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Abstract. In this paper, we give a general proof on convergence estimates for some

regularization methods to solve a Cauchy problem for the Laplace equation in a rect-

angular domain. The regularization methods we considered are: a non-local boundary

value problem method, a boundary Tikhonov regularization method and a generalized

method. Based on the conditional stability estimates, the convergence estimates for

various regularization methods are easily obtained under the simple verifications of

some conditions. Numerical results for one example show that the proposed numerical

methods are effective and stable.
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1. Introduction

In this paper, we consider a Cauchy problem for the Laplace equation in a rectangular

domain as follows

∆u(x , y) = 0, 0< x < π, 0< y < a, (1.1)

u(0, y) = u(π, y) = 0, 0≤ y ≤ a, (1.2)

uy(x , 0) = 0, 0≤ x ≤ π, (1.3)

u(x , 0) = ϕ(x), 0≤ x ≤ π, (1.4)

where a is a positive constant.

Define the family of rectangular regions with parameter 0< σ ≤ a by

Dσ =
n

(x , y)
�

� 0< x < π, 0< y < σ
o

. (1.5)
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Assume that the exact Dirichlet data ϕ ∈ L2(0,π) and the measured data ϕδ ∈ L2(0,π)

satisfy

‖ϕδ −ϕ‖ ≤ δ, (1.6)

where ‖ · ‖ denotes the L2-norm and δ > 0 is a noise level.

Further we assume that the following a-priori bound exists,

‖u(·, a)‖ ≤ E, (1.7)

or a stronger a-priori bound assumption holds












∂ pu

∂ yp
(·, a)













≤ Ep, (1.8)

where E and Ep are positive constants and p ≥ 1 is an integer number.

The problem is to find an approximate solution for problem (1.1)–(1.4) with noisy

data ϕδ instead of ϕ. This is a classical Cauchy problem for Laplace’s equation in a special

domain. It arises in many real applications, such as nondestructive testing [1, 7], geo-

physics [26] and cardiology [8]. It is well known that the problem is typically ill-posed.

That is, any small changes of the Cauchy data may induce large changes of the solutions

(e.g. [15,26]).

Under an additional a-priori bound assumption, a continuous dependence of the solu-

tion on the Cauchy data can be obtained. This is called conditional stability (e.g. [2,21]).

We note that the conditional stability is closely related with the convergence of some reg-

ularization methods. For example, in [6] Cheng et al. provided a relationship between

the convergence rate of the Tikhonov regularization method and conditional stability for

an ill-posed operator equation. In [16] and [17], based on the conditional stability, the

authors gave some convergence estimates for gradient-based methods and general linear

regularization methods to treat with a linear ill-posed operator equation. In this paper,

based on the conditional stabilities of a Cauchy problem, we give a general proof on the

convergence estimates for three special methods for solving the Cauchy problem: the non-

local boundary value problem method, the boundary Tikhonov regularization method and

a generalized method. The first two methods have been investigated extensively in [9,23]

where the authors presented convergence analysis based on the direct error estimates with-

out using conditional stability. As we know, the convergence proof based on conditional

stability for the Cauchy problem of Laplace equation is new issue and the generalized

regularization method does not appear in references.

In [10], Eldén et al. gave an explicit and concrete stability result for problem (1.1),

(1.3)–(1.4) with the homogenous Neumann condition at boundary x = 0 and x = π in

a square domain. By the method in [10] and a small modification, the stability estimate

for a solution of problem (1.1)–(1.4) in a rectangular domain is also obtained which has a

little difference from one in [10] and we show it in the following proposition.

Proposition 1.1. Assume that the function u satisfies (1.1)–(1.4) and
∫ π

0

ϕ2d x ≤ ǫ, ‖u‖2
L2(Da)

≤ M ,



The Cauchy Problem for the Laplace Equation 461

then, for 0< σ < a, the following stability estimate holds,
∫

Dσ

u2d xd y ≤ a1−σ
a M

σ
a ǫ1−σ

a . (1.9)

From Proposition 1.1, we note that the stability estimate (1.9) is not useful at σ =

a. To restore the continuous dependence of the solution at y = a, we use the stronger

assumption (1.8) and obtain a conditional stability result on the boundary y = a which is

displayed in the following Proposition 1.2. The proof is given in Appendix based on the

idea in [22].

