p(uh)− ph), wh) + (φ(y(uh))−φ(yh), wh) = 0, (3.4b)

(A−1(q(uh)− qh), vh)− (z(uh)− zh, divvh) = −(p(uh)− ph, vh), (3.4c)

(div(q(uh)− qh), wh) + (φ
′(y(uh))z(uh)−φ

′(yh)zh, wh) = (y(uh)− yh, wh), (3.4d)
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for any vh ∈ Vh and wh ∈Wh.
As a result of (2.10a), we can rewrite (3.4a)-(3.4d) as

(A−1(p(uh)− ph), vh)− (Ph y(uh)− yh, divvh) = 0, (3.5a)

(div(p(uh)− ph), wh) + (φ(y(uh))−φ(yh), wh) = 0, (3.5b)

(A−1(q(uh)− qh), vh)− (Phz(uh)− zh, divvh) = −(p(uh)− ph, vh), (3.5c)

(div(q(uh)− qh), wh) + (φ
′(y(uh))z(uh)−φ

′(yh)zh, wh) = (Ph y(uh)− yh, wh), (3.5d)

for any vh ∈ Vh and wh ∈Wh.
For sake of simplicity, we now denote

τ = Ph y(uh)− yh, e = Phz(uh)− zh. (3.6)

Then, we estimate (3.3a) and (3.3b) in Part I and Part II, respectively.

Part I. As we can see,

‖τ‖= sup
ψ∈L2(Ω),ψ6=0

(τ,ψ)

‖ψ‖
, (3.7)

we then need to bound (τ,ψ) for ψ ∈ L2(Ω). Let ξ ∈ H2(Ω) ∩ H1
0(Ω) be the solution of

(3.1a). We can see from (2.11a) and (3.5a)

(τ, F1) =(τ,−div(Agradξ)) + (τ,Φξ)

=− (τ, div(Πh(Agradξ)))+ (τ,Φξ)

=− (A−1(p(uh)− ph),Πh(Agradξ)) + (τ,Φξ). (3.8)

Note that

(div(p(uh)− ph),ξ) + (A
−1(p(uh)− ph),Agradξ) = 0. (3.9)

Thus, from (3.5b), (3.8) and (3.9), we derive

(τ, F1) =(A
−1(p(uh)− ph),Agradξ−Πh(Agradξ))

+ (div(p(uh)− ph),ξ− Phξ)− (Φ(y(uh)− Ph y(uh)),ξ)

+ (φ(y(uh))−φ(yh),ξ− Phξ). (3.10)

From (2.11b), we have

(A−1(p(uh)− ph),Agradξ−Πh(Agradξ))≤ Ch‖p(uh)− ph‖ · ‖ξ‖2. (3.11)

Let ũ= uh and w = divp(uh) +φ(y(uh))− uh in (2.16b), we can find that

divp(uh) +φ(y(uh))− uh = 0. (3.12)
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Similarly, by (2.10a) and (2.14b), it is easy to see that

divph = uh− Phφ(yh). (3.13)

By (3.12), (3.13) and (2.10b), we have

(div(p(uh)− ph),ξ− Phξ) + (φ(y(uh))−φ(yh),ξ− Phξ)

=(Phφ(yh)−φ(yh),ξ− Phξ)

≤Ch2‖φ‖1‖ξ‖1. (3.14)

For the third term on the right side of (3.10), using (2.10a), (2.10b) and the assump-
tion on φ, we get

(Φ(y(uh)− Ph y(uh)),ξ)

=(Φ(y(uh)− Ph y(uh)),ξ− Phξ) + (y(uh)− Ph y(uh), (Φ− PhΦ)Phξ)

≤Ch‖φ‖1,∞‖y(uh)− Ph y(uh)‖ · ‖ξ‖1 + Ch‖φ‖2,∞‖y(uh)− Ph y(uh)‖ · ‖ξ‖

≤Ch2‖ξ‖1. (3.15)

By (3.2a), (3.7), (3.11) and (3.14)-(3.15), we derive

‖Ph y(uh)− yh‖ ≤ Ch‖p(uh)− ph‖+ Ch2. (3.16)

Choosing vh = Πhp(uh)− ph in (3.5a) and wh = Ph y(uh)− yh in (3.5b), respectively. Then
adding the two equations to get

