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Abstract. In [35,36], we presented an h-adaptive Runge-Kutta discontinuous Galerkin

method using troubled-cell indicators for solving hyperbolic conservation laws. A tree

data structure (binary tree in one dimension and quadtree in two dimensions) is used to

aid storage and neighbor finding. Mesh adaptation is achieved by refining the troubled

cells and coarsening the untroubled "children". Extensive numerical tests indicate that

the proposed h-adaptive method is capable of saving the computational cost and en-

hancing the resolution near the discontinuities. In this paper, we apply this h-adaptive

method to solve Hamilton-Jacobi equations, with an objective of enhancing the reso-

lution near the discontinuities of the solution derivatives. One- and two-dimensional

numerical examples are shown to illustrate the capability of the method.
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1. Introduction

In this paper, we present an h-adaptive Runge-Kutta discontinuous Galerkin (RKDG)

method for solving Hamilton-Jacobi (H-J) equations

¨
φt +H(∇xφ) = 0,

φ(x , 0) = φ0(x),
(1.1)

where x = (x1, · · · , xd) ∈ Rd , t > 0. H-J equations are of practical importance with appli-

cations ranging from optimal control and differential games to geometric optics and image

processing. Viscosity solutions of H-J equations are studied [11,12] to single out a unique,
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practically relevant solution. These viscosity solutions are Lipschitz continuous, and may

develop discontinuous derivatives no matter how smooth the initial conditions are.

The study of numerical approximations to the viscosity solution of H-J equation (1.1)

was started by Crandall and Lions. In [12] they proposed a monotone finite difference

scheme and proved convergence to the viscosity solution. Unfortunately, monotone schemes

can be at most first order accurate. Osher and Sethian [22] and Osher and Shu [23]

constructed a class of high order ENO (essentially non-oscillatory) schemes which were

adapted from ENO schemes in [13, 30, 31] for hyperbolic conservation laws. Their con-

struction was based on the observation that there is a close relation between H-J equations

and conservation laws, and as a result successful numerical methods for conservation laws

can be adapted for solving H-J equations. For example, WENO (weighted ENO) schemes

in [16,21], Hermite WENO schemes in [24,25] and RKDG method in [8,9] were adapted

for solving H-J equations by Jiang and Peng [15], Qiu and Shu [26] and Hu and Shu [14]

(see also the reinterpretation work [19]), respectively. For other approaches, we mention

the work of central high resolution schemes developed in [2, 3, 18, 20] and two different

direct DG (discontinuous Galerkin) methods introduced respectively in [5] and [33].

In the traditional way numerical methods adopt fixed and pre-assigned meshes, so one

has to develop higher-order (third, fourth or ever higher) numerical schemes in order to

enhance the resolution of the numerical approximations. Lower-order schemes, which

may be rather simple, can also produce high resolution with small number of mesh points

if mesh adaptation is employed. So far a few works have been done on adaptive algorithms

for H-J equation (1.1). We refer, for instance, to Tang et al. [32], where an adaptive mesh

redistribution (r-adaptive) method was developed for solving two- and three-dimensional

H-J equations. We also refer to Cockburn and his collaborators [1,4].

The singularities in the solution derivatives cause great difficulties in obtaining numer-

ical solutions of H-J equations. Local error at the discontinuities of the derivatives may

be significantly larger and dominate the global error. Higher-order elements at discon-

tinuities can not decrease the local error but may result in oscillatory solutions, so local

mesh refinement is a good solution which can enhance the resolution by steepening the

discontinuities. This motivates us to work on the h-adaptive method for H-J equations.

Our h-adaptive method for H-J equations proposed in this paper is based on the RKDG

methods. The RKDG methods for solving hyperbolic conservation laws are high-order ac-

curate and highly parallelizable methods which can easily handle complicated geometries,

boundary conditions and h− p adaptivity. These methods have made their way into the

main stream of computational fluid dynamics and other areas of applications. The first DG

method was introduced in 1973 by Reed and Hill [28] for the neutron transport problem.

A major development of this method was carried out by Cockburn et al. in a series of

papers [6–9], in which a framework to solve nonlinear time dependent hyperbolic conser-

vation laws was established. They adopted explicit, nonlinearly stable high order Runge-

Kutta time discretizations [30], DG space discretizations with exact or approximate Rie-

mann solvers as interface fluxes and TVB (total variation bounded) nonlinear limiter [29]

to achieve nonoscillatory properties, and the method was termed as RKDG method. De-

tailed description of the method as well as its implementation can be found in the review
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paper [10].

