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Abstract. The generating function methods have been applied successfully to gen-
eralized Hamiltonian systems with constant or invertible Poisson-structure matrices.
In this paper, we extend these results and present the generating function methods
preserving the Poisson structures for generalized Hamiltonian systems with general
variable Poisson-structure matrices. In particular, some obtained Poisson schemes are
applied efficiently to some dynamical systems which can be written into generalized
Hamiltonian systems (such as generalized Lotka-Volterra systems, Robbins equations
and so on).
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1 Introduction

We consider the generalized Hamiltonian systems (cf. [3, 5, 9])

y′(t)=B(y)∇H(y), y=(y1,y2,··· ,yn)
T ∈M, (1.1)

where M is a differential manifold in R
n, ∇ is the gradient operator, H ∈ C∞(M) is a

Hamiltonian function, B(y)= (bij(y))
n
i,j=1 is a skew-symmetric Poisson-structure matrix

and satisfies the Jacobi identity

bij(y)
∂blk(y)

∂yi
+bik

∂bjl(y)

∂yi
+bil(y)

∂bkj(y)

∂yi
=0, i, j,k,l=1,2,··· ,n.
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The corresponding Poisson bracket (cf. [16, 17]) is defined as

{F,H}(y)=(∇F(y))T B(y)∇H(y), ∀F,H∈C∞(M).

Definition 1.1 (cf. [5], Chapter 12). A map y→ ŷ=g(y) : M→M is called a Poisson map,
if it is a (local) diffeomorphism and preserves the Poisson bracket, i.e.,

{F◦g,H◦g}={F,H}◦g, ∀F,H∈C∞(M).

An n-order square matrix M(y,ŷ) is called a Poisson matrix if

M(y,ŷ)B(y)M(y,ŷ)T =B(ŷ).

A function C(y)∈C∞(M) is called a Casimir function if

{C,F}(y)=0, ∀F∈C∞(M).

It is easy to prove that g(y) is a Poisson map if and only if

gy(y)B(y)(gy(y))
T =B(ŷ).

For a numerical algorithm applied to the systems (1.1), we hope that it can preserve
more structure characterizations of the original systems. If the discrete flow obtained
by an algorithm for the systems (1.1) is a Poisson map, then we say this algorithm is a
Poisson-structure-preserving algorithm, referred to a Poisson scheme. And the Poisson
scheme is also an extension of the symplectic algorithm (cf. [2, 5, 14, 18]).

Generating function methods (cf. [5, 8, 11, 15]) are also important approaches to con-
struct the symplectic scheme for canonical Hamiltonian systems and the Poisson schemes
for generalized Hamiltonian systems. So far, some generating function methods preserv-
ing the Poisson structures for linear generalized Hamiltonian systems (i.e., Lie-Poisson
systems) and the generalized Hamiltonian systems with constant or invertible Poisson-
structure matrices have been presented respectively (cf. [6, 7, 19]). Moreover, in this pa-
per, we extend these results and present the generating function methods for general-
ized Hamiltonian systems with general variable Poisson-structure matrices which can be
singular. In particular, the obtained Poisson schemes are applied efficiently to some dy-
namical systems which can be written into the forms of generalized Hamiltonian systems
(such as generalized Lotka-Volterra systems, Robbins equations and so on).

In Section 2, we extend the Hamilton-Jacobian theorem to the coefficient-varying gen-
eralized Hamiltonian systems (1.1), and get their generating functions. In Section 3, based
on the obtained results, we construct some Poisson schemes for the systems (1.1). In
Section 4, we use these obtained schemes to solve several specific systems and give the
corresponding numerical results.
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2 Generating functions of generalized Hamiltonian systems

We first make some similar preparations to those in [6,19]. For a definite Poisson manifold
M,

α(y,ŷ)=

(

Aα(y,ŷ) Bα(y,ŷ)

Cα(y,ŷ) Dα(y,ŷ)

)

∈GL(2n)

is a matrix function defined on M×M, where GL(2n) denotes the group of all the 2n-
order reversible matrices, and there exists an n-order skew-symmetric constant matrix K
such that

α

(

B(ŷ) O

O −B(y)

)

αT =

(

O K

K O

)

. (2.1)

Expanding (2.1) leads to

AαB(ŷ)AT
α −BαB(y)BT

α =O, AαB(ŷ)CT
α −BαB(y)DT

α =K,

CαB(ŷ)AT
α −DαB(y)BT

α =K, CαB(ŷ)CT
α −DαB(y)DT

α =O.