(A−1(Πhp(uh)− ph),Πhp(uh)− ph) + (φ(Ph y(uh))−φ(yh), Ph y(uh)− yh)

=− (A−1(p(uh)−Πhp(uh)),Πhp(uh)− ph)

− (φ(y(uh))−φ(Ph y(uh)), Ph y(uh)− yh). (3.17)

Note that

(φ(y(uh))−φ(Ph y(uh)), Ph y(uh)− yh)≤ Ch‖φ‖1,∞‖y(uh)‖1‖Ph y(uh)− yh‖. (3.18)

Using (3.17), (3.18), (2.11b) and the assumptions on A and φ, we find that

‖Πhp(uh)− ph‖ ≤ Ch+ ‖Ph y(uh)− yh‖. (3.19)

Substituting (3.19) into (3.16), using (2.11b), for sufficiently small h, we have

‖Ph y(uh)− yh‖ ≤ Ch2, (3.20)

which yields (3.3a).

Part II. Since

‖e‖ = sup
ψ∈L2(Ω),ψ6=0

(e,ψ)

‖ψ‖
, (3.21)
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we then need to bound (e,ψ) for ψ ∈ L2(Ω). Let ζ ∈ H2(Ω) ∩ H1
0(Ω) be the solution of

(3.1b). We can see from (2.11a) and (3.5c)

(e, F2) =(e,−div(Agradζ)) + (e,φ′(y)ζ)

=− (e, div(Πh(Agradζ))) + (e,φ′(y)ζ)

=− (A−1(q(uh)− qh),Πh(Agradζ)) + (e,φ′(y)ζ)

− (p(uh)− ph,Πh(Agradζ)). (3.22)

Note that

(div(q(uh)− qh),ζ) + (A
−1(q(uh)− qh),Agradζ) = 0. (3.23)

Thus, it follows from (2.10a), (3.5d), (3.22) and (3.23), we derive

(e, F2) =(A
−1(q(uh)− qh),Agradζ−Πh(Agradζ))

+ (div(q(uh)− qh),ζ− Phζ)− (Ph y(uh)− yh, Phζ)

+ (φ′(y(uh))z(uh)−φ
′(yh)zh,ζ− Phζ)

+ (φ′(y(uh))(Phz(uh)− z(uh)),ζ) + (zh(φ
′(yh)−φ

′(y(uh))),ζ)

− (p(uh)− ph,Πh(Agradζ))

= :
7
∑

i=1

Ii . (3.24)

For I1, by (2.11b), we have

I1 ≤ C‖q(uh)− qh‖ · ‖Agradζ−Πh(Agradζ)‖ ≤ Ch‖q(uh)− qh‖ · ‖ζ‖2. (3.25)

Let ũ= uh and w = divq(uh) +φ
′(y(uh))z(uh)− y(uh) + yd in (2.16d), we can find that

divq(uh) +φ
′(y(uh))z(uh) = y(uh)− yd . (3.26)

Similarly, by (2.10a) and (2.14d), it is easy to see that

divqh = yh− Ph yd − Phφ
′(yh)zh. (3.27)

By (2.10b) and (3.26)-(3.27), we have

I2 =(Phφ
′(yh)zh−φ

′(y(uh))z(uh),ζ− Phζ) + (Ph yd − yd ,ζ− Phζ)

+ (y(uh)− Ph y(uh),ζ− Phζ) + (Ph y(uh)− yh,ζ− Phζ)

=(Ph(φ
′(y(uh))z(uh))−φ

′(y(uh))z(uh),ζ− Phζ)

+ (Ph yd − yd ,ζ− Phζ) + (y(uh)− Ph y(uh),ζ− Phζ)

≤Ch2(‖φ‖2‖z(uh)‖1,∞ + ‖yd‖1 + ‖y(uh)‖1)‖ζ‖1. (3.28)

From (3.3a), we arrive at

I3 ≤ C‖Ph y(uh)− yh‖ · ‖Phζ‖ ≤ Ch2‖ζ‖. (3.29)
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Note that

φ′(y(uh))z(uh)−φ
′(yh)zh = z(uh)(φ

′(y(uh))−φ
′(yh)) +φ

′(yh)(z(uh)− zh). (3.30)