In [35, 36], we presented an h-adaptive RKDG method using troubled-cell indicators

for solving hyperbolic conservation laws. A tree data structure (binary tree in one di-

mension and quadtree in two dimensions) is used to aid storage and neighbor finding. A

troubled cell is a cell that is believed to contain a discontinuity and need the limiting proce-

dure. Troubled-cell indicators are used to identify the troubled cells and mesh adaptation

is achieved by refining the troubled cells and coarsening the untroubled "children". Exten-

sive numerical tests indicate that the proposed h-adaptive method is capable of saving the

computational cost and enhancing the resolution near the discontinuities. In this paper,

we apply this h-adaptive method to solve H-J equation (1.1), based on the RKDG method

for H-J equations introduced by Hu and Shu in [14], with an objective of enhancing the

resolution near the discontinuities of the solution derivatives.

The outline of the remainder of the paper is as follows. Firstly in Section 2, we briefly

review the RKDG method for H-J equations in [14]. Then in Section 3, we show the

h-adaptive RKDG method for H-J equations and the implementation details. After that in

Section 4, we present a series of numerical results to validate our adaptive method. Finally,

we give our concluding remarks in Section 5.

2. Review of RKDG method for H-J equations

Our h-adaptive RKDG method for H-J equations proposed in this paper is based on the

RKDG method for H-J equations introduced by Hu and Shu [14], which is briefly reviewed

in this section.

2.1. Space discretization in one dimension

For one-dimensional case, H-J equation (1.1) becomes

¨
φt +H(φx ) = 0,

φ(x , 0) = φ0(x),
(2.1)

which is equivalent to the conservation law

¨
ut +H(u)x = 0,

u(x , 0) = u0(x) = φ0
′(x),

(2.2)

if we identify u= φx .

The key idea of designing RKDG scheme for H-J equation (2.1) is to solve the conser-

vation law (2.2) by the RKDG method in [8]. Divide the computational domain [a, b] into

N cells with boundary points

a = x 1

2
< x 3

2
< · · ·< xN+ 1

2
= b.

Denote the center of cell Ii = [x i−1/2, x i+1/2] by x i, and the length of cell Ii by ∆x i.

The solution as well as the test function space is given by V k
h
= {p : p|Ii

∈ Pk(Ii),∀i},
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where Pk(Ii) is the space of polynomials of degree at most k on cell Ii . Then a k-th order

discontinuous Galerkin scheme for (2.1) can be defined as follows: find φ ∈ V k
h

such that

∫

Ii

φx t vd x −
∫

Ii

H(φx )vx d x + Ĥi+ 1

2

v−
i+ 1

2

− Ĥi− 1

2

v+
i− 1

2

= 0,

i = 1, · · · , N , v ∈ V k−1
h

. (2.3)

Here

Ĥi+ 1

2
= Ĥ

�
(φx)

−
i+ 1

2

, (φx )
+

i+ 1

2

�
= Ĥ

�
u−

i+ 1

2

,u+
i+ 1

2

�

is a consistent and monotone (nondecreasing in the first argument and nonincreasing in

the second argument) flux and u±
i+1/2

= u(x±
i+1/2

, t) are the left and right limits of the

discontinuous solution u at the cell interface x i+1/2. In this paper we use the simple Lax-

Friedrichs flux

Ĥ(u−,u+) =
1

2
[H(u−) +H(u+)−α(u+ − u−)], (2.4)

where α = max |H ′(u)| with the maximum taken over the whole region in which u−, u+

varies. The second term in (2.3) can be computed either exactly or by a numerical quadra-

ture of sufficiently high order of accuracy.

The scheme described above is only for the derivative u = φx . The missing constant

can be obtained as follows: first determine the constant for cell I1 by requiring that

∫

I1

φt +H(u)d x = 0,

then use

φ(x i , t) = φ(x1, t) +

∫ xi

x1

u(x , t)d x

to determine the constant on cell Ii .

