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Abstract. Many physical processes appear to exhibit fractional order behavior that may

vary with time or space. The continuum of order in the fractional calculus allows the

order of the fractional operator to be considered as a variable. Numerical methods and

analysis of stability and convergence of numerical scheme for the variable fractional

order partial differential equations are quite limited and difficult to derive. This mo-

tivates us to develop efficient numerical methods as well as stability and convergence

of the implicit numerical methods for the space-time variable fractional order diffusion

equation on a finite domain. It is worth mentioning that here we use the Coimbra-

definition variable time fractional derivative which is more efficient from the numerical

standpoint and is preferable for modeling dynamical systems. An implicit Euler approx-

imation is proposed and then the stability and convergence of the numerical scheme are

investigated. Finally, numerical examples are provided to show that the implicit Euler

approximation is computationally efficient.
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1. Introduction

The fractional diffusion equation (FDE) is a generalization of the classical diffusion

equation by replacing the integer-order derivatives by fractional-order derivatives, which

is a useful approach for the description of transport dynamics in complex systems governed

by anomalous dispersion and non-exponential relaxation [1–3]. Recently, more and more

researchers find that many dynamic processes appear to exhibit fractional order behavior

that may vary with time or space, which indicates that variable order calculus is a natural

candidate to provide an effective mathematical framework for the description of complex
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dynamical problems. For example, Variable-order has applied to viscoelasticity [4], the

processing of geographical data [5], signature verification [6], diffusion [7], etc. While the

variable-order definitions were studied in the 1990s, Samko and Ross [8] first discussed

some properties and the inversion formula of the variable-order operator ( d

d x
)α(x) f (x)

using the Riemann-Liouvile definition and Fourier transforms. Hereafter some mapping

properties in Hölder spaces and "measure of deviation" of the direct generalized opera-

tors of the Riemann-Liouville fractional integration and differentiation and the Marchaud

form to the case of variable order α(x) were considered by them [9, 10]. Kikuchi and

Negoro [11] investigated the relationship between Markov processes and evolution equa-

tions with respect to pseudo differential operators. In 1998, Lorenzo and Hartley [12]

suggested that the concept of variable-order (or order structure) operator is allowed to

vary either as a function of the independent variable of integration or differentiation (t) or

as a function of some other (perhaps spatial) variable (y). At the same time, a preliminary

study was done in several potential variable-order definitions and initial properties were

forwarded. Hereafter, in 2002, they [13] developed more deeply the concept of variable

and distributed order fractional operators based on the Riemann-Liouville definition and

other new operators, then the relationship between the mathematical concepts and phys-

ical processes were investigated. Afterward, a few researchers put different definitions of

variable fractional order operators to suit desired goals and discussed their applications

respectively [4, 7, 14, 15]. In the recent research article, Ramirez et al. [16] compared

nine variable-order operator definitions based on a very simple criteria: the variable order

operator must return the correct fractional derivative that corresponds to the argument

of the functional order. They found that only Marchaud-definition and Coimbra-definition

satisfied the above elementary requirement, and pointed Coimbra-definition variable-order

operator was more efficient from the numerical standpoint and then preferable for model-

ing dynamics systems.

The research on variable-order fractional partial differential equations is relatively new,

and numerical approximation of these equations is still at an early stage of development.

Lin et al. [17] studied the stability and convergence of an explicit finite-difference approx-

imation for the variable-order nonlinear fractional diffusion equation. Zhuang et al. [18]

discussed the stability and convergence of Euler approximation for the variable fractional

order advection-diffusion equation with a nonlinear source term, moveover, they presented

some other numerical methods for the equation. Chen et al. [19] considered a variable-

order anomalous subdiffusion equation, in the paper, two numerical schemes were pro-

posed, one with first order temporal accuracy and fourth order spatial accuracy, the other

with second order temporal accuracy and fourth order spatial accuracy. Here, we point

out that in above these papers, variable-order derivative is either space derivative or time

derivative. According to the authors knowledge, there are not literatures consider numer-

ical approximation of variable-order problem containing both space variable-order deriva-

tive and time variable-order derivative.

