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Abstract. We present a simple yet effective and applicable scheme, based on quadra-

ture, for constructing optimal iterative methods. According to the, still unproved, Kung-

Traub conjecture an optimal iterative method based on n+ 1 evaluations could achieve

a maximum convergence order of 2n. Through quadrature, we develop optimal itera-

tive methods of orders four and eight. The scheme can further be applied to develop

iterative methods of even higher orders. Computational results demonstrate that the

developed methods are efficient as compared with many well known methods.
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1. Introduction

Many problems in science and engineering require solving nonlinear equation

f (x) = 0, (1.1)

see, e.g., [1–13]. One of the best known and probably the most used method for solving

the preceding equation is the Newton’s method. The classical Newton method (NM) is

given as follows

xn+1 = xn−
f (xn)

f ′(xn)
, n= 0,1,2,3, · · · , and | f ′(xn)| 6= 0. (1.2)

The Newton’s method converges quadratically [1–13]. There exists numerous modifica-

tions of the Newton’s method which improve the convergence rate (see [1–21] and ref-

erences therein). This work presents a new quadrature based scheme for constructing

optimal iterative methods of various convergence orders. According to the Kung-Traub
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conjecture an optimal iterative method based upon n+ 1 evaluations could achieve a con-

vergence order of 2n. Through the scheme, we construct optimal fourth order and eighth

order iterative methods. Fourth order method requests three function evaluations while

the eighth order method requests four function evaluations during each iterative step. The

next section presents our contribution.

2. Quadrature based scheme for constructing iterative methods

Our motivation is to develop a scheme for constructing optimal iterative methods. To

construct higher order method from the Newton’s method (1.2), we use the following

generalization of the Traub’s theorem (see [16, Theorem 2.4] and [20, Theorem 3.1]).

Theorem 2.1. Let g1(x), g2(x), · · · , gs(x) be iterative functions with orders r1, r2, · · · , rs,

respectively. Then the composite iterative functions

g(x) = g1(g2(· · · (gz(x)) · · · ))
define the iterative method of the orders r1r2r3 · · · rs.

From the preceding theorem and the Newton method (1.2), we consider the fourth

order modified double Newton method










yn = xn−
f (xn)

f ′(xn)
,

xn+1 = yn −
f (yn)

f ′(yn)
.

(2.1)

Since the convergence order of the double Newton method is four and it requires four

evaluations during each step. Therefore, according to the Kung and Traub conjecture, for

the double Newton method to be optimal it must require only three function evaluations.

By the Newton’s theorem the derivative in the second step of the double Newton method

can be expressed as

f ′(yn) = f ′(xn) +

∫ yn

xn

f ′′(t)dt, (2.2)

let us approximate the integral in the preceding equation as follows
∫ yn

xn

f ′′(t)dt =ω1 f (xn) +ω2 f (yn) +ω3 f ′(xn). (2.3)

To determine the real constants ω1, ω2 andω3 in the preceding equation, we consider the

equation is valid for the three functions: f (t) = constant, f (t) = t and t(t) = t2. Which

yields the equations






ω1 +ω2 = 0,

ω1 xn+ω1 yn +ω3 = 0,

ω1 x2
n +ω2 y2

n +ω3 2 xn = 2 (yn − xn).

(2.4)
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Solving the preceding equations and substituting the values in the equations (2.2) and

(2.3), we obtain

f ′(yn) = 2

�

f (yn)− f (xn)

yn − xn

�

− f ′(xn). (2.5)

Combining the double Newton method and preceding approximation for the derivative,

we propose the method (M-4)















yn = xn−
f (xn)

f ′(xn)
,

xn+1 = yn −
f (yn)

2

�

f (yn)− f (xn)

yn − xn

�

− f ′(xn)

.
(2.6)

Since the method (M-4) is fourth order convergent and it requests only three evaluations.

Thus according to the Kung-Traub conjecture it is an optimal method. We prove the fourth

order convergent behavior of the iterative method (2.6) through the following theorem.