2.2. Space discretization in two dimensions

In two space dimensions, H-J equation (1.1) has the form

¨
φt +H(φx ,φy ) = 0,

φ(x , y, 0) = φ0(x , y),
(2.5)

which is in some sense equivalent to the following conservation law system





ut +H(u, v)x = 0,

vt +H(u, v)y = 0,

(u, v)(x , y, 0) = (u, v)0(x , y),

(2.6)
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if we identify (u, v) = (φx ,φy).

This conservation law system is solved by the RKDG method in [9]. Given a triangula-

tion Th of the domain Ω with the approximation space V k
h
= {p : p|K ∈ Pk(K), ∀K ∈ Th},

where Pk(K) is the space of polynomials of degree at most k on cell K , firstly find u ∈ V k−1
h

and v ∈ V k−1
h

such that

∫

K

ut wd xd y −
∫

K

H(u, v)wx d xd y +
∑

e∈∂ K

∫

e

ÛH(u, v)n1wdΓ = 0,

∫

K

vt wd xd y −
∫

K

H(u, v)w y d xd y +
∑

e∈∂ K

∫

e

ÛH(u, v)n2wdΓ = 0,

for all w ∈ V k−1
h

and all K ∈ Th. Here (n1, n2) is the unit outward normal to the edge e of

cell K and

ÛH(u, v)ni = Ĥi,e,K

�
(u, v)−, (u, v)+
�
, i = 1,2,

is again a consistent and monotone flux in which the superscript "−" implies that the value

is taken from within the element K , and the superscript "+" implies that the value is taken

from outside the element K and within the neighboring element K ′ sharing the edge e with

K . We again use the simple Lax-Friedrichs flux

Ĥ1,e,K

�
(u, v)−, (u, v)+
�
=

1

2

�
H(u−, v−) +H(u+, v+)

�
n1 −

1

2
α(u+ − u−),

Ĥ2,e,K

�
(u, v)−, (u, v)+
�
=

1

2

�
H(u−, v−) +H(u+, v+)

�
n2 −

1

2
β(v+− v−),

where α =maxu,v |∂ H(u, v)/∂ u|, β =maxu,v |∂ H(u, v)/∂ v| with the maximum taken over

the relevant (global) range. Then find φ ∈ V k
h

by least squares

‖(φx − u)2 + (φy − v)2‖L1(K) = min
ψ∈Pk(K)

‖(ψx − u)2 + (ψy − v)2‖L1(K).

For the missing constant, similar to the one-dimensional case, we first update the con-

stant on one or a few cells, using

∫

K

φt +H(φx ,φy)d xd y = 0,

then determine the constant by

φ(B, t) = φ(A, t) +

∫ B

A

φx d x +φy d y.
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2.3. Time discretization

Up to now, we have taken the method of lines approach and have left the time variable

t continuous. For time discretization we use the TVD (total variation diminishing) high

order Runge-Kutta methods introduced in [30]. For example, the third order version for

solving the method of lines ODE

φt = L(φ)

is given by

φ(1) = φn +∆t L(φn),

φ(2) =
3

4
φn +

1

4
φ(1) +

1

4
∆t L(φ(1)),

φn+1 =
1

3
φn +

2

3
φ(2) +

2

3
∆t L(φ(2)).

3. Algorithm and implementation details

The RKDG method for H-J equations described in the previous section can be di-

vided into two parts. The first part is to solve the conservation law(s) (2.2) and (2.6),

which are related to the H-J equations (2.1) and (2.5) respectively, by the standard RKDG

method. The second part is to recover the constant. To design h-adaptive algorithms for

H-J equations, one can simply apply h-adaptive algorithms for conservation laws to the

first part. In [35, 36], we developed an h-adaptive RKDG method for solving one- and

two-dimensional hyperbolic conservation laws using troubled-cell indicators. Extensive

numerical tests showed the effectiveness of this method. In this paper, our h-adaptive

RKDG method for H-J equations is developed by applying this method to the first part of

the RKDG method for H-J equations. This section gives the algorithm and its implementa-

tion details.

3.1. Data structure

As in [35, 36], a cell-based tree data structure (binary tree in one dimension and

quadtree in two dimensions) is used to store the mesh so that mesh refinement and coars-

ening are trivial to accomplish.