In the paper we consider the following space-time variable fractional order diffusion

equation (STVFODE):
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D
α(x ,t)
t u(x , t) = µ R

0 Dβ(x ,t)
x u(x , t) + f (x , t), (1.1a)

(x , t) ∈ Ω = [0, L]× [0, T], (1.1b)

with the following initial and boundary conditions

u(x , 0) = ϕ(x), (1.2a)

u(0, t) = 0, u(L, t) = 0, (1.2b)

where µ(> 0) is a diffusion coefficient, 0< α ≤ α(x , t)≤ α ≤ 1, 1< β ≤ β(x , t)≤ β ≤ 2.

The variable-order derivative operators in Eq. (1.1) are defined as follows:

R
0 Dβ(x ,t)

x u(x , t) =

�
1

Γ(m− β(x , t))

dm

dξm

∫ ξ

0

(ξ−η)m−β(x ,t)−1u(η, t)dη

�

ξ=x

, (1.3)

which was called Riemann-Liouville variable fractional order derivative [17, 18] and m−
1< β(x , t)< m.

D
α(x ,t)
t u(x , t) =

1

Γ(1−α(x , t))

∫ t

0+
(t −σ)−α(x ,t)

∂ u(x ,σ)

∂ σ
dσ

+
(u(x , 0+)− u(x , 0−))t−α(x ,t)

Γ(1−α(x , t))
, (1.4)

which was defined by Coimbra [4] and 0 < α(x , t) < 1. Here it is worth mentioning

that the Coimbra-definition is first used in numerical approximation of the variable-order

partial differential equation.

2. Implicit Euler numerical approximation

Let us suppose that the function f (x) ∈ C (m−1)[a, b] and f (m)(x) ∈ L[a, b], then

for every α (0 ≤ m − 1 < α(x) < m), the Riemann-Liouville fractional derivative exists

and coincides with the Grünwald-Letnikov fractional derivative [20]. The relationship

between the Riemann-Liouville and Grünwald-Letnikov definitions is important for the

numerical approximation of fractional differential equations, manipulation with fractional

derivatives, and formulation of physically meaningful initial- and boundary-value problems

for fractional differential equations. This allows the use of the Riemann-Liouville definition

during problem formulation and then the Grünwald-Letnikov definitions for obtaining the

numerical solution.

Let tk = kτ (0 ≤ tk ≤ T ), k = 0,1,2, · · · , N , x i = ih, i = 0,1,2, · · · , M , where τ =

T/N and h = L/M are time and space steps respectively. Defining uk
i as the numerical

approximation to u(x i, tk). Also we denote that αk
i = α(x i, tk), β

k
i = β(x i, tk) and f k

i =

f (x i, tk).
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Lemma 2.1. [18,21] For 0≤ n− 1< ζ(x , t) < n, if u(x , t) ∈ L1(Ω), and R
0 Dζ(x ,t)

x u(x , t) ∈
C (Ω), then it can be obtained the "shifted" Grünwald approximation

R
0 D
ζk

i
x u(x i, tk) = h−ζ

k
i

i+1∑

j=0

g
j

ζk
i

u(x i+1− j , tk) +O(h), (2.1)

where g
j

ζk
i

is the Grünwald weights defined by

g
j

ζk
i

=
Γ( j− ζ(x i, tk))

Γ(−ζ(x i, tk))Γ( j+ 1)
, j = 0,1,2, · · · . (2.2)

In this paper the solution u(x , t) is considered when t ≥ 0, so we suppose u(x , 0+) =

u(x , 0−). Furthermore, let u ∈ C (2)(Ω), similar to the proof of literature [22] the operator

