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Abstract. The state equations of stochastic control problems, which are controlled
stochastic differential equations, are proposed to be discretized by the weak midpoint
rule and predictor-corrector methods for the Markov chain approximation approach.
Local consistency of the methods are proved. Numerical tests on a simplified Merton’s
portfolio model show better simulation to feedback control rules by these two meth-
ods, as compared with the weak Euler-Maruyama discretisation used by Krawczyk. This
suggests a new approach of improving accuracy of approximating Markov chains for
stochastic control problems.
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1. Introduction

Many applications in finance and economics, such as the portfolio management prob-
lem, can be formulated as continuous time and continuous state stochastic control prob-
lems. These problems consists of the minimization of the cost function (in the finite horizon
case)

J(τ, x ; u) = E

�
∫ T

τ

L(x(t),u(x(t)), t)d t + s(x(T ))

�

�

�x(τ) = x

�

(1.1)

by choosing the optimal Markov feedback control policy û(x) ∈ U (x) ⊂ Rm, for all states
x ∈ R ⊂ Rn, subject to the state equation

d x(t) = f (x(t),u(x(t)), t)d t + g(x(t),u(x(t)), t)dW (t), (1.2)
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which is a controlled stochastic differential equation (CSDE). Here f : Rn×Rm×[0,+∞] 7→
R

n, g : Rn×Rm×[0,+∞] 7→ Rn×d are continuous functions and satisfy conditions that are
sufficient to have a solution for (1.2), and W (t) is a d-dimensional Brownian motion. U (x)
is called the set of admissible controls given x , and R is the state space. The optimized
cost function, denoted by Ĵ(τ, x), is also called the optimal value function. That is,

Ĵ(τ, x) =min
u∈U

J(τ, x ; u) = J(τ, x ; û).

Except for some simple cases, e.g., those in [3,4,10], explicit solutions of continuous-
time, continuous-state stochastic optimal control problems are very rare, and therefore
numerical methods arise. The Markov chain approximation method is an efficient nu-
merical approach which is widely used in financial economics. It goes back to Kushner
(1977) and is described in Kushner and Dupuis [9]. The basic idea is to approximate the
continuous-time, continuous-state problem by a discrete-time, discrete-state Markov chain
model.

Krawczyk [7] proposed a totally different approach of finding transition probabilities
based on discretisation of state equations, which is quite simple, intuitive and easy to
understand. Effectiveness of his method is shown by [2, 7, 8]. The method of Krawczyk
arouses our interest of investigating other numerical discretisations of the CSDE (1.2), as
well as observing and comparing their effects on the final choice of the optimal control
policy. As an example, we apply the midpoint rule instead of the Euler-Maruyama method
to (1.2). The predictor-corrector methods (p-ck) is also proposed in case of, e.g., nonlinear
f or g.

Section 2 introduces the method of Krawczyk. The midpoint rule, p-ck methods, and
the Stratonovich stochastic differential equations, with which the midpoint rule is consis-
tent, are stated in Section 3, where local consistency of Markov chains arising from the two
kinds of methods are proved. Section 4 shows application of the two methods to a simpli-
fied Merton’s portfolio model [7], and numerical experiments are performed in Section 5.
Section 6 is a brief conclusion.

2. The method by Krawczyk

In the Markov chain approximation method, the state x(t) is approximated by the
Markov chain

ξh = {ξh
k|k ∈ N0} ⊂ Rh, (2.1)

where Rh is the discrete state space, and h= (h1, · · · ,hn) ∈ Rn
+ is the state-step vector, and

the cost function (1.1) is correspondingly changed to

Jh,∆th

(τ, x ; uh) = E

� N−1
∑

k=0

L(ξh
k,uh

k, th
k)∆th

k + s(ξh
N )|ξh

0 = x

�

. (2.2)

By choosing the Markov chain, its consistency with the state equation (1.2) is required.
After the discrete model is constructed, the task then is to find the discrete optimal control

ûh(x) for all x ∈ Rh to minimize the function Jh,∆th

in (2.2).
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Denote Ĵh,∆th

(τ, x) = infu∈U Jh,∆th

(τ, x ; u), it is deduced that

Ĵh,∆th

(τ, x) =min
u∈U

�

L(x ,u,τ)∆th(x ,u,τ)

+
∑

y∈Rh

ph,∆th

(x , y|u)Ĵh,∆th

(τ+∆th(x ,u,τ), y)

�

,

with the boundary condition Ĵh,∆th

(x , T ) = s(x). This is called the dynamic programming

equation (DPE), where ph,∆th

(x , y|u) is the one-step transition probability from state x to
y under the control u. û and Ĵ can be found by backward iteration algorithms on the
DPE [9].