We consider each of the initial cells as the root of a different tree. The root can be

divided into 2d new cells of equal sizes, and each of these new cells can be divided re-

cursively until a stopping criterion is met. The new cells are called children of the divided

cell (father). A cell is called a leaf cell if it does not have any children. All the leaf cells

constitute the computational mesh. The level of a cell is the number of divisions needed to

obtain this cell. The level of the root is zero.



An h-Adaptive RKDG Method for Hamilton-Jacobi Equations 623

3.2. Algorithm

The following flowchart illustrates the h-adaptive RKDG method in [35,36] for conser-

vation laws ¨
ut +Σ

d
i=1( fi(u))xi

= 0,

u(x , 0) = u0(x),

with which one can easily have the h-adaptive RKDG algorithm for H-J equations.Algorithm 3.1: h-adaptive RKDG algorithm for 
onservation laws.Given the maximum 
ell level LEV and the �nal time T ,Step 1 Partition the domain into uniform 
ells (intervals in one dimension and re
tangles in twodimensions) and 
ompute the degrees of freedom {u(l)K (t0)} by the initial 
ondition.Step 2 Suppose we have known the mesh Th(tn) and the degrees of freedom {u(l)K (tn)} at timelevel tn. Follow the troubled-
ell indi
ator pro
edure, mark ea
h 
ell as either a troubled
ell or an untroubled 
ell.
• For ea
h troubled 
ell, if its 
ell level is equal to LEV , do nothing. If its 
ell levelis less than LEV , re�ne this 
ell by dividing it into 2d uniform 
ells (see Fig. 1).
• For a father's 2d 
hildren that are all untroubled 
ells, 
oarsening these 
ells bymerging them (see Fig. 1).Now we get the new mesh Th(tn+1).Step 3 Using L2 proje
tion, proje
t the degrees of freedom {u(l)K (tn)} on the mesh Th(tn) to thenew mesh Th(tn+1).Step 4 Evolve the solution on the mesh Th(tn+1) from tn to tn+1 by the RKDG pro
edure whi
his des
ribed in Se
tion 2 and get solution {u(l)K (tn+1)} at tn+1.Step 5 If tn+1 < T , go to Step 2.

✲ ✲

merge divide

K1 K2

K3 K4

K
′
1 K

′
2

K
′
3 K

′
4

K
′

K

✲ ✲

merge divideK1 K2 K
′

K K
′
1 K

′
2

Figure 1: Sket
hes of merging (left) and dividing (right).
Attention has not been paid to the issue of time discretization efficiency in this paper, so

global time steps are used in Runge-Kutta method, which are proportional to the smallest

cell size at each time level. Study of local time-stepping scheme for the method is the

subject of future work.
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For two-dimensional problems we adopt rectangular meshes, as is indicated in the

algorithm. So Th is restricted to rectangular mesh with hanging nodes permitted, and the

problem domain Ω is restricted to a domain that can be partitioned into uniform rectangles.

3.3. Basis functions

In order to simplify the implementation and calculation, we adopt the orthogonal basis

of Legendre polynomials





W0(x) = 1,

Wl(x) =
1

2l l!

d l(x2− 1)l

d x l
, l > 0,

for the one-dimensional simulation. So the approximate solution uh(x , t) in the space V k−1
h

can be expressed as

uh(x , t) =

k−1∑
l=0

u
(l)

i
(t)Wl(2(x − x i)/∆x i), for x ∈ Ii , ∀i. (3.1)

For the two-dimensional case, we form the following orthogonal basis

w i(i+1)

2
+ j
(x , y) =Wi− j(x)Wj(y), i = 0, · · · , k− 1, j = 0, · · · , i,

which are tensor products of Legendre polynomials. Then the local orthogonal basis over

cell K is given by

w
(K)

l
(x , y) = wl

�2(x − xK)

∆xK

,
2(y − yK)

∆yK

�
, l = 0, · · · ,Qk−1,

in which Qk = k(k + 3)/2, (xK , yK) is the center of rectangle K , and ∆xK and ∆yK are

lengths of K ’s sides in the direction of x and y respectively. Now the numerical solution uh

can be expressed as

uh(x , y, t)|K =
Qk−1∑
l=0

u
(l)
K (t)w

(K)

l
(x , y), (3.2)

where u
(l)
K (t) (l = 0, · · · ,Qk−1) are the degrees of freedom. Particularly, u

(0)
K (t) is the cell

average of uh over K .