D
α(x ,t)
t u(x , t) can be discretized as

D
α(xi ,tk+1)
t u(x i, tk+1)

=
1

Γ(1−α(x i, tk+1))

∫ (k+1)τ

0

(tk+1−η)
−α(xi ,tk+1)

∂ u(x i,η)

∂ η
dη

=
1

Γ(1−α(x i, tk+1))

k∑

j=0

u(x i, t j+1)− u(x i, t j)

τ

∫ ( j+1)τ

jτ

1

(tk+1−η)α(xi ,tk+1)
dη

+O(τ2−α(xi ,tk+1))

=
1

Γ(2−α(x i, tk+1))

k∑

j=0

u(x i, tk+1− j)− u(x i, tk− j)

τα(xi ,tk+1)

· [( j+ 1)1−α(xi ,tk+1) − j1−α(xi ,tk+1)] +O(τ2−α(xi ,tk+1)) (2.3)

at the mesh point (x i, tk+1). Denote

D
αk+1

i
t u(x i, tk+1) =

τ−α
k+1
i

Γ(2−αk+1
i
)

k∑

j=0

(u(x i, tk+1− j)− u(x i, tk− j))b
k+1
j,i

, (2.4)

where αk
i
= α(x i, tk) and bk+1

j,i
= ( j+ 1)1−α

k+1
i − j1−α

k+1
i .

In order to obtain a stable implicit discrete scheme of Eq. (1.1), we use the operator

Dα
k+1
i u(x i, tk+1) to approximate the time variable fractional order operator Dα(x ,t)u(x , t)

and the "shifted" Grünwald approximation scheme to approximate the space variable frac-

tional order operator R
0 D
β(x ,t)
x u(x , t), respectively. Therefore, Eq. (1.1) can be discretized

as follows:

τ−α
k+1
i

Γ(2−αk+1
i
)

k∑

j=0

(u(x i, tk+1− j)− u(x i, tk− j)b
k+1
j,i

=µh−β
k+1
i

i+1∑

j=0

g
j

βk+1
i

u(x i+1− j , tk+1) + f k+1
i

, (2.5)
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where β k
i = β(x i, tk) and f k

i = f (x i, tk) (k = 0,1, · · · , N − 1; i = 0,1, · · · , M). Denote

rk+1
i
= τα

k+1
i Γ(2−αk+1

i
) and uk

i
= u(x i, tk), the above formula can be rewritten as

uk+1
i
= uk

i −
k∑

j=1

(u
k+1− j

i
− u

k− j

i
)bk+1

j,i

+µrk+1
i

h−β
k+1
i

i+1∑

j=0

g
j

βk+1
i

uk+1
i+1− j

+ rk+1
i

f k+1
i

, (2.6)

i.e.,

u1
i = u0

i +µr1
i h−β

1
i g1

β1
i

u1
i +µr1

i h−β
1
i

i+1∑

j=0, j 6=1

g
j

β1
i

u1
i+1− j + r1

i f 1
i , (2.7a)

uk+1
i
= (1− bk+1

1,i
)uk

i +

k−1∑

j=1

(bk+1
j,i
− bk+1

j+1,i
)u

k− j

i
+ bk+1

k,i
u0

i

+µrk+1
i

h−β
k+1
i g1

βk+1
i

uk+1
i
+µrk+1

i
h−β

k+1
i

i+1∑

j=0, j 6=1

g
j

βk+1
i

uk+1
i+1− j

+ rk+1
i

f k+1
i

, (2.7b)

where i = 1,2, · · · , M − 1; k = 1,2, · · · , N − 1. Furthermore, the following variable

fractional-order implicit difference approximation (VFOIDA) to the STVFODE (1.1) is ob-

tained

(1−µr1
i h−β

1
i g1

β1
i

)u1
i −µr1

i h−β
1
i

i+1∑

j=0, j 6=1

g
j

β1
i

u1
i+1− j = u0

i + r1
i f 1

i , (2.8a)

(1−µrk+1
i

h−β
k+1
i g1

βk+1
i

)uk+1
i
−µrk+1

i
h−β

k+1
i

i+1∑

j=0, j 6=1

g
j

βk+1
i

uk+1
i+1− j

=

k−1∑

j=0

(bk+1
j,i
− bk+1

j+1,i
)u

k− j

i
+ bk+1

k,i
u0

i + rk+1
i

f k+1
i

, (k ≥ 1), (2.8b)

where i = 1,2, · · · , M − 1; k = 1,2, · · · , N − 1.