Theorem 2.2. Let γ be a simple zero of a sufficiently differentiable function f : D⊂ R 7→ R in

an open interval D. If x0 is sufficiently close to γ, the convergence order of the method (2.6)

is 4 and the error equation for the method is given as

en+1 = −
�

c3c1 − c2
2

�

c2

c3
1

e4
n +O
�

e5
n

�

.

Here, en = xn− γ, cm = f m(γ)/m! with m ≥ 1.

Proof. The Taylor’s expansion of f (x) and f ′(xn) around the solution γ is given as

f (xn) = c1en + c2e2
n + c3e3

n + c4e4
n +O
�

e5
n

�

, (2.7)

f ′(xn) = c1 + 2 c2en + 3 c3e2
n + 4 c4e3

n +O
�

e4
n

�

. (2.8)

Here, we have accounted for f (γ) = 0. Dividing the equations (2.7) and (2.8) we obtain

f (xn)

f ′(xn)
= en −

c2

c1

e2
n − 2

c3c1 − c2
2

c2
1

e3
n −

3 c4c2
1 − 7 c3c2c1 + 4 c3

2

c3
1

e4
n + O
�

e5
n

�

. (2.9)

From the first step of the method (2.6) and the equations (2.7) and (2.8), we obtain

yn = γ+
c2

c1

e2
n + 2

c3c1 − c2
2

c2
1

e3
n +

3 c4c2
1 − 7 c2c3c1 + 4 c3

2

c3
1

e4
n +O
�

e5
n

�

. (2.10)

By the Taylor’s expansion of f (yn) around xn and using the fist step of the method (2.6),

we get

f (yn) = f (xn) + f ′(xn)

�

− f (xn)

f ′(xn)

�

+
1

2
f ′′(xn)

�

− f (xn)

f ′(xn)

�2

+ · · · , (2.11)
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the successive derivatives of f (xn) are obtained by differentiating (2.8) repeatedly. Substi-

tuting these derivatives and using the equations (2.9) into the former equation

f (yn) = c2e2
n + 2

c3c1 − c2
2

c1

e3
n +

3 c4c2
1 − 7 c2c3c1 + 5 c3

2

c2
1

e4
n +O
�

e5
n

�

. (2.12)

Finally substituting from the equations (2.7), (2.8) and (2.12) into the second step of the

contributed method (2.6), we obtain the error equation for the method

en+1 = −
�

c3c1 − c2
2

�

c2

c3
1

e4
n +O
�

e5
n

�

. (2.13)

Therefore the contributed method (2.6) is fourth order convergent. This completes our

proof.

To construct optimal eighth order optimal method, we consider the method






























yn = xn−
f (xn)

f ′(xn)
,

zn = yn −
f (yn)

2

�

f (yn)− f (xn)

yn − xn

�

− f ′(xn)

,

xn+1 = zn −
f (zn)

f ′(zn)
.

(2.14)

Since the order of the method (2.6) is four and order of the method (1.2) is two. Therefore

by the theorem (2.1) convergence order of the method (2.14), which is a combination of

the methods (2.6) and (1.2), is eighth. The method (2.14) require five function evaluations

therefore, according to the Kung-Traub conjecture, it is not an optimal method. To develop

an optimal method let us again express the first derivative by the Newton’s theorem

f ′(zn) = f ′(xn) +

∫ zn

xn

f ′′(t)dt, (2.15)

furthermore let us approximate the integral as follows
∫ zn

xn

f ′′(t)dt = ν1 f (xn) + ν2 f (yn) + ν3 f (zn) + ν4 f ′(xn), (2.16)

to determine the real constants, ν1, ν2, ν3 and ν4 in the preceding equation, we consider

the equation is valid for the four functions: f (t) = constant, f (t) = t, f (t) = t2 and

f (t) = t3. Consequently, we obtain the four equations















ν1 + ν2 + ν3 = 0,

ν1 xn+ ν2 yn + ν3 zn + ν4 = 0,

ν1 x2
n + ν2 y2

n + ν3 z2
n + 2ν4 xn = 2 (zn− xn),

ν1 x3
n + ν2 y3

n + ν3 z3
n + 3ν4 x2

n = 3 (z2
n − x2

n).
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From the preceding equation and the equations (2.15), (2.16), we get

f ′(zn) =−
1

�−yn+ xn

�2 �−zn + yn

��−zn + xn

�

×
h

�−zn + yn

�2 �−zn+ xn

��−yn+ xn

�

f ′(xn)

− �xn− yn

�2 �
2 yn − 3 zn + xn

�

f
�

zn

�

+
�

xn− zn

�3
f
�

yn

�− �yn− zn

�2 �
3 xn− 2 yn− zn

�

f
�

xn

�

i

.