3.4. L2 projection

Let us now deduce the formulae of L2 projection. To save space, only the formulae

for two-dimensional case are shown. It is similar and easier to deduce the formulae for

one-dimensional case.
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Suppose we have already known uh on mesh Th(tn), and we need to determine the

degrees of freedom u
(l)

K ′ (tn) (l = 0, · · · ,Qk−1) in the new cell K ′ ∈ Th(tn+1). Let u
′
h

denote

the L2 projection of uh, it should satisfy the following equation
∫

K ′
u
′
h|K ′w(K

′)
l
(x , y)d xd y =

∫

K ′
uhw

(K ′)
l
(x , y)d xd y, l = 0, · · · ,Qk−1.

Represent u
′
h
|K ′ using (3.2) and change the integral variables to get

u
(l)

K ′ (tn) =
4

bl∆xK ′∆yK ′

∫

K ′
uhw

(K ′)
l
(x , y)d xd y, l = 0, · · · ,Qk−1, (3.3)

where

bl =

∫ 1

−1

∫ 1

−1

(wl(x , y))2d xd y, l = 0, · · · ,Qk−1,

are constants. For uh is a piecewise polynomial, the integral in (3.3) can be computed

exactly.

Now we are ready to give the formulae of L2 projection. When four cells K1, K2, K3,

K4 are merged to a new cell K ′ (see the left sketch in Fig. 1), the new degrees of freedom

computed by (3.3) are as follows when k−1= 2 (for simplicity we drop the time variable).

u
(0)

K ′ =
1

4
(u
(0)
K1
+ u

(0)
K2
+ u

(0)
K3
+ u

(0)
K4
),

u
(1)

K ′ =
3

8
(−u

(0)
K1
+ u

(0)
K2
− u

(0)
K3
+ u

(0)
K4
) +

1

8
(u
(1)
K1
+ u

(1)
K2
+ u

(1)
K3
+ u

(1)
K4
),

u
(2)

K ′ =
3

8
(−u

(0)
K1
− u

(0)
K2
+ u

(0)
K3
+ u

(0)
K4
) +

1

8
(u
(2)
K1
+ u

(2)
K2
+ u

(2)
K3
+ u

(2)
K4
),

u
(3)

K ′ =
5

16
(−u

(1)
K1
+ u

(1)
K2
− u

(1)
K3
+ u

(1)
K4
) +

1

16
(u
(3)
K1
+ u

(3)
K2
+ u

(3)
K3
+ u

(3)
K4
),

u
(4)

K ′ =
9

16
(u
(0)
K1
− u

(0)
K2
− u

(0)
K3
+ u

(0)
K4
) +

3

16
(−u

(1)
K1
− u

(1)
K2
+ u

(1)
K3
+ u

(1)
K4
)

+
3

16
(−u

(2)
K1
+ u

(2)
K2
− u

(2)
K3
+ u

(2)
K4
) +

1

16
(u
(4)
K1
+ u

(4)
K2
+ u

(4)
K3
+ u

(4)
K4
),

u
(5)

K ′ =
5

16
(−u

(2)
K1
− u

(2)
K2
+ u

(2)
K3
+ u

(2)
K4
) +

1

16
(u
(5)
K1
+ u

(5)
K2
+ u

(5)
K3
+ u

(5)
K4
).

For k− 1= 1, only the first three formulae are needed.

When a cell K is divided into four subcells K
′
1, K

′
2, K

′
3, K

′
4 (see the right sketch in Fig. 1),

the new degrees of freedom for k− 1= 2 can be computed by setting

K
′
1 : K ′→ K

′
1, λ1x = −1/4, λ1y = −1/4, λ2x = 1/2, λ2y = 1/2,

K
′
2 : K ′→ K

′
2, λ1x = 1/4, λ1y = −1/4, λ2x = 1/2, λ2y = 1/2,

K
′
3 : K ′→ K

′
3, λ1x = −1/4, λ1y = 1/4, λ2x = 1/2, λ2y = 1/2,

K
′
4 : K ′→ K

′
4, λ1x = 1/4, λ1y = 1/4, λ2x = 1/2, λ2y = 1/2,



626 H. Zhu and J. Qiu

in

u
(0)