The boundary and initial conditions are discretized as follows:

u0
i = ϕ(ih) = ϕi, uk

0 = 0, uk
M = 0, (2.9)

where i = 0,1,2, · · · , M ; k = 0,1,2, · · · , N .

The above equation can be rewritten in the form of matrix as follows:





A1U1 = U0,

Ak+1U k+1 =
k−1∑
j=0

(bk+1
j
− bk+1

j+1
)U k− j + bk+1

k
U0 + rk+1 f k+1, k ≥ 1,

U0 = ϕ,

(2.10)
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where U k = (uk
1,uk

2, · · · ,uk
M−1)

T , bk
j = (b

k
j,1, bk

j,2, · · · , bk
j,M−1)

T , f k = ( f k
1 , f k

2 , · · · , f k
M−1)

T ,

rk = (rk
1 , rk

2 , · · · , rk
M−1)

T , ϕ = (ϕ1,ϕ2, · · · ,ϕM−1)
T , and Ak = (ak

i j
) :

ak
i j =





0, j > i + 1,

1−µrk
i h−β

k
i g1

βk
i

, j = i,

−µrk
i h−β

k
i g

i+1− j

βk
i

, 1≤ j ≤ i − 1,

−µrk
i h−β

k
i g0

βk
i

, j = i + 1,

(2.11)

for i = 1,2, · · · , M − 1, j = 1,2, · · · , M − 1, k = 1,2, · · · , N .

Lemma 2.2. For i = 1,2, · · · , M, k = 1,2, · · · , N and 0 < α ≤ α(x , t) ≤ α < 1, the

coefficients bk
j,i satisfy

1= bk
0,i > bk

1,i > bk
2,i > · · ·> 0.

Proof. Let ϕ(x) = (x+1)1−α(xi,tk)− x1−α(xi ,tk) (0< α ≤ α(x i, tk)≤ α < 1, x > 0), then

ϕ
′
(x) = (1−α(x i, tk))[(x + 1)−α(xi ,tk)− x−α(xi ,tk)]< 0.

The result is valid. �

Lemma 2.3. For i = 1,2, · · · , M, k = 1,2, · · · , N and 1 < β ≤ β(x , t) ≤ β ≤ 2, the

coefficients g
j

βk
i

satisfy

1) g0

βk
i

= 1, g1

βk
i

< 0; g
j

βk
i

> 0 ( j ≥ 2);

2)
∞∑
j=0

g
j

βk
i

= 0,
l∑

j=0

g
j

βk
i

< 0 (l ≥ 1).

Proof. 1) According to the formula (2.2), it is easy to obtain g0

βk
i

= 1 and g1

βk
i

= −β k
i
<

0. Due to

g
j+1

βk
i

=
Γ( j+ 1− β(x i, tk))

Γ(−β(x i, tk))Γ( j+ 2)

=
j− β(x i, tk)

j+ 1

Γ( j− β(x i, tk))

Γ(−β(x i, tk))Γ( j+ 1)
=

j− β(x i, tk)

j+ 1
g

j

βk
i

,

and 1< β ≤ β(x , t) ≤ β ≤ 2, we have g
j

βk
i

> 0, j = 2,3, · · · .