Combining the eighth order method (2.14) and the preceding equation, we propose the

following optimal eighth order iterative method (M-8)






























































yn = xn−
f (xn)

f ′(xn)
,

zn = yn −
f (yn)

2

�

f (yn)− f (xn)

yn − xn

�

− f ′(xn)

,

xn+1 = zn −
f (zn)

�−yn + xn

�2 �−zn + yn

��−zn+ xn

�

×
h

�−zn + yn

�2 �−zn+ xn

��−yn+ xn

�

f ′(xn)

−�xn− yn

�2 �
2 yn − 3 zn+ xn

�

f
�

zn

�

+
�

xn− zn

�3
f
�

yn

�− �yn − zn

�2 �
3 xn− 2 yn − zn

�

f
�

xn

�

i

.

(2.17)

Since the method (M-8) is eighth order convergent and it requests only four evalua-

tions during each iteration. Thus according to the Kung-Traub conjecture it is an optimal

method. We prove the eighth order convergent disposition of the iterative method (2.6)

through the following theorem.

Theorem 2.3. Let γ be a simple zero of a sufficiently differentiable function f : D⊂ R 7→ R in

an open interval D. If x0 is sufficiently close to γ, the convergence order of the method (2.17)

is 8. The error equation for the method (2.17) is given as

en+1 = −
c2
2

�

c3c3
1 c4 − c4c2

1 c2
2 − c2

3 c2
1 c2 + 2 c3c1c3

2 − c5
2

�

c7
1

e8
n +O
�

e9
n

�

.

Proof. Substituting from the equations (2.7), (2.8), (2.9), (2.12) into the second step

of the contributed method (2.17) yields

zn = γ−
�

c3c1 − c2
2

�

c2

c3
1

e4
n − 2

c2c4c2
1 + c2

3 c2
1 − 4 c3c1c2

2 + 2 c4
2

c4
1

e5
n +O
�

e6
n

�

. (2.18)

Here, we have used the first step of the method (2.17). To find a Taylor expansion f (zn),

we consider the Taylor’s series of f (x) around yn

f (zn) = f (yn) + f ′(yn) (zn − yn) +
f ′′(yn)

2
(zn− yn)

2+ · · · , (2.19)
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substituting from Eq. (2.12) and using the second step of the contributed method (2.17),

we obtain

f (zn) = −
�

c3c1 − c2
2

�

c2

c2
1

e4
n − 2

c2c4c2
1 + c2

3 c2
1 − 4 c3c1c2

2 + 2 c4
2

c3
1

e5
n +O
�

e6
n

�

. (2.20)

Here, the higher order derivatives of f (x) at the point yn are obtained by differentiating

the equation (2.12) with respect en. Finally, to obtain the error equation for the method

(2.17), substituting from the equations (2.7), (2.8), (2.12), (2.10), (2.18) and (2.20) into

the third step of the contributed method (2.17) yields the error equation

en+1 = −
c2
2

�

c3c3
1 c4 − c4c2

1 c2
2 − c2

3 c2
1 c2 + 2 c3c1c3

2 − c5
2

�

c7
1

e8
n +O
�

e9
n

�

, (2.21)

which shows that the convergence order of the contributed method (2.17) is 8. This com-

pletes our proof.