K ′ = u
(0)
K + 2λ1xu

(1)
K + 2λ1yu

(2)
K +
�

6λ2
1x +

1

2
λ2

2x −
1

2

�
u
(3)
K

+ 4λ1xλ1yu
(4)
K +
�

6λ2
1y +

1

2
λ2

2y −
1

2

�
u
(5)
K , (3.4a)

u
(1)

K ′ = λ2x(u
(1)
K + 6λ1xu

(3)
K + 2λ1yu

(4)
K ), (3.4b)

u
(2)

K ′ = λ2y(u
(2)
K + 2λ1xu

(4)
K + 6λ1yu

(5)
K ), (3.4c)

u
(3)

K ′ = λ
2
2xu

(3)
K , (3.4d)

u
(4)

K ′ = λ2xλ2yu
(4)
K , (3.4e)

u
(5)

K ′ = λ
2
2yu

(5)
K , (3.4f)

where

λ1x =
xK ′ − xK

∆xK

, λ2x =
∆xK ′

∆xK

,

λ1y =
yK ′ − yK

∆yK

, λ2y =
∆yK ′

∆yK

.

For k− 1= 1, one just sets u
(3)
K = u

(4)
K = u

(5)
K = 0 in (3.4).

3.5. Limiter and troubled-cell indicator

For some test problems of H-J equations, DG method needs a nonlinear limiter to

generate the correct entropy solution [14]. Usually a limiter is composed of two parts:

the first part is a troubled-cell indicator which is to detect the discontinuous regions and

the second part is the solution reconstruction which is to control the oscillations. For the

first part we use the so called KXRCF troubled-cell indicator which was based on a shock-

detection technique introduced by Krivodonova et al. [17], and was numerically proved to

be efficient and reliable in [35,36]. It works in the following way.

Partition the boundary of a cell K into two portions ∂ K− and ∂ K+, where the flow is

into (~v · ~n< 0, ~n is the normal vector to ∂ K) and out of (~v · ~n> 0) cell K , respectively. Cell

K is identified as a troubled cell, if
���
∫
∂ K−(u

h|K − uh|Kn
)ds

���

h
k

2

K

��∂ K−
��‖uh|K‖

> 1,

where hK is the radius of the circumscribed circle in cell K , Kn is the neighbor of K on the

side of ∂ K− and the norm ‖ · ‖ is based on the maximum norm taken at the integration

quadrature points in two dimensions and based on a cell average in one dimension.

Note that KXRCF troubled-cell indicator has two functions in the algorithm. One is to

identify the troubled cells for mesh adaptation, the other is to determine the cells to be

limited for the limiter.
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Figure 2: The imaginary lo
al uniform mesh of K (dotted lines) when k− 1= 2.
For the second part of the limiter, we do not use the WENO type solution reconstruction

method given in [35] for the one-dimensional case. We switch to use a simple WENO

reconstruction method recently developed in [34], which is of higher order and is also

easy to implement. For the two-dimensional case, if a cell K needs solution reconstruction,

we build a local uniform mesh which consists of (2k − 1)× (2k − 1) cells with K in the

center. See an example in Fig. 2. We use these imaginary cells instead of the real cells to

reconstruct the solution in K . Since the imaginary local mesh is uniformly rectangular, the

WENO solution reconstruction introduced by Qiu and Shu in [27] can be applied directly.

The only problem left is to compute the cell averages in the imaginary local mesh. This

can be done easily for we have already got the L2 projection formula (3.3).

For more implementation details we refer to [35,36].

4. Numerical results

In this section we provide a series of numerical examples to illustrate the good behavior

of our h-adaptive RKDG method for H-J equations. In all examples, we only plot the results

obtained with a particular choice of initial mesh and with LEV = 3 to save space. We

have verified with the aid of successive refinements of initial mesh, that in all cases, the

approximations are numerically convergent.

Example 4.1. In this first example we consider the one-dimensional Burgers’ equation




φt +

(φx + 1)2

2
= 0, −1< x < 1,

φ(x , 0) = − cos(πx),

(4.1)

with periodic boundary conditions.