The inverse of α(y,ŷ) is denoted by

α−1(y,ŷ)=

(

Aα(y,ŷ) Bα(y,ŷ)

Cα(y,ŷ) Dα(y,ŷ)

)

.

For a given α∈GL(2n), we can define the linear fractional transformation σα

N(y,ŷ) :=σα(M(y,ŷ))=(Aα M+Bα)(CαM+Dα)
−1 (2.2)

under the transversal condition

|CαM+Dα| 6=0. (2.3)

Its inverse transformation σ−1
α =σα−1 is

M(y,ŷ)=σα−1(N(y,ŷ))=(AαN+Bα)(CαN+Dα)−1, (2.4)

where

|CαN+Dα| 6=0. (2.5)

Under the direct proof, we can easily obtain the lemma as follows.

Lemma 2.1. Suppose that α∈GL(2n) satisfies (2.1). Then M(y,ŷ) is a Poisson matrix satisfying
(2.2) if and only if N(y,ŷ)=σα(M) satisfies (2.5) and NK∈Sm(n), where Sm(n) denotes the
group of n-order symmetrical matrices.
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Theorem 2.1. Suppose that y→ ŷ= g(y) is a Poisson map with Jacobian matrix M(y)= gy(y),
and ŵ,w are differentiable maps defined on M×M satisfying

ŵ= ŵ(y,ŷ), w=w(y,ŷ),

∂ŵ

∂ŷ
=Aα,

∂ŵ

∂y
=Bα,

∂w

∂ŷ
=Cα,

∂w

∂y
=Dα,

where α and M(y) satisfy (2.1) and (2.2). Then there exists a map w→ ŵ= f (w) such that its
Jacobian matrix N(w)= fw(w)=σα(M(y)) satisfies

N(w)K∈Sm(n).

Proof. According to the implicit function theorem and |CαM(y)+Dα| 6= 0, we know that
w=w(y,g(y)) is invertible in a neighborhood of y. Thus,

δŵ

δw
=

δŵ

δy

(δw

δy

)−1
=
(∂ŵ

∂ŷ
M(y)+

∂ŵ

∂y

)(∂w

∂ŷ
M(y)+

∂w

∂y

)−1
=σα(M(y))=N(w),

and there exists a map f satisfying ŵ= f (w).
Moreover, by Lemma 2.1, we have fw(w)K=N(w)K∈Sm(n).

According to the Darboux Theorem (cf. [9]), there exists a diffeomorphic map h: M→
h(M) defined in a neighborhood of y∈M such that hy(y)B(y)hy(y)T is a constant matrix.
Let K=hy(y)B(y)hy(y)T . Then the generalized Hamiltonian systems (1.1) become

y′(t)=(hy(y))
−1K

(

hy(y)
)−T∇H(y). (2.6)

Suppose that y→ ŷ= g(y) :M→M is a Poisson map, and let

Aα=hŷ(ŷ), Bα=−hy(y), Cα=
1

2
hŷ(ŷ), Dα=

1

2
hy(y). (2.7)

Then α satisfies (2.1) obviously, and

α−1=

(

Aα Bα

Cα Dα

)

=







1

2
(hŷ(ŷ))−1 (hŷ(ŷ))−1

−1

2
(hy(y))−1 (hy(y))−1






. (2.8)

Let

ŵ(y,ŷ)=h(ŷ)−h(y), w(y,ŷ)=
1

2
h(ŷ)+

1

2
h(y). (2.9)

Then its inverse mapping is

ŷ(w,ŵ)=h−1
(1

2
ŵ+w

)

, y(w,ŵ)=h−1
(1

2
ŵ−w

)

.
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Theorem 2.2. Suppose that φ(w,τ) is the solution of the partial differential equation

∂φ(w,τ)

∂τ
=−H

(

h−1
(

− 1

2
K∇φ(w,τ)+w

))

, φ(w,0)=0, (2.10)

gτy is the phase flow of the generalized Hamiltonian systems (2.6). Then, in a neighborhood of
y∈M for τ>0 small enough, ŷ= gτy if and only if

h(ŷ)−h(y)=−K∇φ
(1

2
h(ŷ)+

1

2
h(y),τ

)

. (2.11)

Proof. Since the analytical solution of the generalized Hamiltonian systems (2.6) is exis-
tent and unique, we just prove that the Eq. (2.11) can yield

dŷ

dτ
=B(ŷ)∇H(ŷ).