3. Numerical examples

Let us review some well known methods for numerical comparison. Based upon the

well known King’s method [19] and the Newton’s method (1.2), recently Li et al. con-

structed a three step and sixteenth order iterative method (LMM)











































yn = xn−
f (xn)

f ′(xn)
,

zn = yn −
2 f (xn)− f (yn)

2 f (xn)− 5 f (yn)

f (yn)

f ′(xn)
,

xn+1 = zn −
f (zn)

f ′(zn)
−

2 f (zn)− f

�

zn−
f (zn)

f ′(zn)

�

2 f (zn)− 5 f

�

zn −
f (zn)

f ′(zn)

�

f

�

zn −
f (zn)

f ′(zn)

�

f ′(zn)
,

(3.1)

see, e.g., [25]. Based upon the Jarratt’s method [13], recently Ren et al. [26, 27] formu-

lated a sixth order convergent iterative family consisting of three steps and two parameters

(RWB)



























yn = xn−
2

3

f (xn)

f ′(xn)
,

zn = xn−
3 f ′(yn) + f ′(xn)

6 f ′(yn)− 2 f ′(xn)

f (xn)

f ′(xn)
,

xn+1 = zn −
(2a− b) f ′(xn) + b f ′(yn) + c f (xn)

(−a− b) f ′(xn) + (3a+ b) f ′(yn) + c f (xn)

f (zn)

f ′(xn)
,

(3.2)
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where a, b, c ∈ R and a 6=0. Wang et al. [27] also developed a sixth order convergent itera-

tive family, based upon the well known Jarratt’s method, for solving non-linear equations.

Their methods consist of three steps and two parameters (WKL)


























yn = xn−
2

3

f (xn)

f ′(xn)
,

zn = xn−
3 f ′(yn) + f ′(xn)

6 f ′(yn)− 2 f ′(xn)

f (xn)

f ′(xn)
,

xn+1 = zn −
(5α+ 3β) f ′(xn)− (3α+ β) f ′(yn)

2α f ′(xn) + 2β f ′(yn)

f (zn)

f ′(xn)
,

(3.3)

where α,β ∈ R and α+ β 6=0. Earlier, Neta [29] has developed a sixth order convergent

family of methods consisting of three steps and one paramete (NETA)


























yn = xn−
f (xn)

f ′(xn)
,

zn = yn −
f (xn) + a f (yn)

f (xn) + (a− 2) f (yn)

f (yn)

f ′(xn)
,

xn+1 = zn −
f (xn)− f (yn)

f (xn)− 3 f (yn)

f (zn)

f ′(xn)
.

We may notice that, in the preceding method, with the choice a = −1 the correcting

factor in the last two steps is the same. Chun and Ham [30] also developed a sixth order

modification of the Ostrowski’s method. Their family of methods consist of three-steps

(CH)


























yn = xn−
f (xn)

f ′(xn)
,

zn = yn −
f (xn)

f (xn)− 2 f (yn)

f (yn)

f ′(xn)
,

xn+1 = zn−H (un)
f (zn)

f ′(xn)
,

(3.4)

where un = f (yn)/ f (xn) andH (t) represents a real valued function satisfyingH (0) = 1,

H ′(0) = 2. In the case

H (t) = 1+ (β + 2)t

1+β t
, (3.5)

the third substep is similar to the method developed by Sharma and Guha [28]. The

classical Chebyshev method is expressed as (CM)

xn+1 = xn−
f (xn)

f ′(xn)

�

1+
1

2

f ′′(xn) f (xn)

f ′(xn)
2

�

, (3.6)

see, e.g., [24] and the classical Halley method is expressed as (HM)

xn+1 = xn−
f (xn)

f ′(xn)

�

2 f ′(xn)
2

2 f ′(xn)
2 − f ′′(xn) f (xn)