Proposition 1.2. Let the function u satisfy (1.1)–(1.4) and assume

‖ϕ‖ ≤ ε,












∂ pu

∂ yp
(·, a)













≤ Ep,

where constants ε > 0, Ep > 0 and integer p ≥ 1. Then, we have the following stability

estimate at y = a,

‖u(·, a)‖ ≤ 2Ep

�

ln
2Ep

ε

�−p

+ 2(1− e−2a)−1 max

¨

µ2p/3,
a3

2
µ2p/3,

a3

2
µ2

«

Ep,

where

µ =

�

ln

�

2Ep

ε
(ln

2Ep

ε
)−p

��−1

.

Due to the ill-posedness of the Cauchy problem for the Laplace equation, numerical

computations are very difficult if there is no a-priori assumption on the exact solution. A

regularization technique is usually required to obtain a stable solution. In the past decades,

several regularization methods have been proposed: Quasi-reversibility method [4, 19],

Tikhonov regularization method [25], the iterative method [12, 20], the conjugate gradi-

ent method [13], moment method [5, 14], discretization method [3, 8, 24] for a Cauchy

problem in a general domain and the modified method [22] in a special domain and so

on. In particular, Takeuchi and Yamamoto in [25] used a Tikhonov regularization method

in a reproducing kernel Hilbert space to solve the Cauchy problem for an elliptic equation

in a general domain.

In this paper, we consider some regularization methods for solving problem (1.1)–

(1.4). Based on Propositions 1.1 and 1.2, the convergence estimates for three special

regularization methods can be easily obtained, see Sections 2–3. Numerical experiments

are also presented in Section 4.

2. A general regularization method

By the separation of variables, it is easy to get the solution of problem (1.1)–(1.4) as

follows

u(x , y) =

∞
∑

n=1

cnXn(x) cosh(ny), (2.1)
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where

Xn(x) :=

r

2

π
sin (nx), n≥ 1, (2.2)

and cn =
∫ π

0
ϕ(ξ)Xn(ξ)dξ.

Note that {Xn}∞n=1 is an orthonormal basis of L2(0,π).

From the following statements we know that problem (1.1)–(1.4) is instable. Choose

un(x , y) = sin (nx)cosh (ny)/n2 (n ≥ 1) as the exact solutions for problem (1.1)–(1.4)

with initial data ϕn(x) = sin (nx)/n2. We find that supx∈[0,π] |ϕn(x)| → 0 as n tends to

infinity, but supx∈[0,π] |un(x , y)| →∞ as n tends to infinity for fixed y > 0. Hence, we can

not use a classical numerical method to solve the Cauchy problem (1.1)–(1.4) and some

regularization techniques are required [11,15,18].

For noisy data ϕδ, denote

cδn =

∫ π

0

ϕδ(ξ)Xn(ξ)dξ. (2.3)

Then the condition (1.6) means

∞
∑

n=1

(cδn − cn)
2 ≤ δ2. (2.4)

Let q(α, n)≥ 0 be a filter function satisfying the following conditions for all n≥ 1:

(a) |q(α, n) cosh(na)| ≤ 1

C1(α)
;

(b) |q(α, n)− 1| ≤ K1(α);

(c) |q(α, n)| ≤ 1

C2(α)
;

(d)

�

�

�

�

q(α, n)− 1

cosh(na)

�

�

�

�

≤ K2(α).

The regularized solution is defined as follows,

uδα(x , y) =

∞
∑

n=1

q(α, n)cδn Xn(x) cosh(ny). (2.5)

It is easy to verify that the regularized solution satisfies the following equation and bound-

ary conditions

∆uδα(x , y) = 0, 0< x < π, 0< y < a,

uδα(0, y) = uδα(π, y) = 0, 0≤ y ≤ a,

∂yuδαu(x , 0) = 0, 0≤ x ≤ π.



The Cauchy Problem for the Laplace Equation 463

According to Proposition 1.1, in order to get a convergence estimate, we only need to

prove that ‖uδα−u‖L2(Da)
is bounded and ‖ϕ−uδα(·, 0)‖ converges to zero as the noisy level

tends to zero.