From (2.9) and (2.11), we have

ŵ=−K∇φ(w,τ), ŷ=−1

2
K∇φ(w,τ)+w.

Differentiating the both sides of the Eq. (2.11) with respect to τ yields

(hŷ(ŷ))
dŷ

dτ
=−1

2
Kφww(w,τ)hŷ(ŷ)

dŷ

dτ
−K

∂

∂τ

∂

∂w
φ(w,τ) (2.12)

and

∂

∂τ

∂

∂w
φ(w,τ)=−

(

(hŷ(ŷ))
−1
(

− 1

2
Kφww(w,τ)+ I

))T
∇H(ŷ)

=−
(

I+
1

2
φww(w,τ)K

)

(hŷ(ŷ))
−T∇H(ŷ). (2.13)

Moreover, we have

(

I+
1

2
Kφww(w,τ)

)

hŷ(ŷ)
dŷ

dτ
=K
(

I+
1

2
φww(w,τ)K

)

(hŷ(ŷ))
−T∇H(ŷ)

=
(

I+
1

2
Kφww(w,τ)

)

K(hŷ(ŷ))
−T∇H(ŷ).

Since φww(w,0)=0 and I+Kφww(w,τ)/2 is reversible when τ is small enough, we have

dŷ

dτ
=(hŷ(ŷ))

−1K(hŷ(ŷ))
−T∇H(ŷ).

By B(ŷ) = (hŷ(ŷ))−1K(hŷ(ŷ))−T, we have dŷ/dτ = B(ŷ)∇H(ŷ). Therefore, the original
proposition is established.
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Suppose that ŷ= gτy is the phase flow of the generalized Hamiltonian systems (2.6),
and (ŵ,w) is determined by (2.9). The scalar function φ(w,τ) in Theorem 2.2 is called
a generating function of the generalized Hamiltonian systems (2.6), and the Eq. (2.10) is
called a Hamilton-Jacobian equation.

If H(y) depends analytically on y, then for τ>0 small enough, the generating function
φ(w,τ) can be expanded into a convergent power series

φ(w,τ)=
∞

∑
j=0

φ(j)(w)τ j.

We have

∇φ(w,τ)=φw(w,τ)=
∞

∑
j=0

∇φ(j)(w)τ j,
∂φ

∂τ
=φτ(w,τ)=

∞

∑
j=0

(j+1)τ jφ(j+1)(w),

where φ(0)(w)=∇φ(0)(w)=0 as φ(w,0)=0. From the above formulas and (2.10), we have

∂φ

∂τ
=−H

(

h−1
(

− 1

2
K∇φ(w,τ)+w

))

=−
∞

∑
m=0

1

m!
dm

w(H◦h−1)·
(

− 1

2

∞

∑
j1=1

K∇φ(j1),··· ,−1

2

∞

∑
jm=1

K∇φ(jm)
)

=−
∞

∑
m=0

1

m!

∞

∑
j=1

τ j ∑
j1+···+jm=j

dm
w(H◦h−1)·

(

− 1

2
K∇φ(j1),··· ,−1

2
K∇φ(jm)

)

,

where the operator dm
w is defined as

dm
w f (w)·(p(1),··· ,p(m))=

n

∑
j1 ,···,jm=1

∂n f (w)

∂wj1 ···∂wjn

p
(1)
j1

···p(m)
jm

,

for ∀ f ∈C∞(Rn), p(1),··· ,p(m)∈R
n.