Then, by (2.10b), (3.3a) and the assumption on φ, we find that

I4 ≤C‖z(uh)‖0,∞‖φ‖2,∞‖y(uh)− yh‖ · ‖ζ− Phζ‖+ C‖φ‖1,∞‖z(uh)− zh‖ · ‖ζ− Phζ‖

≤Ch2‖z(uh)‖0,∞‖φ‖2,∞‖ζ‖1 + Ch‖φ‖1,∞‖ζ‖1‖Phz(uh)− zh‖. (3.31)

As for I5, by the assumption on φ, (2.10a) and (2.10b), we derive

I5 =(φ
′(y(uh))(Phz(uh)− z(uh)),ζ− Phζ)

+ (Phz(uh)− z(uh), (φ
′(y(uh))− Ph(φ

′(y(uh))))Phζ)

≤C‖φ‖1,∞‖z(uh)− Phz(uh)‖ · ‖ζ− Phζ‖

+ Ch‖φ‖2,∞‖z(uh)− Phz(uh)‖ · ‖Phζ‖

≤Ch2‖φ‖2,∞‖z(uh)‖1,∞‖ζ‖1. (3.32)

For I6, by (2.10a), (2.10b), (3.3a), the embedding ‖v‖0,∞ ≤ c‖v‖2 and the assumption on
φ, we obtain

I6 =(φ
′(yh)−φ

′(y(uh)), (zh− z(uh))ζ) + (φ
′(yh)−φ

′(Ph y(uh)), z(uh)ζ)

+ (φ′′(y(uh))(Ph y(uh)− y(uh)), z(uh)ζ)

+

�

1

2
φ′′′(y(uh) + θ(Ph y(uh)− y(uh)))(Ph y(uh)− y(uh))

2, z(uh)ζ

�

=(φ′(yh)−φ
′(y(uh)), (zh− z(uh))ζ) + (φ

′(yh)−φ
′(Ph y(uh)), z(uh)ζ)

+ (φ′′(y(uh))(Ph y(uh)− y(uh)), z(uh)ζ− Ph(z(uh)ζ))

+ (Ph y(uh)− y(uh), (φ
′′(y(uh))− Ph(φ

′′(y(uh))))Ph(z(uh)ζ))

+
1

2
(φ′′′(y(uh) + θ(Ph y(uh)− y(uh)))(Ph y(uh)− y(uh))

2, z(uh)ζ)

≤C‖φ‖2,∞‖y(uh)− yh‖ · ‖z(uh)− zh‖ · ‖ζ‖0,∞

+ C‖φ‖2,∞‖Ph y(uh)− yh‖ · ‖z(uh)‖ · ‖ζ‖0,∞

+ Ch‖φ‖2,∞‖y(uh)− Ph y(uh)‖ · ‖z(uh)‖1,∞‖ζ‖1
+ Ch‖z(uh)‖0,∞‖φ‖3‖y(uh)− Ph y(uh)‖ · ‖ζ‖0,∞

+ C‖φ‖3‖y(uh)− Ph y(uh)‖
2
0,∞‖z(uh)‖0,∞‖ζ‖

≤Ch2‖ζ‖2 + Ch‖Phz(uh)− zh‖ · ‖ζ‖2, (3.33)

where 0≤ θ ≤ 1.
Finally, for I7, from (2.11b), (2.11c), (3.3a) and (3.5a), we have

I7 =(p(uh)− ph,Agradζ−Πh(Agradζ))− (A−1(p(uh)− ph),A
2gradζ)

=(p(uh)− ph,Agradζ−Πh(Agradζ))− (A−1(p(uh)− ph),A
2gradζ−Πh(A

2gradζ))

− (Ph y(uh)− yh, div(Πh(A
2gradζ)))

≤Ch2‖ζ‖2. (3.34)
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Substituting the estimates I1-I7 in (3.24), by (3.21) and (3.2b), we derive

‖Phz(uh)− zh‖ ≤ Ch‖q(uh)− qh‖+ Ch2. (3.35)

Next, using (2.11a), we rewrite (3.5c)-(3.5d) as

(A−1(Πhq(uh)− qh), vh)− (Phz(uh)− zh, divvh)

= −(A−1(q(uh)−Πhq(uh)), vh)− (p(uh)−Πhp(uh), vh)

− (Πhp(uh)− ph, vh), ∀vh ∈ Vh, (3.36a)

(div(Πhq(uh)− qh), wh) + (φ
′(y(uh))(Phz(uh)− zh), wh)