Classically, the determination of transition probabilities is based on the following par-
tial differential equation, which is formally satisfied by the cost function J(t, x ; u):

Jt(t, x ; u) +Du(x)J(t, x ; u) + L(x ,u(x)) = 0, x ∈ Rn, t < T, (2.3)

where

DuJ(t, x) := Jx (t, x)T f (x ,u, t) +
1

2
t r(Jx x (t, x)g(x ,u, t)g(x ,u, t)T ),

and the boundary condition is J(x , T ; u) = s(x). Applying finite difference discretisation
to the second order PDE (2.3), the transition probabilities from x to its neighboring states
can be determined [9,13].

Instead of Eq. (2.3), Krawczyk discretized the controlled stochastic differential equa-
tion (1.2) by using the weak Euler-Maruyama scheme. His method is briefly introduced
below.

For the sake of simplicity, let the dimension of x and W (t) equal 1. The Euler-
Maruyama method applied to (1.2) gives

Yl+1 = Yl + δ f (Yl ,ul ,τl) + g(Yl ,ul ,τl)∆Wl , (2.4)

where δ = T/N is the time discretisation step, l = 0,1, · · ·N −1,∆Wl =W (τl+1)−W (τl),
and ul = u(x(τl)). Denote the discrete state space for time stage l by R̄l ⊂ R1, and
Ūl = max R̄l , L̄l = min R̄l . Then the discrete state space is {R̄l}Nl=0. Define the adjacency
of states in the following way.

• Two states of R̄l are adjacent if no other state of R̄l lies between them.

• Given a point of the continuous state space, x ∈ R , a pair of states, x̄⊖ ∈ R̄l and
x̄⊕ ∈ R̄l , is adjacent to x if the states are adjacent and x̄⊖ < x < x̄⊕.

• Given x ∈ R with x ≥ Ūl , define Ūl to be adjacent to x .

• Given x ∈ R with x ≤ L̄l , define L̄l to be adjacent to x .

• Given x ∈ R with x ∈ R̄l , define x to be adjacent to itself.
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Suppose Yl = Ȳl ∈ R̄l at stage l. Since ∆Wl = ζ
p
δ, and ζ ∼ N (0,1), simulating ζ

with a two-point distributed random variable ζ̃ with P(ζ̃ = ±1) = 1
2
, one gets a two-point

distribution approximation ∆W̃l for ∆Wl with

P(∆W̃l = ±
p

δ) =
1

2
. (2.5)

According to (2.4), given the control ul , Y evolves from Ȳl to

Y−
l+1 = Ȳl + δ fl − gl

p

δ with prob.
1

2
, (2.6a)

Y+
l+1 = Ȳl + δ fl + gl

p

δ with prob.
1

2
, (2.6b)

where
fl = f (Ȳl ,ul ,τl), gl = g(Ȳl ,ul ,τl).

If Y−
l+1 /∈ R̄l+1 but there exist Ȳ−⊖

l+1 < Ȳ−⊕
l+1 in R̄l+1 adjacent to Y−

l+1, then the transition
probabilities are defined as

p(Ȳl , Ȳ−⊕
l+1 |ul) =

1

2

Y−
l+1− Ȳ−⊖

l+1

Ȳ−⊕
l+1 − Ȳ−⊖

l+1

, (2.7a)

p(Ȳl , Ȳ−⊖
l+1 |ul) =

1

2

Ȳ−⊕
l+1 − Y−

l+1

Ȳ−⊕
l+1 − Ȳ−⊖

l+1

. (2.7b)

Similarly, if Y+
l+1 /∈ R̄l+1 but there exist Ȳ+⊖

l+1 < Ȳ+⊕
l+1 in R̄l+1 adjacent to Y+

l+1, then

p(Ȳl , Ȳ+⊕
l+1 |ul) =

1

2

Y+
l+1− Ȳ+⊖

l+1

Ȳ+⊕
l+1 − Ȳ+⊖

l+1

, (2.8a)

p(Ȳl , Ȳ+⊖
l+1 |ul) =

1

2

Ȳ+⊕
l+1 − Y+

l+1

Ȳ+⊕
l+1 − Ȳ+⊖

l+1

. (2.8b)

If any of the states, for example Ȳ+⊖
l+1 and Ȳ−⊕

l+1 overlap each other, the respective proba-
bilities must be summed up. This is the so-called inverse distance method of determining
transition probabilities in [7].

3. The midpoint rule and p-ck methods

By numerically solving stochastic differential equations, consistency of the numerical
methods with the kind of stochastic differential equations is of essential importance, as
shown by the example about inconsistency between the Heun methods and the Itô SDEs
in [5].