Thus, φ(j)(w), j=1,2,··· , can be obtained by the recursive formula

φ(1)(w)=−H◦h−1(w), (2.14a)

φ(j+1)(w)=
−1

j+1

j

∑
m=1

1

m! ∑
j1+···+jm=j

dm
w(H◦h−1)(w)

·
(

− 1

2
K∇φ(j1)(w),··· ,−1

2
K∇φ(jm)(w)

)

. (2.14b)

3 Poisson schemes of coefficient-varying generalized

Hamiltonian systems

In this section, we will construct the Poisson-Structure-Preserving schemes for solving
the generalized Hamiltonian systems (2.6).



X. Y. Li, A. G. Xiao and D. L. Wang / Adv. Appl. Math. Mech., 6 (2014), pp. 87-106 93

Theorem 3.1. Suppose that φ(w,τ) is the analytical solution of the Hamilton-Jacobian equation
(2.10),

ψ(m)(w,τ)=
m

∑
j=1

φ(j)(w)τ j, m=1,2,··· ,

is the m-order approximation to φ(w,τ) with τ > 0 small enough and φ(j)(w) is determined by
(2.14). Then the m-order Poisson scheme for the generalized Hamiltonian systems (1.1) is given
by

h(y(k+1))−h(y(k))=−K
m

∑
j=1

∇φ(j)
(1

2
h(y(k+1))+

1

2
h(y(k))

)

τ j. (3.1)

Proof. Consider the Jacobian matrix of the scheme (3.1) with respect to y(k). We have

hy(y
(k+1))

∂y(k+1)

∂y(k)
−hy(y

(k))=−K
m

∑
j=1

φ
(j)
ww(w)τ j

(1

2
hy(y

(k+1))
∂y(k+1)

∂y(k)
+

1

2
hy(y

(k))
)

,

where w=h(y(k+1))/2+h(y(k))/2. Let

y=y(k) , ŷ=y(k+1), M=
∂y(k+1)

∂y(k)
, N=−K

m

∑
j=1

φ
(j)
ww(w)τ j, (3.2)

where α and α−1 are defined by (2.7) and (2.8), and we obtain

AαM+Bα=N(Cα M+Dα).

It follows from the equality ψ(m)(w,0)=0 and Lemma 2.1 that the matrix

CαN+Dα =
1

2
(hy(y))

−1Kψ
(m)
ww (w,τ)+(hy(y))

−1

is reversible for τ > 0 small enough, NK = Kψ
(m)
ww (w,τ)K is a real symmetric matrix, α

satisfies obviously (2.1), M is a Poisson matrix, and CαM+Dα is reversible. Thus, (3.1) is
a Poisson scheme. Moreover, we have

h(gτy)−h(y)+K
m

∑
j=1

∇φ(j)
(1

2
h(gτ y)+

1

2
h(y)

)

τ j

=−K
∞

∑
j=m+1

∇φ(j)
(1

2
h(gτy)+

1

2
h(y)

)

τ j

=O(τm+1).

Therefore, (3.1) is of order m.
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Based on Theorem 3.1 and (2.14), we construct the second-order and fourth-order
Poisson schemes for the systems (2.6). In fact,

φ(1)(w)=−H◦h−1(w),

φ(2)(w)=φ(4)(w)=0,

φ(3)(w)=
1

24

(

(∇H◦h−1)TKd2(H◦h−1)K∇H◦h−1
)

(w),

where d2(H◦h−1) is the Hessian matrix of H◦h−1. Therefore, we can get the second-order
Poisson scheme

h(y(k+1))=h(y(k))+τK∇(H◦h−1)
(1

2
h(y(k+1))+

1

2
h(y(k))

)

, (3.3)

and the fourth-order Poisson scheme

h(y(k+1))=h(y(k))+τK∇(H◦h−1)
(1

2
h(y(k+1))+

1

2
h(y(k))

)

− τ3

24
K∇

( n

∑
i,j=1

(Kd2(H◦h−1)K)ij(H◦h−1)zi
(H◦h−1)zj

)(1

2
h(y(k+1))

+
1

2
h(y(k))

)

, (3.4)

respectively.
The Poisson schemes obtained by generating function methods include n-dimensional

nonlinear algebraic equations, and have less computation cost than implicit Runge-Kutta
methods. These schemes are of even order since the terms with the even powers of τ in
the expansion of φ(w,τ) given in (2.10) don’t appear.