2) Since (1− x)β
k
i =
∑∞

j=0 g
j

βk
i

x j, taking x = 1, we get
∑∞

j=0 g
j

βk
i

= 0, furthermore,
∑l

j=0 g
j

βk
i

< 0 for l = 1,2, · · · .
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Lemma 2.4. Let f (x) = (a+ 1)1−x − a1−x (a ≥ 1, 0 < x < 1), then f (x) is monotonically

decreasing.

Proof. f ′(x) = (1− x) ln a− (1− x) ln(a+ 1)< 0, then result is valid. �

Definition 2.1. [23, 24] For any arbitrary initial rounding error E0, there exists positive

number K, independent of h and τ, such that

‖Ek‖ ≤ K‖E0‖

or

‖Ek‖ ≤ K ,

the difference approximation (2.8) is then stable.

We suppose that euk
i

is the approximate solution of Eq. (2.8) and denote that ǫk
i
=

euk
i
− uk

i
, where i = 0,1, · · · , M and k = 0,1, · · · , N .

Therefore, for k = 0, ǫ0
i

satisfies

(1−µr1
i h−β

1
i g1

β1
i

)ǫ1
i −µr1

i h−β
1
i

i+1∑

j=0, j 6=1

g
j

β1
i

ǫ1
i+1− j = ǫ

0
i ; (2.12)

and for k = 1,2, · · · , N − 1, ǫk
i satisfy

(1−µrk+1
i

h−β
k+1
i g1

βk+1
i

)ǫk+1
i
−µrk+1

i
h−β

k+1
i

i+1∑

j=0, j 6=1

g
j

βk+1
i

ǫk+1
i+1− j

=

k−1∑

j=0

(bk+1
j,i
− bk+1

j+1,i
)ǫ

k− j

i
+ bk+1

k,i
ǫ0

i , (2.13)

where i = 1,2, · · · , M − 1.

Theorem 2.1. The fractional implicit difference scheme (2.8)-(2.9) is unconditionally stable.

Proof. . Let

‖Ek‖∞ = |ǫ
k
l | = max

1≤i≤M−1
|ǫk

i |.

According to the Lemma 2.3, when k = 0 we have

‖E1‖∞ = |ǫ
1
l | ≤ |ǫ

1
l | −µr1

l h−β
1
l

l+1∑

j=0

g
j

β1
l

|ǫ1
l |

= (1−µr1
l h−β

1
l g1

β1
l

)|ǫ1
l | −µr1

l h−β
1
l

l+1∑

j=0, j 6=1

g
j

β1
l

|ǫ1
l |

≤ (1−µr1
l
h−β

1
l g1

β1
l

)|ǫ1
l
| −µr1

l
h−β

1
l

l+1∑

j=0, j 6=1

g
j

β1
l

|ǫ1
l+1− j
|
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≤

����(1−µr1
l h−β

1
l g1

β1
l

)ǫ1
l −µr1

l h−β
1
l

l+1∑

j=0, j 6=1

g
j

β1
l

ǫ1
l+1− j

����

= |ǫ0
l | ≤ ‖E

0‖∞.

Assume that ‖E j‖∞ ≤ ‖E
0‖∞, j = 2,3, · · · , k, then using Lemmas 2.2 and 2.3 it can be

