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Abstract. Mathematical programs with complementarity constraints (MPCC) is an im-

portant subclass of MPEC. It is a natural way to solve MPCC by constructing a suit-

able approximation of the primal problem. In this paper, we propose a new smoothing

method for MPCC by using the aggregation technique. A new SQP algorithm for solving

the MPCC problem is presented. At each iteration, the master direction is computed by

solving a quadratic program, and the revised direction for avoiding the Maratos effect

is generated by an explicit formula. As the non-degeneracy condition holds and the

smoothing parameter tends to zero, the proposed SQP algorithm converges globally to

an S-stationary point of the MPEC problem, its convergence rate is superlinear. Some

preliminary numerical results are reported.
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1. Introduction

Mathematical programs with equilibrium constraints (MPEC) is an optimization prob-

lem whose constraints include variational inequalities or complementarity system. It forms

a relatively new and interesting class of optimization problems, which have found many

applications in engineering and economics, we refer to [10] for an extensive bibliography

on this topic and its applications. In this paper, we consider an important subclass of the

MPEC problem, which is called mathematical programs with complementarity constraints

(MPCC):
min f (x , y)

s.t. 0≤ F(x , y)⊥y ≥ 0,
(1.1)
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where f : Rn+m → R, F : Rn+m → Rm are continuously differentiable functions, and w⊥y

indicates orthogonality of any vectors w, y ∈ Rm. The system 0≤ F(x , y)⊥y ≥ 0 is said to

be the lower-level or equilibrium constraints.

The major difficulty in solving problem (1.1) is that its constraint fails to satisfy the

standard Mangasarian-Fromovitz constraints qualification at any feasible point because

of the existence of the complementarity constraint, see [1] and [13]. So the theory for

nonlinear programming can not be directly applied to problem (1.1), hence the standard

methods are not guaranteed to solve such problem. In recent years, optimal conditions

and various stationarity concepts were deeply studied by some authors, see [10, 13, 15].

For example, Luo et al. [10] provided a comprehensive study on the MPEC, such as the

exact penalization theory, stationarity conditions. Scheel and Scholtes [13] made an ex-

cellent clarification on these concepts and elucidated their connections. More recently, Qi

et al. [12] investigated the differentiable properties of the aggregation function, and used

it to propose a smoothing method for nonlinear complementarity problems. Jiang and

Ralph [8] proposed two smooth SQP methods for MPEC. Global convergence of the meth-

ods depend on the lower level strict complementarity condition amongst some conditions,

such as the LICQ or MFCQ. Fukushima and Tseng [5] proposed an ǫ-active set algorithm,

they used a sequence of SSNPs based on an ǫ-active set to approach the discussed MPCC.

Under a uniform LICQ on the ǫ-feasible set, this algorithm generates iterates whose cluster

points are B-stationary points of the problem. However, the proof has a gap and shows only

that each cluster point is an M-stationary point. Subsequently, Fukushima and Tseng [6]

discussed this gap and a modified algorithm that achieves B-stationarity under an addi-

tional error bound condition. Tao [14] proposed a class of smoothing methods for MPCC,

they used an available probability density function to obtain a corresponding approxima-

tion of the original problem. Under some conditions, the MPCC-LICQ holds for the class of

smooth methods. However, the methods of [5, 6, 8, 12, 14] do not adopt any technique to

avoid the Maratos effect, they only possess global convergence.

Motivated by the ideas of [8, 12, 14], we present a new smoothing SQP algorithm for

the problem (1.1). Some notable features of the new algorithm are as follows:at each

iteration, the master direction is computed by solving a quadratic program (QP) which

only includes equality constraints, the form of QP is different from in [8]. The revised

direction for avoiding the Maratos effect is obtained by an explicit formula. The proposed

algorithm possesses not only global convergence, but also super-linear convergence.

The structure of this paper is organized as follows: In Section 2, some known results

are restated. In Section 3, the algorithm is proposed. In Section 4, we show that the

algorithm is globally convergent. Super-linear convergence rate is proved in Section 5,

and finally some preliminary numerical results are reported in Section 6.

Throughout this paper, we use the following notations:

z = (x , y, w), p = (x , y), q = (y, w),

dp = (d x , d y), dq = (d y, dw), dz = (d x , d y, dw),

pk = (x k, yk), qk = (yk, wk), dzk = (d x k, d yk, dwk).
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2. Preliminaries

In this section, we recall some concepts about the MPCC (1.1).