The key of constructing Poisson schemes is to obtain the diffeomorphism h satisfying
(2.6), and from the previous paper, we know that the differentiable functions is existed.
However, we can not obtain the diffeomorphism directly for the general case. But for
some special and useful generalized Hamiltonian systems, it is easy to find such differ-
entiable functions. And that will be shown in the next section.

4 Numerical examples

In this section, we will use the Poisson schemes given in Section 3 to solve some special
generalized Hamiltonian systems.

Example 4.1 (cf. [10]). A generalized Lotka-Volterra (GLV) system consists of ordinary
differential equations which can be written as

y′i(t)=yi

(

λi+
m

∑
j=1

Aij

n

∏
k=1

y
Rjk

k

)

, i=1,2,··· ,n, (4.1)
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where n and m are positive integers, m≥ n, A, R, λ are n×m, m×n, n×1 real matrices
respectively.

It is easy to prove that for the GLV system (4.1), if there exist t1 and yi such that
yi(t1)=0, then yi(t)≡0 and the system (3.2) degenerates to an n−1 dimensional system.
Therefore, we may assume that if yi(t0) 6= 0 (i= 1,2,··· ,n) in the initial time t0, then we
have yi(t)>0 or yi(t)<0 for the whole time.

If the coefficients A, R and λ of the GLV system (4.1) can be written as the format

λ=KL, A=KRTD,

where K is an n×n antisymmetric real matrix, L is an n dimensional vector, D is an
m×m diagonal matrix with full rank. Then the system (4.1) can be written as the form of
generalized Hamiltonian systems (1.1), where

B(y)=YKY, Y=diag{y1,y2,··· ,yn}, (4.2a)

H(y)=
m

∑
j=1

Djj

n

∏
k=1

y
Rjk

k +
n

∑
j=1

Lj ln|yj|, ∇iH=
∂H(y)

∂yi
=

m

∑
j=1

Djj

n

∏
k=1

y
Rjk−δik

k +Li
1

yi
, (4.2b)

here ”ln” denotes logarithmic function. So this system is also called a generalized Lotka-
Volterra-Poisson system, referred to a GLVP system [20]. For the theory studies of GLVP
systems, we can refer to [20] and other literature. Let

zi =hi(y)= ln |yi|, i=1,2,··· ,n,

here hi(y) denotes the ith component of h(y). Apparently we have h(y) is invertible when
yi 6= 0, i= 1,2,··· ,n and B(y)= (hy(y))−1K(hy(y))−T. Then the system can be written as

the form of (2.6), and K is equivalent to K in (2.6), so we use K instead of K. Moreover,
for α and α−1 defined in (2.7) and (2.8), we can obtain (ŵ,w) as follows:

ŵ(y,ŷ)=
(

ln|ŷ1|,··· ,ln|ŷn|
)T−

(

ln|y1|,··· ,ln|yn|
)T

,

w(y,ŷ)=
1

2

(

ln|ŷ1|,··· ,ln|ŷn|
)T

+
1

2

(

ln|y1|,··· ,ln|yn|
)T

,

ŷ(w,ŵ)=
(

exp
(1

2
ŵ1+w1

)

,··· ,exp
(1

2
ŵn+wn

))T
,

y(w,ŵ)=
(

exp
(1

2
ŵ1−w1

)

,··· ,exp
(1

2
ŵn−wn

))T
.

Thus

h−1(w)=(θ1exp(w1),··· ,θn exp(wn))
T =(θ1

√

y1ŷ1,··· ,θn

√

yn ŷn)
T, (4.3)

where θi=sgn(y
(0)
i ), i=1,2,··· ,n, ”sgn” denotes sign function. Inserting (4.3) into (3.3) and

(3.4) yields the second-order and fourth-order Poisson schemes for solving the system
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(4.1). The second-order scheme is









ln|y(k+1)
1 |
...

ln|y(k+1)
n |









−









ln|y(k)1 |
...

ln|y(k)n |









=τK











θ1

√

y
(k+1)
1 y

(k)
1

. . .