obtained that

‖Ek+1‖∞ = |ǫ
k+1
l
| ≤ |ǫk+1

l
| −µrk+1

l
h−β

k+1
l

l+1∑

j=0

g
j

βk+1
l

|ǫk+1
l
|

= (1−µrk+1
l

h−β
k+1
l g1

βk+1
l

)|ǫk+1
l
| −µrk+1

l
h−β

k+1
l

l+1∑

j=0, j 6=1

g
j

βk+1
l

|ǫk+1
l
|

≤ (1−µrk+1
l

h−β
k+1
l g1

βk+1
l

)|ǫk+1
l
| −µrk+1

l
h−β

k+1
l

l+1∑

j=0, j 6=1

g
j

βk+1
l

|ǫk+1
l+1− j
|

≤ |(1−µrk+1
l

h−β
k+1
l g1

βk+1
l

)ǫk+1
l
−µrk+1

l
h−β

k+1
l

l+1∑

j=0, j 6=1

g
j

βk+1
l

ǫk+1
l+1− j
|

=

����
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)ǫ

k− j

l
+ bk+1

k,l
ǫ0

l

����

≤
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)‖ǫk− j‖∞ + bk+1

k,l
‖ǫ0‖∞

≤
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)‖ǫ0‖∞ + bk+1

k,l
‖ǫ0‖∞

= ‖ǫ0‖∞.

Hence the conclusion is valid according to Definition 2.1. �

In the following we consider the convergence of the discrete scheme (2.8)-(2.9).

Let u(x i, tk) be the exact solution of the space-time variable fractional order diffusion

equation (1.1)-(1.2) and uk
i be the exact solution of the discrete equation (2.8)-(2.9) at

mesh point (x i, tk) respectively, where i = 1,2, · · · , M − 1 and k = 1,2, · · · , N . Define

ek
i = u(x i, tk) − uk

i (i = 1,2, · · · , M − 1; k = 1,2, · · · , N) and ek = (ek
1 , ek

2 , · · · , ek
M−1)

T .

Obviously, e0 = 0. Substituting u(x i, tk) Eq. (1.1) and uk
i into (2.8), then (1.1) subtracts

(2.8) we have

(1−µr1
i h−β

1
i g1

β1
i

)e1
i −µr1

i h−β
1
i

i+1∑

j=0, j 6=1

g
j

β1
i

e1
i+1− j = R1

i , (2.14a)
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(1−µrk+1
i

h−β
k+1
i g1

βk+1
i

)ek+1
i
−µrk+1

i
h−β

k+1
i

i+1∑

j=0, j 6=1

g
j

βk+1
i

ek+1
i+1− j

=

k−1∑

j=0

(bk+1
j,i
− bk+1

j+1,i
)e

k− j

i
+Rk+1

i
, (k ≥ 1), (2.14b)

where i = 1,2, · · · , M − 1. According to the formula (2.3) and Lemma 2.1 it is easy to

obtain that the truncation error Rk
i satisfy

|Rk
i | ≤ C(τ2+τα

k
i h), (2.15)

where k = 1,2, · · · , N .

Theorem 2.2. The fractional implicit difference scheme (2.8)-(2.9) is convergent, and the

solution uk
i of the discrete scheme (2.8)-(2.9) and the solution u(x i, tk) of Eqs. (1.1)-(1.2)

satisfy

‖u(·, tk)− uk‖∞ ≤ C(τ2−α+τα−αh), k = 1,2, · · · , N , (2.16)

where C is a constance independent of τ and h.

Proof. For k = 1, let ‖e1‖∞ = |e
1
l
| =max1≤i≤M−1 |e

1
i |, it obtains

‖e1‖∞ = |e
1
l | ≤ |e

1
l | −µr1

l h−β
1
l

l+1∑

j=0

g
j

β1
l

|e1
l |

= (1−µr1
l h−β

1
l g1

β1
l

)|e1
l | −µr1

l h−β
1
l

l+1∑

j=0, j 6=1

g
j

β1
l

|e1
l |

≤ (1−µr1
l
h−β

1
l g1

β1
l

)|e1
l
| −µr1

l
h−β

1
l

l+1∑

j=0, j 6=1

g
j

β1
l

|e1
l+1− j
|

≤

����(1−µr1
l h−β

1
l g1

β1
l

)e1
l −µr1

l h−β
1
l

l+1∑

j=0, j 6=1

g
j

β1
l

e1
l+1− j

����

= |R1
l | ≤ C(τ2+τα

1
l h).