= −(φ′(y(uh))(z(uh)− Phz(uh)), wh) + (Ph y(uh)− yh, wh)

+ ((φ′(y(uh))−φ
′(yh))zh, wh), ∀wh ∈Wh. (3.36b)

Choosing vh = Πhq(uh) − qh in (3.36a) and wh = Phz(uh) − zh in (3.36b), respectively.
Then adding the two equations to get

(A−1(Πhq(uh)− qh),Πhq(uh)− qh) + (φ
′(y(uh))(Phz(uh)− zh), Phz(uh)− zh)

=− (A−1(q(uh)−Πhq(uh)),Πhq(uh)− qh)− (p(uh)−Πhp(uh),Πhq(uh)− qh)

− (Πhp(uh)− ph,Πhq(uh)− qh) + (Ph y(uh)− yh, Phz(uh)− zh)

− (φ′(y(uh))(z(uh)− Phz(uh)), Phz(uh)− zh)

+ ((φ′(y(uh))−φ
′(yh))zh, Phz(uh)− zh). (3.37)

Note that

(φ′(y(uh))(z(uh)− Phz(uh)), Phz(uh)− zh)

≤Ch‖φ‖1,∞‖z(uh)‖1‖Phz(uh)− zh‖ (3.38)

and

((φ′(y(uh))−φ
′(yh))zh, Phz(uh)− zh)

≤((φ′(y(uh))−φ
′(Ph y(uh)))zh, Phz(uh)− zh)

+ ((φ′(Ph y(uh))−φ
′(yh))zh, Phz(uh)− zh)

≤Ch‖φ‖1,∞‖y(uh)‖1,∞‖zh‖ · ‖Phz(uh)− zh‖

+ C‖φ‖1,∞‖Ph y(uh)− yh‖0,∞‖zh‖ · ‖Phz(uh)− zh‖, (3.39)

where

‖zh‖ ≤‖z(uh)− Phz(uh)‖+ ‖Phz(uh)− zh‖+ ‖z(uh)‖

≤C‖z(uh)‖1+ ‖Phz(uh)− zh‖. (3.40)

Using (3.37)-(3.40), (2.11b), (3.3a), (3.19) and the assumptions on A and φ, we find that

‖Πhq(uh)− qh‖ ≤ Ch+ ‖Phz(uh)− zh‖. (3.41)
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Substituting (3.41) into (3.35), using (2.11b), for sufficiently small h, we have

‖Phz(uh)− zh‖ ≤ Ch2. (3.42)

Thus, we complete the proof. �

By modifying the proof of Lemma 3.3 in [7], we have

Lemma 3.3. Let (p(Phu), y(Phu),q(Phu), z(Phu)) and (p(u), y(u),q(u), z(u)) be the solu-

tions of (2.16a)-(2.16d) with ũ = Phu and ũ= u, respectively. Assume that u ∈ H1(Ω). Then

we have

‖y(u)− y(Phu)‖+ ‖p(u)− p(Phu)‖ ≤ Ch2, (3.43a)

‖z(u)− z(Phu)‖+ ‖q(u)− q(Phu)‖ ≤ Ch2. (3.43b)

Let (p(u), y(u)) be the solutions of (2.5a)-(2.5c) and J(·) : L2(Ω) → R be a G-
differential convex functional near the solution u which satisfies the following form:

J(u) =
1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2. (3.44)

Then we can find that

(J ′(u), v) = (νu+ z, v), (3.45a)

(J ′(uh), v) = (νuh+ z(uh), v), (3.45b)

(J ′(Phu), v) = (νPhu+ z(Phu), v). (3.45c)

In many applications, J(·) is uniform convex near the solution u. The convexity of J(·)
is closely related to the second order sufficient conditions of the control problem, which
are assumed in many studies on numerical methods of the problem. Then, there exists a
constant c > 0, independent of h, such that

(J ′(Phu)− J ′(uh), Phu− uh)≥ c‖Phu− uh‖
2, (3.46)

where u and uh are solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e) respectively, Phu is the
orthogonal projection of u which is defined in (2.10a). We shall assume that the above
inequality throughout this paper.

Now, we will discuss the superconvergence for the control variable.