θn

√

y
(k+1)
n y

(k)
n











·∇H

(

θ1

√

y
(k+1)
1 y

(k)
1 ,··· ,θn

√

y
(k+1)
n y

(k)
n

)

, k=0,1,2,··· . (4.4)

Example 4.2 (cf. [9]). Consider the two-dimensional Lotka-Volterra system

y′1(t)=y1(y2−1), y′2(t)=y2(2−y1), (4.5)

which is equivalent to the following form

y′(t)=YKY∇H,

where

y′(t)=
(

y′1(t)
y′2(t)

)

, Y=

(

y1 0
0 y2

)

, K=

(

0 1
−1 0

)

.

H=H(y) is a Hamiltonian function, and

H(y)=y1−2ln|y1|+y2−ln|y2|, ∇H=









1− 2

y1

1− 1

y2









.

Using the second-order Poisson scheme (4.4), we obtain the corresponding algorithm

(

ln|y(k+1)
1 |

ln|y(k+1)
2 |

)

−
(

ln|y(k)1 |
ln|y(k)2 |

)

=τ





θ2

√

y
(k)
2 y

(k+1)
2 −1

−θ1

√

y
(k)
1 y

(k+1)
1 +2



,

θ1 =sgn(y
(0)
1 ), θ2=sgn(y

(0)
2 ).

The numerical solution of the Eq. (4.5) is shown in the Fig. 1 with the time interval
[0,100], and the time stepsize τ = 0.1. Three curves from the outside to inside are the
images of numerical solutions while the initial values are (0.5,1), (1,1) and (1.5,1), re-
spectively. Taking the initial value (0.5,1), the errors in the Hamiltonian function H(y)
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Figure 1: Numerical solution images of the system (4.5).
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Figure 2: Errors in H(y) from the generating function method with stepsize τ=0.1.
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Figure 3: Errors in H(y) from the generating function method with stepsize τ=0.001.

from the second-order generating function method and the Euler midpoint rule are given
in Figs. 2-4 and Figs. 5-6, respectively. In Fig. 2 and Fig. 5, we can see the Hamiltonian
deviation from the two methods are the same order. But for the time interval [0,5000] as
Fig. 7, it is obvious that the error bounds of H(y) from the Euler midpoint rule are increas-
ing by the growth of time, but the error bounds from the generating function method are
not apparently changed by the growth of time. Therefore, an important advantage of
generating function method is to control the error bounds of the Hamiltonian function
over the long time. Fig. 4 shows the error bounds of H(y) from the generating function
method with different time intervals and time stepsizes, and we can see the convergence
of the numerical method.
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Figure 4: Maximum errors in H(y) from the generating function method with different time intervals [0,T] and
stepsizes. � : τ=0.1, △: τ=0.01, © : τ=0.001, ⋄ : τ=0.0001.

t

E
rr

or
in

H
(y

)

0 20 40 60 80 100

-0.02

-0.01

0

0.01

Figure 5: Errors in H(y) from the Euler midpoint rule with stepsize τ=0.1.

t

E
rr

or
in

H
(y

)

0 20 40 60 80 100

-2E-06

-1E-06

0

1E-06

Figure 6: Errors in H(y) from the Euler midpoint rule with stepsize τ=0.001.

Figure 7: Comparisons of the errors in H(y) from the two methods within long time.
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Example 4.3 (cf. [4]). Consider the Volterra lattice system

y′i(t)=yi(yi+1−yi−1), i=1,2,··· ,n, (4.6)

with the periodic boundary conditions yn+i=yi, where yi >0, i=0,1,2,··· , and n is even.

The system (4.6) can be written as

y′(t)=B(y)∇H(y)

with the Hamiltonian function

H(y)=
n

∑
i=1

yi,

and the Poisson structure matrix

B(y)=

























0 y1y2 0 ··· 0 −y1yn

−y1y2
. . .

. . .
. . . 0

0
. . . 0 yiyi+1

. . .
...

...
. . . −yiyi+1

. . .
. . . 0

0
. . .

. . . 0 yn−1yn

y1yn 0 ··· 0 −yn−1yn 0

























.

We have

B(y)=







y1

. . .

yn






K







y1

. . .

yn






,

here

K=































0 1 0 ··· 0 0 −1

−1 0 1
. . . 0 0

0 −1 0
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . 1 0

0 0
. . . −1 0 1

1 0 0 ··· 0 −1 0































.