Suppose that ‖e j‖∞ ≤ C(bα
j−1
)−1(τ2 + ταh) (1 < j ≤ k), denote bα

j
= ( j + 1)1−α − j1−α

and |ek+1
l
| =max1≤i≤M−1 |e

k+1
i
|, then by Lemmas 2.2 and 2.4 we have

|ek+1
l
| ≤ |ek+1

l
| −µrk+1

l
h−β

k+1
l

l+1∑

j=0

g
j

βk+1
l

|ek+1
l
|

= (1−µrk+1
l

h−β
k+1
l g1

βk+1
l

)|ek+1
l
| −µrk+1

l
h−β

k+1
l

l+1∑

j=0, j 6=1

g
j

βk+1
l

|ek+1
l
|
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≤ (1−µrk+1
l

h−β
k+1
l g1

βk+1
l

)|ek+1
l
| −µrk+1

l
h−β

k+1
l

l+1∑

j=0, j 6=1

g
j

βk+1
l

|ek+1
l+1− j
|

≤

����(1−µrk+1
l

h−β
k+1
l g1

βk+1
l

)ek+1
l
−µrk+1

l
h−β

k+1
l

l+1∑

j=0, j 6=1

g
j

βk+1
l

ek+1
l+1− j

����

=

����
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)e

k− j

l
+ Rk+1

l

����

≤
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)‖ek− j‖∞ + |R

k+1
l
|

≤
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)(bαk− j−1)

−1C(τ2+ταh) + C(τ2+τα
k+1
l h)

≤
k−1∑

j=0

(bk+1
j,l
− bk+1

j+1,l
)(bαk )

−1C(τ2+ταh) + C bk+1
k,l
(bk+1

k,l
)−1(τ2 +τα

k+1
l h)

≤ C(bαk )
−1.

Because

lim
k→∞

(bα
k
)−1

kα
= lim

k→∞

k−α

(k+ 1)1−α− k1−α
= lim

k→∞

k−1

(1+ 1

k
)1−α − 1

= lim
k→∞

k−1

(1−α)k−1
=

1

1−α

and kτ ≤ T it can be obtained

‖ek+1‖∞ ≤
C

1−α
kα(τ2+ταh)≤ C(τ2−α+τα−αh) (k = 0,1, · · · , N).

So the above theorem is proved. �

3. Numerical examples

Example 3.1. Consider the following problem:




D
α(x ,t)
t u(x , t) = R

0 D
β(x ,t)
x u(x , t) + f (x , t), (x , t) ∈ Ω = [0,1]× [0, T],

u(x , 0) = 10x2(1− x), 0≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T,

(3.1)

where

f (x , t) =
10x2(1− x)t1−α(x ,t)

Γ(2−α(x , t))
− 10(t + 1)

�
2x2−β(x ,t)

Γ(3− β(x , t))
−

6x3−β(x ,t)

Γ(4−β(x , t))

�
.
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al solution, exa
t solution and absolute error at T = 1.0.
x Numerical solution exact solution error

0.1 0.17676417 0.18000000 0.00323583

0.2 0.63449050 0.64000000 0.00550950

0.3 1.25295192 1.26000000 0.00704808

0.4 1.91211319 1.92000000 0.00788681

0.5 2.49195513 2.50000000 0.00804487

0.6 2.87245660 2.88000000 0.00754340

0.7 2.93358378 2.94000000 0.00641622

0.8 2.55528102 2.56000000 0.00471898

0.9 1.61746187 1.62000000 0.00253813Table 2: Maximum error behavior versus grid size redu
tion at T = 1.0 when τ= 0.02.
h Maximum error Convergence order

1/25 3.439×10−2

1/50 1.709×10−2 1.01

1/100 8.049×10−3 1.09

1/200 3.542×10−3 1.18Table 3: Maximum error behavior versus grid size redu
tion at T = 1.0 when h= τ1.15.
τ Maximum error Convergence order

1/8 8.345×10−2

1/16 3.625×10−2 1.20

1/32 1.570×10−2 1.21

1/64 6.560×10−3 1.26

The exact solution of the problem is u(x , t) = 10(t + 1)x2(1− x).