For the sake of simplicity, we denote the feasible set of the problem (1.1) as follows:

F =
n
(x , y) : 0≤ F(x , y)⊥y ≥ 0

o
,

and the tangent cone of F at a vector p∗ = (x∗, y∗) ∈ F as follows:

T (p∗,F ) =
�

d = lim
k→∞

pk − p∗

τk

: pk ∈ F , lim
k→∞

pk = p∗,τk ↓ 0

�
.

For any p = (x , y), we decompose the index set L = {1,2, · · · , m} into three disjoint

subsets,

α(p) =
�
1≤ i ≤ m : Fi(p)< yi

	
,

β(p) =
�
1≤ i ≤ m : Fi(p) = yi

	
,

γ(p) =
�
1≤ i ≤ m : Fi(p)> yi

	
.

And we define the decomposition index setA (p) at p by

A (p) =
n
(J ,K ) : J ⊇ α(p),K ⊇ γ(p),J ∪K = 1,2, · · · , m,J ∩K = ;

o
.

If p∗ = (x∗, y∗) ∈ F , then

α(p∗) = {1≤ i ≤ m : Fi(p
∗) = 0< y∗i },

β(p∗) = {1≤ i ≤ m : Fi(p
∗) = 0= y∗

i
},

γ(p∗) = {1≤ i ≤ m : Fi(p
∗)> 0= y∗i }.

Now, we give some main definitions about the optimal conditions of the MPCC (1.1).

Definition 2.1. (S-stationary point) A point p∗ = (x∗, y∗) ∈ F is an S-stationary point of

the (1.1), if each ∀(J ,K ) ∈A (p∗), there exist K-T multipliers η∗ ∈ Rm,π∗ ∈ Rm, such that

∇ f (x∗, y∗)−∇F(x∗, y∗)η∗ −
�

0n×m

Im×m

�
π∗ = 0,

Fi(x
∗, y∗) = 0, 0≤ y∗i ⊥π∗i ≥ 0, ∀i ∈ J ,

0≤ Fi(x
∗, y∗)⊥η∗i ≥ 0, y∗i = 0, ∀i ∈K .

(2.1)

Definition 2.2. (Lower-level nondegenerate condition) A point (x , y) ∈ Rn+m is said to

be lower-level non-degenerate for the MPCC (1.1), if yi 6= Fi(x , y),∀i = 1,2, · · · , m.
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3. Equivalent reformulation of MPCC and algorithm

In this section, we first give an equivalent reformulation of the MPCC (1.1), and then

propose a new SQP algorithm for solving problem (1.1).

Let F(x , y) = w, by using the aggregation technique, we define

Φ(y, w,µ) =




φ(y1, w1,µ)
...

φ(ym, wm,µ)


 ,

where

φ(yi , wi ,µ) = −µ ln
h

exp
�−yi/µ
�
+ exp
�−wi/µ
�i

, i = 1, · · · , m.

For µ > 0, it is easy to know that Φ(y, w,µ) is continuously differentiable with respect to

y, w, let

lim
µ→0
Φ(y, w,µ) = Φ(y, w).

As such, it is natural to define Φ(y, w) = Φ(y, w, 0),

φ(yi , wi , 0) = lim
µ→0
−µ ln
h

exp
�−yi/µ
�
+ exp
�−wi/µ
�i

, i = 1, · · · , m.

Then we construct the following parametric nonlinear programming problems (Pµ):

min f (x , y)

s.t. F(x , y) = w,

Φ(y, w,µ) = 0.

(3.1)

For µ > 0, (3.1) is said to be the smoothing approximation of MPCC (1.1). Obviously, as

µ→ 0, the solution of (Pµ) tends to the solution of MPCC (1.1).

In order to analyze the LICQ for the MPCC (3.1), we consider the following mapping

H : Rn+2m × (0,+∞)→ R2m

H(z,µ) =

�
F(x , y)−w

Φ(y, w,µ)

�
. (3.2)

It is clear that the gradient of H(z,µ) can be described as

∇H(z,µ) =



∇x F(x , y) 0

∇y F(x , y) ∇yΦ(y, w,µ)

−Im ∇wΦ(y, w,µ)


 . (3.3)

Some basic assumptions are given as follows:
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Assumption 3.1. The function f (x , y), F(x , y) are two-times continuously differentiable.

Assumption 3.2. For any

z ∈ X =
�
(x , y, w) ∈ Rn+m+m : (x , y) ∈ F , w = F(x , y)

	
,

the gradient matrix ∇H(z,µ) has full column rank.

Assumption 3.3. The feasible set of (1.1) is nonempty, i.e., F 6= ;.