It is obvious that K is a singular skew-symmetric matrix.
Now we take the initial conditions

yi(0)=1+
1

2n2

1

cosh2(xi)
, xi =−1+(i−1)

1

2n
, i=1,2,··· ,n,
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with the dimensions n = 20,40,80, and the time stepsizes τ = 0.2,0.1,0.05 over the time
interval t∈ [0,2000]. Consider the four first integrals of (4.6)

H1(y)=
n

∑
i=1

yi, H0(y)=
1

2

n

∑
i=1

lnyi,

Iq(y)=
n

∑
i=1

(1

2
y2

i +yiyi+1

)

, Ic(y)=
n

∑
i=1

(1

3
y3

i +yiyi+1(yi+yi+1+yi+2)
)

,

where H0 is the Casimir function of (4.6). Using the second-order generating function
method (3.3), we obtain the following scheme









ln|y(k+1)
1 |
...

ln|y(k+1)
n |









−









ln|y(k)1 |
...

ln|y(k)n |









=τK











θ1

√

y
(k)
1 y

(k+1)
1

...

θn

√

y
(k)
n y

(k+1)
n











. (4.7)

Consider the preservation of numerical solution for the first integrals, and the errors are

given in Table 1. Here we use the average errors as
√

∑
N
i=1(I i− I0)2/N, where N is the

number of time steps, I0 is a first integral of the analytical solution, and Ii denotes the
value of first integral function at time ti with the variable given by generating function
method.

In Table 1, we can see that the numerical solutions have a nice approximation accu-
racy, especially in Casimir function H0(y). In fact, the scheme (4.7) preserves H0(y) ac-
curately, and the factors affecting errors in H0(y) is only caused by the round-off errors.

Table 1: Average errors of first integrals.

n τ H1 H0 Iq Ic

20 0.5 1.9167e-14 2.1380e-17 2.0321e-13 1.4091e-12
20 0.2 2.4958e-15 4.5900e-17 2.7520e-14 1.9199e-13
20 0.1 4.6343e-16 4.8809e-17 5.0923e-15 3.5587e-14
40 0.5 6.0083e-16 8.7867e-17 7.1169e-15 5.1242e-14
40 0.2 1.6057e-16 6.0697e-17 1.2380e-15 7.5692e-15
40 0.1 1.0882e-16 5.7388e-17 5.8318e-16 2.0410e-15
80 0.5 6.0261e-16 2.7149e-16 2.0246e-15 5.7740e-15
80 0.2 6.5632e-16 3.3096e-16 2.1203e-15 5.8995e-15
80 0.1 5.5292e-16 2.5232e-16 1.4605e-15 5.6903e-15

Then, we apply the generating function methods to solve other generalized Hamilto-
nian systems.

Example 4.4 (cf. [13], §8.2). Consider the Robbins model system

y′1(t)=−y2y3+ε(1−y1), y′2(t)=y1y3−εy2, y′3(t)=y2−εσy3, (4.8)

where σ, ε are constants, and ε is a perturbation parameter.
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Here we just consider the system (4.8) without disturbance, i.e., ε = 0, (4.8) can be
written as the three dimensional generalized Hamiltonian system





y′1(t)
y′2(t)
y′3(t)



=





0 0 −y2

0 0 y1

y2 −y1 0









1
0
y3



 (4.9)

with the Hamiltonian function

H(y)=y1+
1

2
y2

3

and the Casimir function

C(y)=y2
1+y2

2.

Assume that C(y) 6=0. Let

z1=h1(y)=y3, z2=h2(y)=











arctan
y2

y1
, if y1 6=0,

1

2
π ·sgn(y2), if y1=0,

z3=h3(y)=y2
1+y2

2.

We have

y1=λ
√

z3cosz2, y2=λ
√

z3sinz2, y3 = z1,

where λ=1 when y1(0)≥0 and λ=−1 when y1(0)<0. Using the second-order generating
function method (3.3), we obtain the algorithm





h1(y
(k+1))

h2(y
(k+1))

h3(y
(k+1))



−





h1(y
(k))

h2(y
(k))

h3(y
(k))



=τ













2sin
h2(y

(k+1))+h2(y
(k))

2
1

2
(h1(y

(k+1))+h1(y
(k)))

0













.