Taking α(x , t) = 1− 0.5e−x t and β(x , t) = 1.7+ 0.5e−
x2

1000
− t

50
−1.

Table 1 gives the numerical solution, exact solution and absolute error of them at

T = 1.0, here h= τ = 1/100.

Fig. 1 shows the comparison of the numerical solution and exact solution at T = 1.0,

here the space step is equal to the time step, i.e. h= τ = 1/100.

Fig. 2 shows the solution behavior of (3.1) at T = 1.0, T = 0.75, T = 0.5 and T = 0.25,

respectively. Here h= τ = 1/100.

Table 2 shows Maximum error and Convergence order versus space-step h reduction

at T = 1.0 for fixed time-step τ = 0.02, where the convergence order is calculated by the

formula: Convergence order= log h1
h2

e1

e2
.

When T = 1.0, 0.5 ≤ α(x , t) = 1 − 0.5e−x t ≤ 0.85 (0 ≤ x ≤ 1, 0 ≤ t ≤ 1), so

1.15 ≤ 2− α(x , t) ≤ 1.5. Table 3 shows Maximum error and Convergence order versus

time-step τ reduction at T = 1.0 when h= τ1.15, where the convergence order is calculated

by the formula: Convergence order= log τ1
τ2

e1

e2
.
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Figure 1: The 
omparison of the numeri
al solution and exa
t solution at T = 1.0.
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Figure 2: The solution behavior of (3.1) at T = 1.0, T = 0.75, T = 0.5 and T = 0.25.
Example 3.2. Consider the following problem:




D
α(x ,t)
t u(x , t) = 2 R

0 D
β(x ,t)
x u(x , t) + f (x , t), (x , t) ∈ Ω = [0,1]× [0, T],

u(x , 0) = 5x(1− x), 0≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T,

(3.2)

where α(x , t) = 0.8+ 0.01 ln(5x t), β(x , t) = 1.7+ 0.001 cos(x t) sin(x) and

f (x , t) =
10x(1− x)t2−α(x ,t)

Γ(3−α(x , t))
− 10(t2 + 1)

�
x1−β(x ,t)

Γ(2− β(x , t))
−

2x2−β(x ,t)

Γ(3−β(x , t))

�
.

The exact solution of the problem is u(x , t) = 5(t2 + 1)x(1− x).

The 3-D plot of the exact solution and numerical solution of (3.2) are shown in Fig. 3

and Fig. 4 respectively.



Numerical Simulation of Variable Fractional Order Diffusion Equation 583

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

 xt

ex
ac

−
so

lu

Figure 3: The 3-dimension exa
t solution of (3.2).
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Figure 4: The 3-dimension numeri
al solution of (3.2).
4. Conclusion

Many physical processes appear to exhibit fractional order behavior that may vary with

time or space. The continuum of order in the fractional calculus allows the order of the

fractional operator to be considered as a variable. Recently, variable fractional derivatives

are applied to many fields, such as viscoelasticity, the processing of geographical data, sig-

nature verification, diffusion, etc. Numerical approximation of the variable fractional par-

tial differential equation is relatively new and still at an early stage of development. The

existing literatures only considered numerical approximation of variable-order problems

containing either space variable-order derivative or time variable-order derivative, and the

variable-order derivative is either Riemann-Liouville variable fractional derivative or Riesz

variable fractional derivative. In the paper, we consider the numerical approximation of the

space-time variable fractional diffusion equation, where the time variable-order derivative

uses Coimbra-definition variable fractional derivative and the space variable-order deriva-

tive uses Riemann-Liouville variable fractional derivative. A implicit numerical scheme is
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derived, furthermore, the stability and convergence of the above scheme are discussed.

Finally, some numerical examples are presented to show the theoretical conclusions are

valid.
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