In application, there are two kinds of frequently used stochastic differential equations,
the Itô and Stratonovich equations. Due to their definitions, the solutions of the two kinds
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of equations are usually different under the same drift and diffusion coefficient functions.
However, they can transform to each other by adding or subtracting one term. Explicitly,
the Itô SDE

d x = a(t, x)d t + b(t, x)dW (t) (3.1)

is equivalent to its Stratonovich form

d x = a(t, x)d t + b(t, x) ◦ dW(t)− 1

2

∂ b

∂ x
(t, x)b(t, x)d t, (3.2)

which means that (3.1) and (3.2) have the same solution [6,11]. Writing a small ’◦’ before
dW (t) in (3.2) is a convention of denoting Stratonovich stochastic differential equations.
In application, each of the two kinds of equations has its advantage, for example, the

indefinite Itô integral
∫ t

0
GdW is a martingale, while the ordinary differential chain rule

holds for the Stratonovich differentials.

For SDEs of Stratonovich sense, the midpoint rule is proved to be convergent [12]. As
an implicit method, the midpoint rule is usually stable and more accurate than the explicit
Euler method. The cost, however, is that one must deal with the implicitness with fixed-
point iteration in case of nonlinear coefficient functions. One kind of such iteration is the
predictor-corrector approach. The predictor is usually an explicit method, which produces
from xn an initial approximation x̃n+1 to xn+1, which is used as the initial point of iteration
on the corrector. One calls, for example, a p-ck method of Euler and midpoint rule to refer
to a predictor-corrector method with k times of corrections, for which the Euler method is
the predictor, and the midpoint rule the corrector.

In numerical time-discretisation of the CSDE (1.2), there is an additional term u to
be treated. However, subject to the backward iteration algorithms used for finding the
optimal control and value [7], the control u should always be taken as u(xn) by searching
xn+1 from xn, no matter what kind of numerical method is used.

We propose to apply the weak midpoint rule and p-ck methods to (1.2), which is now
assumed for simplicity to be of dimension 1. For the sake of consistency, (1.2) should be
transformed to its Stratonovich form

d x(t) = f̃ (x(t),u(x(t)), t)d t + g(x(t),u(x(t)), t) ◦ dW (t), (3.3)

where

f̃ (x ,u, t) = f (x ,u, t)− 1

2
g(x ,u, t)

∂ g

∂ x
(x ,u, t). (3.4)

The midpoint rule applied to (3.3) gives

xn+1 = xn+ δ f̃
� xn+ xn+1

2
,un, tn

�

+∆Wn g
� xn+ xn+1

2
,un, tn

�

, (3.5)

where δ = tn+1 − tn, and ∆Wn =W (tn+1)−W (tn).
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Simulating the noise by the two-point distribution (2.5), we get

x−n+1 = xn+ δ f̃
� xn+ x−n+1

2
,un, tn

�

−
p

δg
� xn+ x−n+1

2
,un, tn

�

with prob.
1

2
, (3.6)

x+n+1 = xn+ δ f̃
� xn+ x+

n+1

2
,un, tn

�

+
p

δg
� xn+ x+

n+1

2
,un, tn

�

with prob.
1

2
. (3.7)

Finding the states that are adjacent to x−n+1 and x+n+1 in the discrete state space R̄n+1

of the approximating Markov chain, say, x̄−⊖
n+1, x̄−⊕

n+1, x̄+⊖
n+1, x̄+⊕

n+1, and determining the
transition probabilities from xn, assumed to lie in R̄n, to the four aforementioned states by
the inverse distance method described in Section 2, we give a proof of the local consistency
of the obtained Markov chain, which is not included in [7]. In the following, we write x̄n

instead of xn, since it is assumed to locate in the discrete state space of the n-th stage.

Theorem 3.1. Suppose the coefficient functions f̃ and g of the CSDE (3.3) are differentiable

with respect to x, and continuous with respect to u and t. Then the approximating Markov

chain arising from the weak midpoint rule (3.6)-(3.7) with transition probabilities

p( x̄n, x̄−⊕n+1|un) =
1

2

x−n+1 − x̄−⊖n+1

x̄−⊕
n+1 − x̄−⊖

n+1

, (3.8)

p( x̄n, x̄−⊖n+1|un) =
1

2

x̄−⊕n+1 − x−n+1

x̄−⊕n+1 − x̄−⊖n+1

, (3.9)

p( x̄n, x̄+⊕n+1|un) =
1

2

x+
n+1 − x̄+⊖

n+1

x̄+⊕n+1 − x̄+⊖n+1

, (3.10)

p( x̄n, x̄+⊖n+1|un) =
1

2

x̄+⊕n+1 − x+n+1

x̄+⊕
n+1 − x̄+⊖

n+1

, (3.11)

and p( x̄n, ȳn+1|un) = 0 for all ȳn+1 ∈ R̄n+1 but not in { x̄−⊖
n+1, x̄−⊕

n+1, x̄+⊖
n+1, x̄+⊕

n+1}, is locally

consistent.