Taking the initial value (1,1,1) and the time stepsize τ=0.1 over the time interval [0,100],
we obtain the numerical solution in Fig. 8 and the error analysis in Figs. 9-11.
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2
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Figure 8: Numerical results of (4.8) without disturbance.
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Figure 9: Errors in H(y) of Numerical solutions of (4.8) with stepsize τ=0.1.
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Figure 10: Errors in H(y) of Numerical solutions of (4.8) with stepsize τ=0.001.
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Figure 11: Maximum errors in H(y) from the generating function method with different time intervals [0,T]
and stepsizes. � : τ=0.1, △: τ=0.01, © : τ=0.001, ⋄ : τ=0.0001.

Example 4.5 (cf. [1,12]). Consider the Euler equation which describes the motion of rigid
body

y′1(t)=
I2− I3

I2 I3
y2y3, y′2(t)=

I3− I1

I3 I1
y3y1, y′3(t)=

I1− I2

I1 I2
y1y2, (4.10)

where (y1,y2,y3) denotes the angular momentum vector of the rigid body’s rotation
around a fixed point, and the constants I1, I2, I3 denote the eigenvalues of the Rigid
body’s inertia tensor matrix.
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Then, the Euler equation (4.10) can be written as the generalized Hamiltonian system




y′1(t)
y′2(t)
y′3(t)



=





0 −y3 y2

y3 0 −y1

−y2 y1 0









y1/I1

y2/I2

y3/I3



 (4.11)

with the Hamiltonian function

H(y)=
1

2

3

∑
i=1

y2
i /Ii

and the Casimir function

C(y)=
1

2
(y2

1+y2
2+y2

3).

Assume that y2
1+y2

2 6=0. Let

z1=h1(y)=y1, z2=h2(y)=











arctan
y3

y2
, if y2 6=0,

1

2
π ·sgn(y3), if y2=0,

z3=h3(y)=
1

2
(y2

1+y2
2+y2

3).

We have

y1= z1, y2 =λ
√

2z3−z2
1cosz2, y3=λ

√

2z3−z2
1sinz2,

where λ=1 when y2(0)≥0 and λ=−1 when y2(0)<0. Using the second-order generating
function method, we obtain the following Poisson algorithm





h1(y
(k+1))

h2(y(k+1))

h3(y(k+1))



−





h1(y
(k))

h2(y(k))

h3(y(k))



=τ













2sin
h2(y(k+1))+h2(y(k))

2
1

2
(h1(y

(k+1))+h1(y
(k)))

0













.

We take I1 = 3, I2 = 2, I3 = 1, the initial values (1/
√

2,1/
√

2,0), (−1/
√

2,1/
√

2,0),
(0,1/

√
2,−1/

√
2), and the time stepsize τ = 0.1 over the time interval [0,100]. The nu-

merical solutions are given in Fig. 12, and the error analysis are given in Figs. 13-15 with
the initial value (1/

√
2,1/

√
2,0).
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Figure 12: Numerical results of Euler equations (4.10) with different initial values.
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Figure 13: Errors in H(y) of numerical solution for Euler equations (4.10) with stepsize τ=0.1.
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Figure 14: Errors in H(y) of Numerical solutions of Euler equations (4.10) with stepsize τ=0.001.
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Figure 15: Maximum errors in H(y) from the generating function method with different time intervals [0,T]
and stepsizes. � : τ=0.1, △: τ=0.01, © : τ=0.001, ⋄ : τ=0.0001.

5 Conclusions

In this paper, we use the generating function methods to construct the Poisson scheme
for solving coefficient-varying generalized Hamiltonian systems, and some numerical ex-
amples are given. These methods have the nice approximation to the analytical solution,
and they can solve a large class of generalized Hamiltonian systems. Using the gener-
ating function methods of any order, we need to solve a nonlinear algebraic equation of
dimension n, and the computational costs are less than the high-order symplectic Runge-
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Kutta methods. However, the high-order generating function methods need to give the
high-order derivation of Hamiltonian function, this brings much trouble. [15] gives a easy
way to solve Hamilton-Jacobian equations, and it can be applied to the methods in this
paper.
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