Numerical solutions of φ at t = 10/π2 and the mesh changing figures which show

when and where cell dividing and merging occur are presented in Fig. 3. Here and be-

low, in a mesh changing figure each "�" represents a "dividing" and each "+" represents a
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Figure 3: One-dimensional Burgers' equation (Example 4.1), solution φ (upper) and mesh 
hanging(lower), k = 2 (left) and k = 3 (right); adaptive-mesh solution: N0 = 10; uniform-mesh solution: N = 20.
"merging". Note that only the information at part of the time levels is shown so that the

figure size won’t be too large. In a solution figure the solid line is the exact solution and

the squares are numerical solutions obtained by our h-adaptive RKDG method. For com-

parison, in the solution figure we also show the numerical solution (pluses in the figure)

obtained by Hu and Shu’s RKDG method with a uniform mesh which uses more cells than

the average cell number of the adaptive case. In the adaptive computation, we denote the

initial cell number by N0 and denote the average cell number by N̄ = (
∑TOT

q=0 Nq)/TOT

where Nq is the cell number at the q-th time level and TOT is the total number of time

levels. These mesh data can be found at the end of this section in Table 1.

We can see from these figures that almost all the mesh refinement and coarsening are

near the discontinuity of the derivative (the corner in the solution). As we expect, a cell is

refined when a discontinuity comes close and is coarsened after the discontinuity leaves.

In the final mesh the corner region is refined while the other regions use coarse mesh. As

a result the adaptive algorithm produces much sharper corners than the algorithm using

uniform mesh.
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Example 4.2. We solve the one-dimensional linear equation
¨
φt +φx = 0, −1< x < 1,

φ(x , 0) = φ0(x − 0.5),
(4.2)

with periodic boundary conditions. Here

φ0(x) =−
�p3

2
+

9

2
+

2π

3

�
(x + 1)

+





2 cos
�3πx2

2

�
−p3, −1≤ x < −1

3
,

3

2
+ 3 cos(2πx), −1

3
≤ x < 0,

15

2
− 3 cos(2πx), 0≤ x <

1

3
,

28+ 4π+ cos(3πx)

3
+ 6πx(x − 1),

1

3
≤ x < 1.

In Fig. 4 we show the computed solution at t = 2 and the mesh changing figure. We

can see that finest meshes are used around all the discontinuities of φx . Our adaptive
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Figure 4: One-dimensional linear equation (Example 4.2), solution φ (upper) and mesh 
hanging (lower),
k = 2 (left) and k = 3 (right); adaptive-mesh solution: N0 = 60; uniform-mesh solution: N = 120.



630 H. Zhu and J. Qiu

+

+

+ +

+

+

x
0.1 0.12 0.14 0.16 0.18

-5

-4.95

-4.9

-4.85

-4.8

-4.75

-4.7

Exact
Uniform
Adaptive

+

+

+

+

+

+

+

x
0.1 0.12 0.14 0.16 0.18

-5

-4.95

-4.9

-4.85

-4.8

-4.75

-4.7

Exact
Uniform
Adaptive

+

+

+

+
+

+

+

x
0.8 0.85

-1.4

-1.2

-1

Exact
Uniform
Adaptive

+
+

+

+
+

+

+

x
0.8 0.85

-1.4

-1.2

-1

Exact
Uniform
Adaptive

+Figure 5: One-dimensional linear equation (Example 4.2), zoomed-in 
orners of the solution �gures inFig. 4, k = 2 (left) and k = 3 (right).
algorithm gives satisfactory numerical approximations with N0 = 60 initial cells. For a

better view of the details, we give the zoomed-in plots of two corners in Fig. 5. Higher

resolution of the adaptive-mesh solutions over the uniform-mesh ones is clearly observed.

Example 4.3. One-dimensional Riemann problem with a non-convex flux:




φt +

1

4
(φ2

x − 1)(φ2
x − 4) = 0, −1< x < 1,

φ(x , 0) = −2|x |.
(4.3)

For this test case, the nonlinear limiter described in Section 3 is used in order to obtain

the correct viscosity solution. We give the numerical results at t = 1 in Fig. 6, including the

zoomed-in plots around the interesting features of the solution. It is found that the mesh

refinement and coarsening are moving with the discontinuities of φx . The improvement of

the adaptive solutions is clearly demonstrated by comparing the adaptive-mesh solutions

and the uniform-mesh solutions.
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Figure 6: One-dimensional Riemann problem with a non-
onvex �ux (Example 4.3); solution φ (upper),zoomed-in plots (middle) and mesh 
hanging (lower); k = 2 (left) and k = 3 (right); adaptive-meshsolution: N0 = 40; uniform-mesh solution: N = 80.
Example 4.4. We consider the following two-dimensional Burgers’ equation