Proof. From the scheme (3.6)-(3.7), it follows that

k1,n := x−n+1 − x̄n = δ f̃
� x̄n+ x−n+1

2
,un, tn

�

−
p

δg
� x̄n+ x−n+1

2
,un, tn

�

, (3.12)

k2,n := x+n+1 − x̄n = δ f̃
� x̄n+ x+

n+1

2
,un, tn

�

+
p

δg
� x̄n+ x+

n+1

2
,un, tn

�

. (3.13)

Denote

h−n = x̄−⊕n+1− x̄−⊖n+1, h+n = x̄+⊕n+1 − x̄+⊖n+1, αn = x−n+1 − x̄−⊖n+1,

βn = x̄−⊕n+1 − x−n+1, µn = x+
n+1 − x̄+⊖

n+1, νn = x̄+⊕
n+1− x+

n+1,

then
αn + βn = h−n , µn+ νn = h+n .
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Let ∆X̄n = X̄n+1 − X̄n, where the capital X represents the random state variable. We have

E(∆X̄n|un, X̄n = x̄n)

=
1

2

βn

h−n
(−αn+ k1,n) +

1

2

αn

h−n
(βn+ k1,n) +

1

2

νn

h+n
(−µn+ k2,n) +

1

2

µn

h+n
(νn + k2,n),

=
1

2
(k1,n+ k2,n). (3.14)

Denote

∆x−n =
x̄n+ x−n+1

2
− x̄n =

x−n+1 − x̄n

2
, ∆x+n =

x̄n+ x+n+1

2
− x̄n =

x+n+1 − x̄n

2
,

f̃n = f̃ ( x̄n,un, tn), gn = g( x̄n,un, tn). (3.15)

Consequently, we have

k1,n + k2,n

= δ

�

f̃
� x̄n+ x−

n+1

2
,un, tn

�

+ f̃
� x̄n+ x+

n+1

2
,un, tn

�

�

+
p

δ

�

g
� x̄n+ x+

n+1

2
,un, tn

�

− g
� x̄n+ x−

n+1

2
,un, tn

�

�

= δ

�

f̃n +
∂ f̃

∂ x
( x̄n,un, tn)∆x−n + o(∆x−n ) + f̃n +

∂ f̃

∂ x
( x̄n,un, tn)∆x+n + o(∆x+n )

�

+
p

δ

�

gn+
∂ g

∂ x
( x̄n,un, tn)∆x+n + o(∆x+n )− gn−

∂ g

∂ x
( x̄n,un, tn)∆x−n − o(∆x−n )

�

= δ

�

2 f̃n +
∂ f̃

∂ x
( x̄n,un, tn)(∆x−n +∆x+n ) + o(

p

δ)

�

+
p

δ

�

∂ g

∂ x
( x̄n,un, tn)(∆x+n −∆x−n ) + o(

p

δ)

�

. (3.16)

It is clear that ∆x−n +∆x+n = O (δγ) for some γ≥ 1
2
, as δ→ 0. Moreover,

∆x+n −∆x−n =
1

2
δ

�

∂ f̃

∂ x
( x̄n,un, tn)(∆x+n −∆x−n ) + o(

p

δ)

�

+
1

2

p

δ

�

2gn+
∂ g

∂ x
( x̄n,un, tn)(∆x+n −∆x−n ) + o(

p

δ)

�

=
p

δgn+ o(δ). (3.17)

Substituting (3.17) into (3.16), we obtain

k1,n + k2,n = 2δ f̃n + δgn

∂ g

∂ x
( x̄n,un, tn) + o(δ), (3.18)
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which together with (3.14) implies that

E(∆X̄n|un, X̄n = x̄n) = δ f̃n +
1

2
δgn

∂ g

∂ x
( x̄n,un, tn) + o(δ)

= δ fn + o(δ), (3.19)

where fn = f ( x̄n,un+1, tn). The result (3.19) is the first condition of the local consistency.
Further,

E(|∆X̄n− E(∆X̄n|un, X̄n = x̄n)|2|un, X̄n = x̄n)