Lemma 3.4. Let u be the solution of (2.6a)-(2.6e) and uh be the solution of (2.14a)-(2.14e),
respectively. Assume that p(uh), q(uh) ∈ (H

1(Ω))2 and u, z ∈W 1,∞(Ω). Then, we have

‖Phu− uh‖ ≤ Ch
3
2 . (3.47)

Proof. We choose ũ = uh in (2.6e) and ũh = Phu in (2.14e) to get the following two
inequalities:

(νu+ z,uh− u) ≥ 0 (3.48)
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and

(νuh+ zh, Phu− uh)≥ 0. (3.49)

Note that uh− u = uh− Phu+ Phu− u. Adding the two inequalities (3.48) and (3.49),
we have

(νuh+ zh− νu− z, Phu− uh) + (νu+ z, Phu− u) ≥ 0. (3.50)

Thus, by (3.46), (3.50) and (2.10a), we find that

c‖Phu− uh‖
2 ≤(J ′(Phu)− J ′(uh), Phu− uh)

=ν(Phu− uh, Phu− uh) + (z(Phu)− z(uh), Phu− uh)

=ν(Phu− u, Phu− uh) + ν(u− uh, Phu− uh)

+ (z(Phu)− z(uh), Phu− uh)

≤(zh− z, Phu− uh) + (νu+ z, Phu− u)

+ (z(Phu)− z(uh), Phu− uh)

=(zh− Phz(uh), Phu− uh) + (νu+ z, Phu− u)

+ (z(Phu)− z(u), Phu− uh). (3.51)

By Lemma 3.2 and Lemma 3.3, we find that

(zh− Phz(uh), Phu− uh)≤ Ch4 +
c

4
‖Phu− uh‖

2 (3.52)

and

(z(Phu)− z(u), Phu− uh)≤ Ch4+
c

4
‖Phu− uh‖

2. (3.53)

For the second term at the right side of (3.51), by Theorem 5.1 in [8], we have

(νu+ z, Phu− u)≤ Ch3(‖u‖21,∞ + ‖z‖
2
1,∞). (3.54)

Combining (3.51)-(3.54), we derive (3.47). �

Now, let us recall the recovery operator Gh. Let Ghv be a continuous piecewise linear
function (without zero boundary constraint). The value of Ghv on the nodes are defined
by least-squares argument on an element patches surrounding the nodes, the details can
be refer to the definition of Rh in [15].

Theorem 3.1. Let u and uh be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e), respec-

tively. Assume that all the conditions in Lemma 3.4 are valid and u ∈ W 1,∞(Ω). Then we

have

‖u− Ghuh‖ ≤ Ch
3
2 . (3.55)
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Proof. Let Phu be defined in (2.10a). Then

‖u− Ghuh‖ ≤ ‖u− Ghu‖+ ‖Ghu− GhPhu‖+ ‖GhPhu− Ghuh‖. (3.56)

According to Lemma 4.2 in [15], we have

‖u− Ghu‖ ≤ Ch
3
2 . (3.57)

Using the definition of Gh, we find that

Ghu = GhPhu (3.58)

and

‖GhPhu− Ghuh‖ ≤ C‖Phu− uh‖. (3.59)

Combining (3.56)-(3.59) with Lemma 3.4, we complete the proof. �

4. L∞-error estimates

In this section, we will give the L∞-error estimates both for the control variable and
the state, co-state variables.

Now, we recall a result from Bonnans and Casas [2].

Lemma 4.1. Let a0 ≥ 0 be a function in L∞(Ω). Then for every p ≥ 2 and every function

g ∈ Lp(Ω), the solution y of

−div(Agrady) + a0 y = g in Ω, y|∂Ω = 0, (4.1)

belongs to H1
0(Ω) ∩W 2,p(Ω). Moreover, there exists a positive constant C independent of a0

such that

‖y‖W 2,p(Ω) ≤ C‖g‖Lp(Ω). (4.2)

Theorem 4.1. Let (y, z,u) and (yh, zh,uh) be the solutions of (2.6a)-(2.6e) and (2.14a)-
(2.14e) respectively, then we have

‖u− uh‖0,∞ ≤ Ch, (4.3a)

‖y − yh‖0,∞ + ‖z − zh‖0,∞ ≤ Ch. (4.3b)