φt +

(φx +φy + 1)2

2
= 0, −2< x , y < 2,

φ(x , y, 0) = − cos
�π(x + y)

2

�
,

(4.4)
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Figure 7: Two-dimensional Burgers' equation (Example 4.4), solution φ (upper) and adaptive mesh(lower) at t = 1.5/π2, 40× 40 initial mesh, k = 2 (left) and k = 3 (right).
with periodic boundary conditions.

In Fig. 7 we plot the computed solution φ and the adaptive mesh at t = 1.5/π2. It is

clearly seen that only the cells around the discontinuities of φx are refined. To illustrate the

improvement of the adaptive solutions, in Fig. 8 we show the adaptive-mesh and uniform-

mesh (also using more cells than the average cell number of the adaptive case) solutions

along with the exact solution on the cut-line y = x . The corresponding zoomed-in plots

around the left peak are also shown. We can see that the resolution at the peaks is higher

for the adaptive solutions compared to the solutions obtained with uniform mesh.

Example 4.5. We solve the two-dimensional Riemann problem with a non-convex flux

¨
φt + sin(φx +φy ) = 0, −1< x , y < 1,

φ(x , y, 0) = π(|y| − |x |). (4.5)

For this test case, we also need the nonlinear limiter described in Section 3 to get

the viscosity solution. We give the numerical results at t = 1 in Fig. 9. It is seen that

satisfactory effects of the mesh adaptation are obtained.
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+Figure 8: Two-dimensional Burgers' equation (Example 4.4), solution φ on the 
ut-line y = x (upper)and zoomed-in plots around the left peak (lower); k = 2 (left) and k = 3 (right); adaptive-mesh solution:
N0 = 40× 40; uniform-mesh solution: N = 80× 80.

To gain a better understanding of the effectiveness of the h-adaptive RKDG method

in this paper, for all the cases above we show the corresponding mesh data in Table

1, including (a) N0: number of initial cells; (b) T DT : total dividing times; (c) NT :Table 1: Mesh data.
Case N0 k T DT NT N̄ PR

Example 4.1 10
2 1.0E+2 19 16.7 20.92

3 9.9E+1 20 17.7 22.07

Example 4.2 60
2 4.5E+3 120 116.1 24.19

3 5.7E+3 103 103.8 21.64

Example 4.3 40
2 9.7E+2 50 50.8 15.87

3 5.0E+2 57 62.0 19.36

Example 4.4 1600
2 2.9E+3 4480 3239.4 3.16

3 2.8E+3 4480 3743.5 3.66

Example 4.5 400
2 7.9E+3 3868 2598.2 10.15

3 8.4E+3 6637 4491.8 17.55
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Figure 9: Two-dimensional Riemann problem with a non-
onvex �ux (Example 4.5), solution φ (upper)and adaptive mesh (lower) at t = 1, 20× 20 initial mesh, k = 2 (left) and k = 3 (right).
number of cells at the final time level; (d) N̄ : average number of cells; and (e) PR:

the percentage ratio of N̄ to the number of cells if a fully refined mesh was used, i.e.,

PR = 100N̄/(2d·LEV N0). Total merging times T M T is not shown in the table as it can be

calculated by T M T = T DT − (NT − N0)/(2
d − 1).

In the table we can see that all the values of PR are far less than 100, which means our

adaptive algorithm needs much less cells than the one adopting fixed mesh provide that

they produce comparable solutions at the discontinuities of the derivatives. As a result,

our adaptive algorithm has the advantage of saving the storage space and improving the

solution quality.

5. Concluding remarks

In this paper, an h-adaptive RKDG method for solving Hamilton-Jacobi equations is

presented. A tree data structure (binary tree in one dimension and quadtree in two dimen-

sions) is adopted to aid storage and neighbor finding. Troubled-cell indicator is used to

identify the troubled cells and mesh adaptation is achieved by refining the troubled cells

and coarsening the untroubled children. Numerical results of one- and two-dimensional
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test problems show the capability of our adaptive method in improving the resolution at

the discontinuities of the solution derivatives.
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