= E(|∆X̄n|2|un, X̄n = x̄n)− (E(∆X̄n|un, X̄n = x̄n))
2

= β̄n(−αn+ k1,n)
2 + ᾱn(βn+ k1,n)

2+ ν̄n(−µn+ k2,n)
2

+ µ̄n(νn + k2,n)
2 − 1

4
(k1,n+ k2,n)

2

=
1

4
(k2

1,n + k2
2,n)−

1

2
k1,nk2,n+

1

2
(αnβn+µnνn), (3.20)

where

ᾱn =
1

2

αn

h−n
, β̄n =

1

2

βn

h−n
, µ̄n =

1

2

µn

h+n
, ν̄n =

1

2

νn

h+n
, (3.21)

and the derivation of the last step of (3.20) is based on the relations

ᾱn+ β̄n = µ̄n+ ν̄n =
1

2
, ᾱnβn = αnβ̄n, µ̄nνn = µnν̄n. (3.22)

Similar to the derivation of (3.16), one can show that

k2
1,n + k2

2,n = δ

�

�

gn+
∂ g

∂ x
( x̄n,un, tn)∆x−n + o(∆x−n )

�2

+
�

gn+
∂ g

∂ x
( x̄n,un, tn)∆x+n + o(∆x+n )

�2
�

+ o(δ)

= 2δg2
n + o(δ), (3.23)

and
k1,nk2,n = −δg2

n + o(δ). (3.24)

Substituting (3.23)-(3.24) into (3.20), and noticing that

1

2
(αnβn+µnνn)≤

1

2

�

(αn + βn)
2

2
+
(µn+ νn)

2

2

�

=
(h−n )

2+ (h+n )
2

4
,

we have

E
�

|∆X̄n− E(∆X̄n|un, X̄n = x̄n)|2|un, X̄n = x̄n

�

= δg2
n + o(δ) + o(‖hn‖2), (3.25)

where hn is the vector of state steps at stage n. (3.25) is the second condition of the local
consistency [13].
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Denote h := supn{‖hn‖∞}. The third condition requires that supn,ω |∆X̄n| → 0, as
h→ 0. For this, we observe

| −αn + k1,n|, |βn+ k1,n|, | −µn+ k2,n|, |νn+ k2,n|.
For any n, these are four realizations of the distance with respect to the realizations of

the random sample point ω. Under the continuity of the functions f̃ and g, as well as the
boundedness of the state space, the admissible control space and the time interval, f̃ and
g must be bounded. Suppose | f̃ | ≤ M and |g| ≤ N , for all x , u and t. Then for any n, the
supremum of the four distances must be smaller than

h+ δM +
p

δN ,

which tends to zero as h→ 0, since it is assumed that δ→ 0 as h→ 0 in the construction
of the Markov chain [9].

For the trivial case that αn = βn = 0 or µn = νn = 0, or both happen, the proof follows
the same line and the conclusion remains invariant. �

As mentioned above, however, with all the benefit of the implicit midpoint rule, it is
difficult to implement in case of nonlinear f or g. The predictor-corrector methods supply
a compensation in such case. For the CSDE (3.3), the p-ck (k ≥ 1) method of Euler-
Maruyama and midpoint rule produces the scheme

x̃n+1 = xn+ δ f (xn,un, tn)+∆Wn g(xn,un, tn), (3.26)

x
(1)
n+1 = xn+ δ f̃
� xn+ x̃n+1

2
,un, tn

�

+∆Wn g
� xn+ x̃n+1

2
,un, tn

�

,

...

x
(k)
n+1 = xn+ δ f̃
� xn+ x

(k−1)
n+1

2
,un, tn) +∆Wn g(

xn+ x
(k−1)
n+1

2
,un, tn

�

, (3.27)

where the upper index (i) refers to the i-th correction. Note that the predictor, the Euler-
Maruyama method is applied to the Itô equation (1.2), while the corrector, the midpoint
rule, is applied k times to the Stratonovich equation (3.3).

Again, simulating the noise ∆Wn by the two-point distribution in (2.5), we can prove
the local consistency of the Markov chain resulting from the weak p-ck method of Euler-
Maruyama and midpoint rule.

Theorem 3.2. Under the same assumption of Theorem 3.1, the Markov chain arising from

the weak p-ck (k ≥ 1) method based on (3.26)-(3.27), with predictor the Euler-Maruyama

method, and corrector the midpoint rule, is locally consistent for all k ≥ 1, where the transition

probabilities are the same with that given in Theorem 3.1.