From (2.1) and (2.5), we have

uδα(x , y)− u(x , y) =

∞
∑

n=1

(q(α, n)cδn − cn)Xn(x) cosh(ny),

=

∞
∑

n=1

�

q(α, n)(cδn − cn) + (q(α, n)− 1)cn

�

Xn(x) cosh(ny). (2.6)

Assumption (1.7) leads to
∑∞

n=1 c2
n cosh2(na) ≤ E2. By the orthonormality of {Xn},

(2.4) and conditions (a)–(b), we obtain

‖uδα(·, y)− u(·, y)‖2

≤2

∞
∑

n=1

�

q2(α, n)(cδn − cn)
2 + (q(α, n)− 1)2c2

n

�

cosh2(ny),

≤2

�

δ2

C2
1 (α)

+ E2K2
1 (α)

�

. (2.7)

Furthermore, we have

‖uδα − u‖2
L2(Da)

≤ 2a

�

δ2

C2
1 (α)

+ E2K2
1 (α)

�

. (2.8)

As for the boundary error, by conditions (c)–(d), we have

‖uδα(·, 0)− u(·, 0)‖2

≤2

∞
∑

n=1

�

q2(α, n)(cδn − cn)
2 + (q(α, n)− 1)2c2

n

�

,

≤2

�

δ2

C2
2 (α)

+ E2K2
2 (α)

�

. (2.9)

Then we have the following convergence estimate between the regularized solution uδα
given by (2.5) and the exact solution u given by (2.1).

Theorem 2.1. Let u be the solution of problem (1.1)–(1.4) with the exact data ϕ and uδα be

the regularized approximate solution given by (2.5) with the filter function q(α, n) satisfying

the conditions (a)–(d). Let the measured data ϕδ fulfill (1.6) and the exact solution u at

y = a satisfy (1.7). If we choose a regularization parameter α = α(δ) such that

(1) δ/C1(α) is bounded;

(2) K1(α) is bounded;
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(3) δ/C2(α)→ 0, as δ→ 0;

(4) K2(α)→ 0, as δ→ 0,

then we have the following convergence estimate for 0< σ < a,

‖uδα − u)‖2
L2(Dσ)

≤2a1−σ
a

�

δ2

C2
1
(α)
+ E2K2

1 (α)

� σ
a
�

δ2

C2
2
(α)
+ E2K2

2 (α)

�1−σ
a

. (2.10)

Note that the estimate (2.10) is not valid at σ = a. Thus in the following we try to give

a convergence estimate at y = a for ‖uδα(·, a)− u(·, a)‖.
According to Proposition 1.2, we only need to prove that







∂ p(uδα−u)

∂ yp (·, a)




 is bounded

and ‖ϕ− uδα(·, 0)‖ converges to zero as the noisy level δ tends to zero.

Hereafter we assume that the filter function q(α, n) satisfies conditions (b)–(d) as well

as the following condition (aa) for integer p ≥ 1:

(aa) |q(α, n)np cosh(na)| ≤ 1

C3(α)
.

Suppose the a-priori bound condition (1.8) holds, then we know,













∂ pu

∂ yp
(·, a)













2

=







∞
∑

n=1

c2
nn2p cosh2(na)≤ E2

p , p is even,

∞
∑

n=1

c2
nn2p sinh2(na)≤ E2

p , p is odd.

(2.11)

From (2.6), we have

∂ p(uδα − u)

∂ yp
(x , y) =







∞
∑

n=1

(q(α, n)cδn − cn)Xn(x)n
p cosh(ny), p is even,

∞
∑

n=1

(q(α, n)cδn − cn)Xn(x)n
p sinh(ny), p is odd,

=







∞
∑

n=1

�

q(α, n)(cδn − cn) + (q(α, n)− 1)cn

�

Xn(x)n
p cosh(ny), p is even,

∞
∑

n=1

�

q(α, n)(cδn − cn) + (q(α, n)− 1)cn

�

Xn(x)n
p sinh(ny), p is odd.

By the orthonormality of {Xn} and (2.11), for any integer p ≥ 1, we obtain










∂ p(uδα− u)

∂ yp
(·, a)










2

≤







2
∞
∑

n=1

�

q2(α, n)(cδn − cn)
2 + (q(α, n)− 1)2c2

n

�

n2p cosh2(na), p is even,

2
∞
∑

n=1

�

q2(α, n)(cδn − cn)
2 + (q(α, n)− 1)2c2

n

�

n2p sinh2(na), p is odd,

≤2

�

δ2

C2
3 (α)

+ E2
pK2

1 (α)

�

.
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For the boundary error, by conditions (c)–(d), note that

cosh(na)

sinh(na)
≤ 2(1− e−2a)−1,

we have

‖uδα(·, 0)− u(·, 0)‖

≤
 ∞
∑

n=1

q2(α, n)(cδn − cn)
2

! 1

2

+

 ∞
∑

n=1

(q(α, n)− 1)2c2
n

! 1

2

≤ δ

C2(α)
+

2Ep

1− e−2a
K2(α).