Proof. Using (2.10b) and Lemma 3.4, it is easy to see that

‖u− uh‖ ≤‖u− Phu‖+ ‖Phu− uh‖

≤Ch‖u‖1 + ‖Phu− uh‖

≤Ch. (4.4)
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Choosing ũ = u and ũ = uh in (2.16a) and (2.16b), using mean value theorem, we have

−div(A∇(y − y(uh)))+φ
′( ȳ)(y − y(uh)) = u− uh, (4.5)

for some function ȳ . Using (4.4), the regularity result (4.2) and the classical Imbedding
Theorem, we can see that

‖y − y(uh)‖0,∞ ≤C‖y − y(uh)‖2
≤C‖u− uh‖

≤Ch. (4.6)

Thus, by use of Lemma 3.2, (2.10b), (4.6) and the inverse estimate, we find that

‖y − yh‖0,∞ ≤‖y − y(uh)‖0,∞ + ‖y(uh)− Ph y(uh)‖0,∞ + ‖Ph y(uh)− yh‖0,∞

≤Ch‖y(uh)‖1,∞ + Ch−1‖Ph y(uh)− yh‖

≤Ch. (4.7)

Similarly, we have the following error equation

− div(A∇(z− z(uh))) +φ
′(y(uh))(z− z(uh))

=− div(A2∇(y − y(uh)))+ y − y(uh)− z(φ′(y)−φ′(y(uh))). (4.8)

Using Lemma 4.1 and the classical Imbedding Theorem, we can see that

‖z − z(uh)‖0,∞ ≤C‖z − z(uh)‖2

≤C‖div(A2∇(y − y(uh)))− y + y(uh) + z(φ′(y)−φ′(y(uh)))‖

≤C‖div(A2∇(y − y(uh)))‖+ C‖y − y(uh)‖+ C‖z(φ′(y)−φ′(y(uh)))‖

≤C‖A2∇(y − y(uh))‖1 + C‖y − y(uh)‖+ C‖z‖0,∞‖φ‖2,∞‖y − y(uh)‖

≤C‖A‖21,∞‖y − y(uh)‖2+ C‖y − y(uh)‖

≤C‖y − y(uh)‖2. (4.9)

Thus, by use of (2.10b), (4.6), (4.9), Lemma 3.2 and the inverse estimate, we find that

‖z − zh‖0,∞ ≤‖z − z(uh)‖0,∞ + ‖z(uh)− Phz(uh)‖0,∞ + ‖Phz(uh)− zh‖0,∞

≤Ch. (4.10)

Finally, from (2.7), (2.15) and (4.10), we get

‖u− uh‖0,∞ ≤ C‖z − zh‖0,∞ ≤ Ch. (4.11)

We complete the proof. �



494 T. L. Hou

Theorem 4.2. Let (p,q) and (ph,qh) be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e)
respectively. Assume that p,q ∈ (W 1,∞(Ω))2, then we have

‖p − ph‖0,∞ + ‖q − qh‖0,∞ ≤ Ch
1
2 |lnh|

1
2 , (4.12a)

‖div(p − ph)‖0,∞ + ‖div(q − qh)‖0,∞ ≤ Ch. (4.12b)

Proof. By modifying the proof of Theorem 3.3 in [18], we can derive

‖Πhp − ph‖0,∞ + ‖Πhq − qh‖0,∞ ≤ Ch
1
2 |lnh|

1
2 . (4.13)

Thus, (4.12a) can be proved by (2.11b) and (4.13).
Moreover, from (1.3), (2.10b), (3.13) and (4.3a)-(4.3b), we have

‖div(p − ph)‖0,∞ =‖u−φ(y)− (uh− Phφ(yh))‖0,∞

≤‖u− uh‖0,∞ + ‖φ(y)− Phφ(y)‖0,∞ + ‖Ph(φ(y)−φ(yh))‖0,∞

≤‖u− uh‖0,∞ + Ch‖φ‖1,∞ + C‖φ(y)−φ(yh)‖0,∞

≤Ch+ C‖φ‖1,∞‖y − yh‖0,∞

≤Ch. (4.14)