Proof. The proof is analogous to that of Theorem 3.1, so we omit it. �

Effectiveness of the two kinds of methods given above are tested on a portfolio model
described in the following section. Comparison between the two methods and the Euler-
Maruyama method is observed.
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4. Applications to simplified Merton’s portfolio model

In [3], a simplified version of Merton’s [10] optimal portfolio selection model is studied
and analytically solved. It is used as a test model for numerical methods in [7].

In the model, the aim of the portfolio selection is to maximize the expected discounted
utility

J(0, x(0); u) = E

�
∫ T

0

e−ρ t[U2(t)]
γd t|x(0) = x0

�

(4.1)

with given discount rate ρ > 0, where [U2(t)]
γ is the agent’s utility function. The con-

straint equation is a controlled stochastic differential equation describing evolution of the
wealth x(t):

d x = (1− u1)r xd t + u1 x(αd t +σdW )− U2d t, (4.2)

where r, α, σ are constants with r < α, σ > 0, and W (t) is a one-dimensional standard
Wiener process. u1(t) is the fraction of the wealth invested in the risky asset at time t, and
U2(t) denotes the consumption rate.

The optimal two-dimensional control û = [û1(x), Û2(x)], which satisfies the condition

0≤ u1 ≤ 1, U2 ≥ 0, (4.3)

are to be found that maximize the expected discounted utility (4.1).
The solution of this problem is explicit. The optimal control is

û1 =
α− r

σ2(1− γ) , Û2(τ, x) = [eρτg(τ)]
1
γ−1 x , (4.4)

where

g(τ) = e−ρτ
�

1− γ
ρ− νγ
�

1− e
− (ρ−νγ)

1−γ (T −τ)
�

�1−γ
(4.5)

with

ν =
(α− r)2

2σ2(1− γ) + r. (4.6)

The optimal value function is

H(τ, x) = g(τ)xγ. (4.7)

Krawczyk used the so-called re-scaling technique in [7], that is, to replace U2 by u2 x ,
so that the components of the control vector u = [u1,u2] remain in comparable magnitude,
which is much better for efficiency of numerical methods.

For the state equation (4.2), the Euler-Maruyama discretisation gives

xn+1 = (1+ δm+ u1σ∆Wn)xn, (4.8)

where m= (1− u1)r + u1α− u2.
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To use the midpoint rule, we transform the Itô equation (4.2) to its Stratonovich form

d x = (1− u1)r xd t + u1 x(αd t +σ ◦ dW )− u2 xd t − 1

2
u2

1σ
2 xd t. (4.9)

The midpoint rule applied to (4.9) gives

�

1− δ
2

�

m− u2
1σ

2

2

�

− u1σ∆Wn

2

�

xn+1

=

�

1+
δ

2

�

m− u2
1σ

2

2

�

+
u1σ∆Wn

2

�

xn. (4.10)

Taking the xn+1 given by (4.8) as the predicted value x̃n+1, we have the p-ck discretisation
with Euler-Maruyama and midpoint rule for (4.9)

x
(1)
n+1 = xn+ δ
�

m− u2
1σ

2

2

� xn+ x̃n+1

2
+∆Wnu1σ

xn+ x̃n+1

2
, (4.11)

...

x
(k)
n+1 = xn+ δ
�

m− u2
1σ

2

2

� xn+ x
(k−1)
n+1

2
+∆Wnu1σ

xn+ x
(k−1)
n+1

2
. (4.12)

In our implementation of the midpoint rule (4.10) and the p-ck method (4.11)-(4.12), we
also use the constraints given in [7]:

xn(1+ δ(r + u1,n(α− r)− u2,n))≥ 0, (4.13a)

0≤ u1,n ≤ 1, u2,n ≥ 0, (4.13b)

for all n ≥ 0, and ∆Wn is approximated by the two-point distribution random variable
∆W̃n described in (2.5).

In the next section, numerical experiments are performed on this portfolio model.

5. Numerical experiments

Krawczyk’s Markov chain approximating method was applied to the simplified Mer-
ton’s model (4.1)-(4.3) in [7]. Later in [1], a suite of MATLAB® functions implementing
this method, named SOCSol4l, was described. In this package, the computation of the
optimal control is done by the file SOCSol.m, the visualization of the optimal control by
ContRule.m, and that of the optimal value by ValGraph.m. For our numerical tests about
the midpoint rule and the p-ck methods, some parts of the package relating to the discreti-
sation of the state equations, e.g., the DeltaFunctionFile, CostStoch.m and GenSim.m must
be modified accordingly.