Thus we have the following convergence estimate at boundary y = a.

Theorem 2.2. Let u be the solution of problem (1.1)–(1.4) with the exact data ϕ and uδα be

the regularized approximate solution given by (2.5) with the filter function q(α, n) satisfying

the conditions (aa) and (b)–(d). Let the measured data ϕδ fulfill (1.6) and the exact solution

u at y = a satisfy (1.8). We choose a regularization parameter α= α(δ) such that

(i) δ/C3(α) is bounded;

(ii) K1(α) is bounded;

(iii) δ/C2(α)→ 0, as δ→ 0;

(iv) K2(α)→ 0, as δ→ 0.

Then the following convergence estimate holds at y = a,

‖uδα(·, a)− u(·, a)‖

≤2Ẽp

�

ln
2Ẽp

ε̃

�−p

+ 2(1− e−2a)−1 max

¨

µ̃2p/3,
a3

2
µ̃2p/3,

a3

2
µ̃2

«

Ẽp,

where

Ẽp =
p

2

�

δ

C3(α)
+ EpK1(α)

�

, ε̃=
δ

C2(α)
+

2Ẽp

1− e−2a
K2(α),

µ̃ =

�

ln

�

2Ẽp

ε̃
(ln

2Ẽp

ε̃
)−p

��−1

.

3. Three special regularization methods

In this section, we consider three special regularization methods: the non-local bound-

ary value problem method, the boundary Tikhonov regularization method and a general-

ized method. The convergence estimates for 0< y ≤ σ < a and y = a will be given in the

following subsections, respectively.
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3.1. The non-local boundary value problem method

Take the filter function as

q(α, n) =
1

1+α cosh(na)
. (3.1)

With this filter function, we can prove that uδα given by (2.5) is a solution of the following

well-posed mixed boundary value problem

∆uδα(x , y) = 0, 0< x < π, 0< y < a, (3.2)

uδα(0, y) = uδα(π, y) = 0, 0≤ y ≤ a, (3.3)

∂yuδα(x , 0) = 0, 0≤ x ≤ π, (3.4)

uδα(x , 0)+αuδα(x , a) = ϕδ(x), 0≤ x ≤ π. (3.5)

The convergence estimate for 0< y ≤ σ < a will be shown in the following theorem.

Theorem 3.1. Let u be the solution of problem (1.1)–(1.4) and uδα be the regularized solution

given by (3.2)–(3.5). Let the measured data ϕδ fulfill (1.6) and let the exact solution u at

y = a satisfy (1.7). If we choose the regularization parameter α = cδ for a constant c > 0,

then we have the convergence estimate for 0< σ < a as follows

‖uδα − u‖2
L2(Dσ)

≤ 2a1−σ
a c−

2σ
a

�

1+ E2c2
�

δ2(1−σ
a
). (3.6)

Proof. Note that in this case the filter function q is given by (3.1), it is easy to check

(1) |q(α, n) cosh(na)| = cosh(na)

1+α cosh(na)
≤ 1

α
, thus C1(α) = α, δ/C1(α) = 1/c is bounded;

(2) |q(α, n)− 1| ≤ 1, thus K1(α) = 1 is bounded;

(3) |q(α, n)|= 1

1+α cosh(na)
≤ 1, thus C2(α) = 1 and δ/C2(α)→ 0 as δ→ 0;

(4) | q(α,n)−1

cosh(na)
| ≤ α, thus K2(α) = α= cδ→ 0 as δ→ 0.

By Theorem 2.1, we know the estimate (3.6) is true. �

Remark 3.1. In this method, condition (aa) is not satisfied, so the convergence result at

boundary y = a can not be obtained by Proposition 2.2. However, the convergence at

y = a is also true, refer to [27] where taking k = 0.

3.2. The boundary Tikhonov regularization method

Take the filter function as

q(α, n) =
1

1+α cosh2(na)
. (3.7)
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We can prove that for this case the regularized solution uδα is a solution of a well-posed

direct problem with a Tikhonov regularized boundary value at y = a.