�

, (3.7)
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tional evaluations, COC, for various iterative methods.
f (x) x0 HM CM LMM NM RWB NETA CH WKL M-4 M-8

f1(x) 1.2 (27, 3) (27, 3) (24, 16) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18, 4) (16,8)

f2(x) −1.0 (24, 3) (24, 3) (24, 15.5) (22, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18, 4) (16,8)

f3(x) 1.5 (21, 3) (21, 3) (18, 15.8) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18, 4) (16,8)

f4(x) 0.5 (21, 3) (21, 3) (24, 24) (18, 2) (20, 6) (16,7) (16,7) (20, 6) (18, 5) (16,11)

f5(x) 1.3 (24, 3) (24, 3) (24, 16) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18, 4) (16,8)

f6(x) 1.2 (24, 3) (27, 3) (24, 16) (26, 2) (20, 6) (20, 6) (20, 6) (20, 6) (21, 4) (20,8)

f7(x) 0.15 (21, 3) (21, 3) (24, 16) (18,2) (20, 6) (20, 6) (20, 6) (20, 6) (18,4) (20, 8)

f8(x) 1.5 (24, 3) (24, 3) (24, 16) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18,4) (20, 8)

f9(x) −0.8 (24, 3) (24, 3) (24, 16) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18,4) (20, 8)

f10(x) −0.6 (27, 3) (24, 3) (24, 16) (22, 2) (24, 6) (24, 6) (24, 6) (24, 6) (21, 4) (20,8)

f11(x) −0.65 (24, 3) (24, 3) (24, 16) (18, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18, 4) (16,8)

[24]. The convergence order ξ of an iterative method is defined as

lim
n→∞
|en+1|
|en|ξ

= c 6= 0,

and furthermore this leads to the following approximation of the computational order of

convergence (COC)

ρ ≈ ln |(xn+1− γ)/(xn− γ)|
ln |(xn− γ)/(xn−1− γ)|

.

For convergence it is required: |xn+1− xn|< ε and | f (xn)| < ε. Here, ε= 10−320. We test

the methods for the following functions

f1(x) = x3+ 4 x2− 10, γ≈ 1.365,

f2(x) = x exp(x2)− sin2(x)+ 3 cos(x)+ 5, γ≈ −1.207,

f3(x) = sin2(x)− x2+ 1, γ≈ ±1.404,

f4(x) = tan−1 x , γ= 0,

f5(x) = x4+ sinπ/x2− 5, γ=
p

2,

f6(x) = e(−x2+x+2) − 1, γ= 2.0,

f7(x) = (1+ x3) cos
�

π x

2

�

+
p

1− x2 − 2(9
p

2+7
p

3)

27
, γ= 1/3,

f8(x) = sin(2 cos(x))− 1− x2+ esin(x3), γ≈ 1.306,

f9(x) = cos(x)+ sin(2x)
p

1− x2+ sin(x2) + x14 + x3+ 1

2x
, γ≈ −0.9258,

f10(x) =
�

sin(x)−
p

2

2

�2

(x + 1), γ≈ −1,

f11(x) = e−x2+x+2 − cos(x + 1) + x3+ 1, γ≈ −1,

see, e.g., [3–7,20]. Computational results are reported in the Table 1 and the Table 2. The

Table 1 presents (number of functional evaluations, COC during the second last iterative



600 S. K. KhattriTable 2: Generated |xn+1 − xn| with n≥ 1 by the method M-8. For initialization see the Table 1.
f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

1.6× 10−1 2.0× 10−1 9.5× 10−2 4.2× 10−1 1.1× 10−1 7.9× 10−1

3.3× 10−9 2.4× 10−6 4.0× 10−10 1.7× 10−5 1.1× 10−8 8.6× 10−4

6.4× 10−71 1.9× 10−45 6.3× 10−77 3.1× 10−55 2.8× 10−65 2.9× 10−25

1.1× 10−564 2.8× 10−358 2.5× 10−611 1.9× 10−601 5.8× 10−518 5.8× 10−197

*********** *********** *********** *********** *********** 1.3× 10−1570

step) for various methods. While the Table 2 reports |xn+1− xn| for the method M-8. Free

parameters are randomly selected as: for the method RWB a = b = c = 1, in the method

by Chun et al. (CH) β = 1, in the method WKL α= β = 1, in the method NETA a = 10.

An optimal iterative method for solving nonlinear equations must require least number

of function evaluations. In the Table 1, methods which require least number of function

evaluations are marked in bold. We acknowledge, through Table 1, that the contributed

methods in this article are showing better performance to the existing methods in the

literature.
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