While the Euler-Maruyama discretisation method does work in finding the optimal
control [û1, û2], as reported in [7], the convergence of u2 seems not so satisfying, especially



90 L. Wang and F. Bai

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

u
1

midpoint, h=2000, 500, 100, delta=0.2, t=9

wealth

0 2 4 6 8 10 12

x 10
4

0.4

0.6

0.8

1

1.2

u
2

wealth

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

u
1

Euler−Maruyama, h=2000,500,100, delta=0.2, t=9

wealth

0 2 4 6 8 10 12

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

u
2

wealthFigure 1: Control rules 
reated by midpoint rule as δ = 0.2 (left) and Euler-Maruyama method as
δ = 0.2 (right).

0 2 4 6 8 10 12

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

u
1

midpoint, h=2000,500,100, delta=0.1

wealth

0 2 4 6 8 10 12

x 10
4

0.6

0.8

1

1.2

u
2

0 2 4 6 8 10 12

x 10
4

0.3

0.4

0.5

0.6

0.7

0.8

u
1

p−c10, h=2000,500,100, delta=0.1, t=9

wealth

0 2 4 6 8 10 12

x 10
4

0.6

0.8

1

1.2

u
2

wealthFigure 2: Control rules 
reated by midpoint rule as δ = 0.1 (left) and p-
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at time t = 9. It requires very small time-step, say, δ = 0.02. This is illustrated in Figs. 1
(right), 3 and 4 (right). It can be seen that, there is an obvious gap between the theoretical
and numerical û2. Even at δ = 0.05, the gap is approximately 0.1, which means that the
relative error is nearly 9 percent.

In the following, the optimal control and value arising from the midpoint rule (4.10)
and the p-c10 method of Euler-Maruyama and midpoint rule (4.12) are observed, wherein
better convergence of u2 is seen.

The parameters for the portfolio model described in (4.1)-(4.3) take the same values
as in [7], i.e., α = 0.11, σ = 0.4, r = 0.05, ρ = 0.11, γ = 1

2
. The initial wealth is

x0 = $100,000, and the time interval to observe is T = 10 years. The optimal controls are
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reated by Euler-Maruyama method as δ = 0.1.
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computed at time t = 9, which is a ’problem-time’ for the Euler-Maruyama discretisation,
while the optimal value is observed with respect to the initial (t = 0) wealth.

The left of Figs. 1, 2 and 4 is obtained by using the midpoint rule, while the right of
Figs. 1 and 4, as well as Fig. 3 are given by using the Euler-Maruyama discretisation. The
right of Fig. 2 is produced by the p-c10 method of the Euler-Maruyama and midpoint rule.

The time step size is δ = 0.2 for Fig. 1, δ = 0.1 for Figs. 2-3, and δ = 0.05 for Fig. 4.
In each figure, the state step size h takes the values 2000 (green solid line), 500 (red solid
line) and 100 (blue dash-dot line), and the dashed lines therein are the theoretical optimal
controls û1 = 0.75 and û2 = 1.0756 from (4.4)-(4.6). The sub-figures above are for u1,
and below for u2.

The convergence of u1 to the theoretical value 0.75 as δ and h decrease are obvious
and comparable for the three methods. However, the situation for u2 is different. By the
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al results of e = ‖u− û‖2 with di�erent values of wealth.
Midpoint Rule Euler-Maruyama

Wealth
δ = 0.1 δ = 0.05 δ = 0.1 δ = 0.05

20,000 0.0757 0.0402 0.1172 0.0636
40,000 0.0676 0.0413 0.1157 0.0595
60,000 0.0703 0.0420 0.1176 0.0610
80,000 0.0728 0.0455 0.1145 0.0594
100,000 0.0690 0.0448 0.1165 0.0608Table 2: CPU 
omparison for di�erent numeri
al methods.

Midpoint Rule Euler-Maruyama p-c10

(seconds) (seconds) (seconds)
h= 2000 301.547 285.781 309.015
h= 500 809.407 818.640 875.640
h= 100 2517.094 2157.265 2268.532

midpoint rule, convergence of u2 can already be seen at δ = 0.2, while distance between
theoretical and numerical u2 is still obvious at δ = 0.05 by the Euler-Maruyama method.
The right of Fig. 2 shows that the p-c10 method behaves also well in simulating u2.

To consider the approximation of u1 and u2 synthetically, that is, to observe the value

e =
p

(u1 − û1)
2 + (u2 − û2)

2, which is the l2-norm of the error vector u− û, the follow-
ing figures illustrating the error e by using the three aforementioned methods are drawn
against the wealth x at t = 9.