Similarly, using (2.2), (3.27), (2.10b) and (4.3a)-(4.3b), we get

‖div(q − qh)‖0,∞ =‖y − yd −φ
′(y)z − (yh− Ph yd − Phφ

′(yh)zh)‖0,∞

≤‖y − yh‖0,∞ + ‖yd − Ph yd‖0,∞ + ‖φ
′(y)z − Ph(φ

′(y)z)‖0,∞

+ ‖Ph(φ
′(y)z)− Phφ

′(yh)zh‖0,∞

≤‖y − yh‖0,∞ + Ch‖yd‖1,∞ + Ch‖φ‖2,∞‖z‖1,∞

+ C‖(φ′(y)−φ′(yh))z‖0,∞ + C‖φ′(yh)(z − zh)‖0,∞

≤Ch+ C‖φ‖1,∞‖z‖0,∞‖y − yh‖0,∞ + C‖φ‖1,∞‖z − zh‖0,∞

≤Ch. (4.15)

We complete the proof. �

5. Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The
optimization problems were solved numerically by projected gradient methods, with codes
developed based on AFEPack [14]. The discretization was already described in previous
sections: the control function u was discretized by piecewise constant functions, whereas
the state (y, p) and the co-state (z,q) were approximated by the lowest order Raviart-
Thomas mixed finite element functions. In our examples, we choose the domain Ω =
[0,1]× [0,1], ν = 1 and A= I .
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Example 5.1. We consider the following two-dimensional elliptic optimal control problem

min
u∈Uad

n1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
1

2
‖u− u0‖

2
o

(5.1)

subject to the state equation

divp + y3 = f + u, p = −grady, (5.2)

where

y = sin(πx1) sin(πx2), z = sin(πx1) sin(πx2), (5.3a)

u0 = 1.0− 0.8 sin
�πx1

2

�

− 0.9 sin(2πx2), u =max(u0 − z, 0), (5.3b)

f = 2π2 y + y3 − u, yd = y − 2π2 y − 3y2z, (5.3c)

pd = −

�

π cos(πx1) sin(πx2)

π sin(πx1) cos(πx2)

�

. (5.3d)

In Table 1, the errors ‖u− uh‖, ‖u− uh‖0,∞, ‖Phu− uh‖ and ‖u− Ghuh‖ obtained on a
sequence of uniformly refined meshes are shown. Table 2 displays the errors ‖y − yh‖0,∞,
‖z−zh‖0,∞, ‖p−ph‖0,∞ and ‖q−qh‖0,∞. In Fig. 1, the profile of the numerical solution of
u on the 64×64 mesh grid is plotted. Moreover, in Figs. 2 and 3, we show the convergence
orders by slopes. Theoretical results are clearly recognized from the data.Table 1: The errors of ‖u− uh‖, ‖u− uh‖0,∞, ‖Phu− uh‖ and ‖u− Ghuh‖.

Resolution ‖u− uh‖ ‖u− uh‖0,∞ ‖Phu− uh‖ ‖u− Ghuh‖
16× 16 4.95336e-02 2.64503e-01 6.67828e-03 4.16357e-02
32× 32 2.49825e-02 1.33711e-01 2.16314e-03 1.67884e-02
64× 64 1.25400e-02 6.70237e-02 7.39935e-04 6.13222e-03

128× 128 6.28424e-03 3.35326e-02 2.68840e-04 2.16078e-03Table 2: The errors of ‖y − yh‖0,∞, ‖z− zh‖0,∞, ‖p − ph‖0,∞ and ‖q − qh‖0,∞.
Resolution ‖y − yh‖0,∞ ‖z − zh‖0,∞ ‖p − ph‖0,∞ ‖q − qh‖0,∞

16× 16 9.08039e-02 9.08531e-02 2.69975e-01 2.70048e-01
32× 32 4.55233e-02 4.55299e-02 1.90910e-01 1.90960e-01
64× 64 2.27762e-02 2.27770e-02 1.35655e-01 1.35674e-01

128× 128 1.13906e-02 1.13907e-02 9.59339e-02 9.59396e-02

6. Conclusions and future works

In this paper, we discussed the lowest order Raviart-Thomas mixed finite element meth-
ods for the semilinear elliptic optimal control problem (1.1)-(1.4). Our superconvergence
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Figure 1: The pro�le of the numeri
al solution of u on 64× 64 triangle mesh.
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analysis and L∞-error estimates for the semilinear elliptic equations by mixed finite el-
ement methods seems to be new, and these results can be extended to general convex
problems. In our future work, we will investigate the superconvergence of mixed finite
element methods for optimal control problems governed by nonlinear parabolic equations.
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