Define an operator K : f (x) ∈ L2(0,π) 7→ v(x , 0) ∈ L2(0,π), where v(x , y) is a solution

of the following direct problem,

∆v(x , y) = 0, 0< x < π, 0< y < a, (3.8)

v(0, y) = v(π, y) = 0, 0≤ y ≤ a, (3.9)

vy(x , 0) = 0, 0≤ x ≤ π, (3.10)

v(x , a) = f (x), 0≤ x ≤ π. (3.11)

It is easy to show that the solution

v(x , y) =

∞
∑

n=1

∫ π

0

f (ξ)Xn(ξ)dξXn(x) cosh(ny)(cosh(na))−1. (3.12)

Therefore

K f :=

∫ π

0

k(x ,ξ) f (ξ)dξ= v(x , 0), (3.13)

where the kernel function k(x ,ξ) =
∑∞

n=1 Xn(x)Xn(ξ)(cosh(na))−1.

Due to the term (cosh(na))−1, we know that the kernel function k(x ,ξ) is in C∞([0,π]×
[0,π]), thus the operator K is linear, bounded, self-adjoint, compact from L2(0,π) to

L2(0,π) (cf. [18]). It is not hard to check its singular system is {(µn, Xn(ξ), Xn(x))}∞n=1

where µn = (cosh(na))−1.

Let f δα be the solution for the following minimization problem,

min
f ∈L2(0,π)

‖K f −ϕδ‖2 +α‖ f ‖2. (3.14)

By Theorem 2.11 of Chapter 2 in [18], we know that

f δα (x) =

∞
∑

n=1

cosh (na)

1+α cosh2 (na)
cδn Xn(x), (3.15)

where cδn is given by (2.3).

Then we can prove that the regularized solution uδα given by (2.5) with filter function

(3.7) is the solution of the following direct problem

∆uδα(x , y) = 0, 0< x < π, 0< y < a, (3.16)

uδα(0, y) = uδα(π, y) = 0, 0≤ y ≤ a, (3.17)

∂yuδα(x , 0) = 0, 0≤ x ≤ π, (3.18)

uδα(x , a) = f δα (x), 0≤ x ≤ π. (3.19)

In the following theorem, we will give the error estimates between the regularization

solution uδα given by (2.5) and the exact solution u given by (2.1).
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Theorem 3.2. Let u be the solution of problem (1.1)–(1.4) with the exact data ϕ and uδα be

the solution for (3.16)–(3.19). Let the measured data ϕδ fulfill (1.6). If the exact solution u

at y = a satisfy (1.7) and the regularization parameter α is chosen as α = cδ2 where c > 0

is a constant, then for fixed 0< σ < a, we have the following convergence estimate,

‖uδα − u‖2
L2(Dσ)

≤ 2a1−σ
a

�

1

4c
+ E2

�σ
a
�

1+
1

4
cE2

�1−σ
a

δ2(1−σ
a
). (3.20)

Moreover, if the exact solution u(·, a) satisfy (1.8), and the regularization parameter is

chosen as α = c̃δ with a constant c̃ > 0, then we can obtain the following convergence

estimate,

‖uδα(·, a)− u(·, a)‖ (3.21)

≤2Ẽp

�

ln
2Ẽp

ε̃

�−p

+ 2(1− e−2a)−1 max

¨

µ̃2p/3,
a3

2
µ̃2p/3,

a3

2
µ̃2

«

Ẽp,

where

Ẽp =
p

2

�

2p !

c̃ap
+ Ep

�

,

ε̃= δ+
Ẽp

1− e−2a
c̃1/2δ1/2,

µ̃ =

�

ln(
2Ẽp

ε̃
(ln

2Ẽp

ε̃
)−p)

�−1

.

Proof. Note that 0< y < σ and the filter function q is given by (3.7), it is easy to check

(1) |q(α, n) cosh(na)| = cosh(na)

1+α cosh2(na)
≤ 1

2
p
α

, so C1(α) = 2
p
α, δ/C1(α) =

1

2
p

c
is bounded;

(2) |q(α, n)− 1| ≤ 1, so K1(α) = 1 is bounded;

(3) |q(α, n)|= 1

1+α cosh2(na)
≤ 1, thus C2(α) = 1 and δ/C2(α)→ 0 as δ→ 0;

(4) | q(α,n)−1

cosh(na)
| ≤ pα/2, so K2(α) =

p
α/2=

p
cδ/2→ 0 as δ→ 0.