In left of Fig. 5, the error curves arising from the midpoint rule (red solid line) and the
p-c10 method (blue dash-dot line) coincide almost, while that from the Euler-Maruyama
method (blue dashed line) locates up them. The right of Fig. 5 illustrates the errors from
the midpoint rule (red solid line) and the Euler-Maruyama method (blue dashed line),
which locate lower and closer than those in the left figure of Fig. 5. This is owing to the
reduction of the time step δ in computing u, which takes the value 0.1 for the left while
0.05 for the right of Fig. 5. The state step for computing u is h = 100 for both figures.
Concrete numerical results of e = ‖u− û‖2 are listed against certain wealth values in Table
1, i.e. for x = 20000, 40000, 60000, 80000, and 100000.

Fig. 5 shows that the midpoint rule and p-c10 method are more accurate than the Euler-
Maruyama method, while the digits in Table 1 show decline of the errors with decrease of
δ, by the two mentioned methods.

The CPU time needed for computing the optimal control rules by the three methods is
compared in Table 2. For this we have taken δ = 0.1, t = 9, and x ∈ [0,120000].

The elapsed time can be slightly affected by different programming strategies, e.g.,
direct formulating or taking a long formula into two shorter parts. Nevertheless, it is clear
that the consumed CPU time are comparable by the midpoint rule, the p-c10 methods, and
the Euler-Maruyama method.

The effect of the three methods in simulating the optimal value is also tested, for which
the MATLAB file ValGraph.m uses the control rule computed by SOCSol.m to compute the
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Figure 6: Expe
ted value 
reated by the midpoint rule in 30 simulations (left) and the E-M method in30 simulations (right).
expected values. For the following figures, the controls are computed at h = 100 and
δ = 0.1.

In Fig. 6, the black line stretches in the middle is the theoretical optimal value which
is calculated from (4.7). The oscillating curves in Fig. 6 show the expected optimal
value arising from the midpoint rule and the Euler-Maruyama method, respectively, which
are resulted from 30 simulations. The step used along the x -axis by plotting the two
pictures is h1 = 100, which is relatively fine for the much larger observation interval
x ∈ [80000,120000]. This fact, together with the less amount of simulations imply the
violent oscillation of the curves.



94 L. Wang and F. Bai

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x 10
5

640

660

680

700

720

740

760

780

800

V
a

lu
e

x

midpoint, value, h1=5000, sim=1500

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x 10
5

640

660

680

700

720

740

760

780

800

V
a

lu
e

x

p−c10, value, h1=5000, sim=1500

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x 10
5

640

660

680

700

720

740

760

780

800

V
a

lu
e

x

Euler−Maruyama, value, h1=5000, sim=1500

(a) (b) (c)Figure 7: Expe
ted value given by (a) the midpoint rule; (b) the p-
10 method; and (
) the Euler-Maruyama method, with 1500 simulations.
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Figure 8: Expe
ted value 
reated by the midpoint rule (left) and the E-M method (right), in 20simulations.
To avoid this and make the curves clearer for observation, we take h1= 5000 and per-

form 1500 simulations for the expected value. The such obtained figures are the following.

Fig. 7 illustrates the expected optimal value from the midpoint rule, the p-c10 method,
and the Euler-Maruyama method, respectively. The theoretical solution is drawn with
green solid line. It can be seen that the expected optimal value from the midpoint rule lies
mainly above the theoretical line, whereas that from the Euler-Maruyama method below
it. The mixed method of the two, the p-c10 method of Euler-Maruyama and midpoint rule,
produces then a somehow ’balanced’ line along the theoretical solution, especially as the
initial (t = 0) wealth grows large.

To observe the expected optimal value with respect to more situations of initial wealth
amount, we enlarge the interval of x to [20000,120000] in the next experiment.

In Fig. 8, 20 simulations are performed for the expected optimal values. Other data
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are the same with that for Fig. 7. In Fig. 8, the left is for the midpoint rule, and the
right for the Euler-Maruyama method. No obvious violation of the tendency discovered
on [80000,120000] of the behavior of the numerical methods is observed in this larger
interval [20000,120000].

6. Conclusion

Theoretical and empirical analysis show that, the midpoint rule and p-ck discretisation
of the state equations for Markov chain approximation are applicable and may provide
with better simulation of feedback control rules for stochastic control problems than the
Euler-Maruyama method. The expected optimal values resulted from the two methods are
comparable, for the aforementioned portfolio model, with that from the Euler-Maruyama
discretisation which is shown to be effective by various applications.

It would be necessary to test the behavior of these two methods through more practi-
cal models. Theoretical analysis on numerical stability of these methods would be needed.
On the other hand, it might be possible to adapt other numerical techniques for solving
SDEs to the state equations methods, among which the two discussed serve only as exam-
ples. Nevertheless, it is shown that, proper numerical treatment of the state equations of
stochastic control problems can improve accuracy of the approximating Markov chains.
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