By Theorem 2.1, we know the convergence estimate (3.20) is true.

It is easy to see the conditions (ii) and (iii) in Theorem 2.2 are satisfied. Furthermore,

we have

(i) |q(α, n)np cosh(na)| = np cosh(na)

1+α cosh2(na)
≤ a−p (na)p

α cosh(na)
≤ 2p !

apα
, thus C3(α) =

apα

2p !
, by the

choice of α = c̃δ, we know δ/C3(α) =
2p !

ap c̃
is bounded;

(iv) K2(α) =
p
α/2=

p
c̃δ/2→ 0 as δ→ 0.

Hence, by Theorem 2.2, the conclusion (3.21) is true. �
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3.3. A generalized method

Take the filter function as

q(α, n) =
1

1+α coshν(na)
, ν > 2. (3.22)

Then we can obtain the following error estimates for uδα.

Theorem 3.3. Let u be the solution of problem (1.1)–(1.4) with the exact data ϕ and uδα
be the regularized approximation solution given by (2.5) with a filter function (3.22). Let

the measured data ϕδ fulfill (1.6). If the exact solution u at y = a satisfy (1.7) and the

regularization parameter α is chosen as α = cδν where c > 0 is a constant, then for fixed

0< σ < a, we have the following convergence estimate,

‖uδα − u‖2
L2(Dσ)

≤2a1−σ
a

 

(ν − 1)2

ν2(ν − 1)
2

ν c
2

ν

+ E2

! σ
a
 

1+
(ν − 1)2

ν2(ν − 1)
2

ν

c
2

ν E2

!1−σ
a

δ2(1−σ
a
). (3.23)

Moreover, if the exact solution u(·, a) satisfy (1.8), and the regularization parameter is

chosen as α = c̃δ
ν
2 with a constant c̃ > 0, then we can obtain the following convergence

estimate,

‖uδα(·, a)− u(·, a)‖

≤2Ẽp

�

ln
2Ẽp

ε̃

�−p

+ 2(1− e−2a)−1 max

¨

µ̃2p/3,
a3

2
µ̃2p/3,

a3

2
µ̃2

«

Ẽp, (3.24)

where

Ẽp =
p

2

�

2a−pp!
(ν − 2)

ν
(2/(ν − 2))2/ν c̃−

2

ν + Ep

�

,

ε̃= δ+
2Ẽp

1− e−2a
ν−1(ν − 1)1−

1

ν c̃
1

ν δ
1

2 ,

µ̃ =

�

ln

�

2Ẽp

ε̃
(ln

2Ẽp

ε̃
)−p

��−1

.

Proof. Note that 0 < y < σ < a and the filter function q is given by (3.22), it is easy to

check

(1) |q(α, n) cosh(na)| = cosh(na)

1+α coshν (na)
. Denote f (ξ) =

cosh(ξ)

1+α coshν (ξ)
. Let f

′
(ξ) = 0. Then we

have coshν(ξ) = 1

α(ν−1)
. Further we can prove that

f (ξ)≤ ν − 1

ν(ν − 1)
1

ν

α−
1

ν for ξ ≥ 0.

So in this case, C1(α) =
ν(ν−1)

1
ν

ν−1
α

1

ν and δ/C1(α) =
ν−1

ν(ν−1)
1
ν c

1
ν

is bounded;



470 T. Wei, H. H. Qin and H. W. Zhang

(2) |(q(α, n)− 1)
cosh(ny)

cosh(na)
| ≤ 1, so K1(α) = 1 is bounded;

(3) |q(α, n)|= 1

1+α coshν (na)
≤ 1, thus C2(α) = 1 and δ/C2(α)→ 0 as δ→ 0;

(4) | q(α,n)−1

cosh(na)
| ≤ α coshν−1(na)

1+α coshν (na)
. Denote g(ξ) =

coshν−1(ξ)

1+α coshν (ξ)
. Let g

′
(ξ) = 0, we have coshν(ξ) =

ν−1

α
> 0. Further we can prove that

g(ξ)≤ ν−1(ν − 1)1−
1

ν α
1

ν
−1

for all ξ≥ 0. Thus we have
�

�

�

�

q(α, n)− 1)

cosh(na)

�

�

�

�

≤ ν−1(ν − 1)1−
1

ν α
1

ν .

Consequently,

K2(α) = ν
−1(ν − 1)1−

1

ν α
1

ν = ν−1(ν − 1)1−
1

ν c
1

ν δ→ 0 as δ→ 0.

By Theorem 2.1, the error estimate (3.23) is obtained.

For the filter function q given by (3.22), we can check that

(i) |q(α, n)np cosh(na)| ≤ a−p2p!
cosh2(na)

1+α coshν (na)
. Denote f (ξ) =

cosh2(ξ)

1+α coshν (ξ)
. Let f

′
(ξ) = 0.

Then we have cosν(ξ) = 2

α(ν−2)
. Further we can prove that

T f (ξ)≤ ν − 2

ν
(2/(ν − 2))2/να−

2

ν for ξ≥ 0.

So in this case, C3(α) =
ap

2p!

ν

ν−2
((ν − 2)/ν)2/να

2

ν and δ/C3(α) = a−p2p!ν−2

ν
(2/(ν −

2))2/ν c̃−
2

ν is bounded;

(iv) In this case, K2(α) = ν
−1(ν − 1)1−

1

ν α
1

ν = ν−1(ν − 1)1−
1

ν c̃
1

ν δ1/2→ 0 as δ→ 0.

By Theorem 2.2, the estimate (3.24) is obtained. �

4. Numerical example

In this section, we test one numerical example to show the effectiveness of the three

special regularization methods.

Consider the following direct problem for the Laplace equation:

∆u(x , y) = 0, 0< x < π, 0< y < a. (4.1)

u(x , a) = x2(π− x)2+ sin x cosh a, 0≤ x ≤ π. (4.2)

uy(x , 0) = 0, 0≤ x ≤ π. (4.3)

u(0, y) = u(π, y) = 0, 0≤ y ≤ a. (4.4)
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Separation of variables leads to the solution of problem (4.1)–(4.4) as follows,

u(x , y) =

∞
∑

n=1

(u(x , a), Xn)Xn cosh (ny)(cosh (na))−1, (4.5)

where Xn are given by (2.2).

Then, we choose

ϕ(x) = u(x , 0)≈
m
∑

n=1

(u(x , a), Xn)Xn(cosh (na))−1,

as the initial data for problem (1.1)–(1.4) with m= 21. The measured data ϕδ(x) is given

by ϕδ(x) = ϕ(x)+ ǫ(3− x)(1− x), where ǫ denotes an error level.

In the following numerical experiments, we always choose a = 1.
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(a) y = 0.2.
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(c) y = 0.8.Figure 1: u(·, y) and uδ
α
(·, y) with E = 8.8 and ǫ = 5× 10−3.
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(c) y = 0.8.Figure 2: u(·, y) and uδ
α
(·, y) with E = 8.8 and ǫ = 5× 10−2.

The numerical results for u(x , y) and uδα(x , y) with ǫ = 5×10−3, 5×10−2 and δ = 1.9ǫ

at y = 0.2,0.5,0.8 are shown in Figs. 1–2 in which E is chosen by (1.7). In Figs. 1–2,

“non-local” denotes numerical result with the filter function q(α, n) given by (3.1) and

the regularization parameter α = δ; “Tikhonov” denotes numerical result with the filter

function q(α, n) given by (3.7) and the regularization parameter is chosen as α = δ2;

“general” denotes numerical result with the filter function q(α, n) given by (3.22) and the

regularization parameter is chosen as α= δ4.

From Figs. 1–2, it can be observed that the proposed regularized methods work ef-

fectively. We also note that the numerical results become discouraging when the error

level increases which indicates that the proposed methods are sensitive to the noise but

have good improvements with the increase of parameter ν . Meanwhile, we find that the

numerical results become worse when the value of y approaches to 1.

The numerical results for u(·, 1) and uδα(·, 1) with ǫ = 5× 10−3 and ǫ = 5× 10−2 are

shown in Figs. 3–4 in which Ep is chosen by (1.8).
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(a) ǫ = 5× 10−3.
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(b) ǫ = 5× 10−2.Figure 3: u(·, 1) and uδ
α
(·, 1) with p = 1 and E1 = 9.4.
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(b) ǫ = 5× 10−2.Figure 4: u(·, 1) and uδ
α
(·, 1) with p = 2 and E2 = 17.2.

In Figs. 3 and 4, "Tikhonov" denotes numerical result with the filter function q(α, n)

given by (3.7) and the regularization parameter α = δ and "general" denotes numerical

results with the filter function q(α, n) given by (3.22) for ν = 4 and the regularization

parameter α= δ2.

From Figs. 3–4, we observe that the proposed numerical methods are effective and

give the good approximations at y = a. We also note that the numerical solutions at y = a

become discouraging with the increase of the noisy level.

5. Conclusions

In this paper, we consider a Cauchy problem for the Laplace equation in a rectangu-

lar domain. Three special regularization methods: the boundary Tikhonov regularization
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method, the non-local boundary value problem method and a generalized method are in-

vestigated. Convergence estimates based on the conditional stabilities are given under

different conditions. Some numerical results show that the proposed methods are effective

and stable. All proposed methods can be also used to solve the Cauchy problem with the

Neumann boundary conditions at x = 0 and x = π without a big difference.

Although we consider the Cauchy problem only in a rectangular domain, since the

stability results are also satisfied in a general domain, based on the similar idea, we can

presume upon the convergence proof for some regularization methods while solving the

Cauchy problem in a general domain. However, to deal with such a case, it will become

more difficult because we do not have an explicit expression on solution. The detailed

comparison with other available techniques, such as the proposed method in [19,25], will

be considered in our future research. This paper indicates that the conditional stability is

closely related with the convergence of some regularization methods.

Appendix

Proof of Theorem 2.1: The solution of problem (1.1)–(1.4) is given by (2.1), denote

τ = n/
p

1+µ2n2a2, then we have

u(x , a) =

∞
∑

n=1

cnXn (cosh(na)− cosh(τa))+

∞
∑

n=1

cnXn (cosh(τa)) , (A.1)

and

‖u(·, a)‖ ≤




∞
∑

n=1

c2
n (cosh(na)− cosh(τa))2





1

2

+





∞
∑

n=1

c2
n (cosh(τa))2





1

2

. (A.2)

The condition ‖ϕ‖ ≤ ε leads to
∞
∑

n=1

c2
n ≤ ε2. (A.3)

The assumption










∂ pu

∂ yp (·, a)








≤ Ep means

∞
∑

n=1

c2
nn2p cosh2(na)≤ E2

p , for p is even, (A.4)

or ∞
∑

n=1

c2
nn2p sinh2(na)≤ E2

p , for p is odd. (A.5)

Combining (A.3) and (A.4) or (A.5), we have estimate

‖u(·, a)‖ ≤ sup
n≥1

A(n)Ep+ sup
n≥1

B(n)ε, (A.6)
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where B(n) = cosh(τa) and

A(n) =

�

�

�

�

cosh(na)− cosh(τa)

np cosh(na)

�

�

�

�

, for p is even, (A.7)

or

A(n) =

�

�

�

�

cosh(na)− cosh(τa)

np sinh(na)

�

�

�

�

, for p is odd. (A.8)

Similar to the proof of Theorem 2.4 in [22] (P.484) and choosing

µ =

�

ln
�2Ep

ε

�

ln
2Ep

ε

�−p�
�−1

,

we derive that

B(n)ε≤ 2Ep

�

ln
2Ep

ε

�−p

, for n≥ 1,

which yields

sup
n≥1

B(n)ε≤ 2Ep

�

ln
2Ep

ε

�−p

.

Moreover

A(n)Ep ≤max

¨

µ2p/3,
a3

2
µ2p/3,

a3

2
µ2

«

Ep, for p is even. (A.9)

For odd p, we give the following estimate

A(n)Ep =

�

�

�

�

cosh(na)− cosh(τa)

np cosh(na)

�

�

�

�

·
�

�

�

�

cosh(na)

sinh(na)

�

�

�

�

Ep

≤2(1− e−2a)−1

�

�

�

�

cosh(na)− cosh(τa)

np cosh(na)

�

�

�

�

Ep

≤2(1− e−2a)−1 max

¨

µ2p/3,
a3

2
µ2p/3,

a3

2
µ2

«

Ep. (A.10)

Finally, we have

‖u(·, a)‖ ≤ 2Ep

�

ln
2Ep

ε

�−p

+ 2(1− e−2a)−1 max

¨

µ2p/3,
a3

2
µ2p/3,

a3

2
µ2

«

Ep.
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