Let zk ∈ X and µk > 0, we consider the following quadratic program QP(zk,µk):

min ∇ f (x k, yk)T

�
d x

d y

�
+

1

2
(d x T , d yT , dwT )Bk




d x

d y

dw




s.t. F(x k, yk)−wk +∇F(x k, yk)T

�
d x

d y

�
− dw = 0,

Φ(yk, wk,µk) +∇Φ(yk, wk,µk)
T

�
d y

dw

�
= 0.

(3.4)

where the gradient ∇Φ(yk, wk,µk) can be computed by

∇Φ(yk, wk,µk) = (D
k
a Dk

b
)T , (3.5)

Dk
a = diag
�
∂yi
φ(yk

i , wk
i ,µk

�
, i = 1∼ m),

Dk
b
= diag
�
∂wi
φ(yk

i
, wk

i
,µk

�
, i = 1∼ m).

(3.6)

In this paper, we define the ℓ1 penalty function θ : Rn+2m× (0,+∞)× (0,+∞)→ R for

problem (3.1) as a merit function:

θ(z, c,µ) = f (x , y) + c
�‖F(x , y)−w‖1 + ‖Φ(y, w,µ)‖1

�
. (3.7)

Obviously, the function θ(., c,µ) is directionally differentiable. From the equality con-

straints of (3.4), we can obtain direction derivative θ ′(zk, ck,µk; dzk) of θ(., c,µ) at zk

along dzk by

θ ′(zk, ck,µk; dzk)

=∇ f (x k, yk)T

�
d x k

d yk

�
− ck‖Φ(yk, wk,µk)‖1 − ck‖F(x k, yk)−wk‖1. (3.8)

The SQP algorithm for solving problem (1.1) is given in Algorithm 3.1.
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Step 0 Initialization:Given a initial point z0 = (x0, y0, w0) ∈ X , s
alars δ ∈ (0,∞), c−1 > 0, γ ∈ [1,2),α ∈ (0, 1

2
),β ∈

(0,1), and a sequen
e {µk}∞k=0
su
h that

µk > 0, µk+1 < µk, lim
k→∞
µk = 0, lim

k→∞
µk+1

µ
γ

k

= η ∈ (0,1),a symmetri
 positive de�nite matrix B0 ∈ R(n+2m)×(n+2m) . Set k := 0.
Step 1 Computation of the main search direction dzk:Solving the quadrati
 programming QP(zk,µk)(3.4) to obtain the K-T point dzk and its 
orre-sponding K-T multipliers λk = (uk, vk) ∈ Rm+m. Let dpk = (d xk, d yk), dqk = (d yk, dwk).
Step 2 Termination check:If dzk = 0,µk ≤ ǫ, STOP! If dzk = 0,µk > ǫ, then 
hoose a new parameter µ′

k
∈ (µk+1,µk), andlet µk = µ

′
k
, go to step 1. If dzk 6= 0, sele
t a new parameter µk ∈ (µk+1,µk), and set µk = µk,go to step 3.

Step 3 Penalty update:
sk =max1≤i≤m{|uk

i
|, |vk

i
|},

ck =

(
ck−1, if ck−1 ≥ sk + δ,

max{sk +δ, ck−1 + 2δ}, otherwise.

Step 4 Computation of the revised direction edzk:
edzk =−∇H(zk,µk)(∇H(zk,µk)

T∇H
�
zk,µk)
�−1

H(zk + dzk,µk), (3.9)where
H(zk + dzk,µk) =

�
F(pk + dpk)− wk − dwk

Φ(qk + dqk,µk)

�
. (3.10)If ‖edzk‖> ‖dzk‖, let edzk = 0, go to step 5.

Step 5 Do line search:Compute the step size tk, whi
h is the �rst number t of the sequen
e {1,β ,β2, · · · } satisfying
θ(zk + tdzk + t2edzk, ck,µk)≤ θ(zk, ck,µk) +αtθ ′(zk, dzk, ck,µk). (3.11)

Step 6 Update:Generate a new iteration point by zk+1 = zk+ tkdzk+ t2
k
edzk and a new symmetri
 positive de�nitematrix Bk+1 ∈ R(n+2m)×(n+2m) by BFGS formula. Set k := k+ 1 and go ba
k to step 1.
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4. Global convergence of algorithm

In this section, we firstly show that Algorithm 3.1 is well-defined, then prove that the

algorithm converges globally to an S-stationary point of problem (1.1).

Proposition 4.1. Let µk > 0 be given and Bk be symmetric positive definite, then the quadratic

programming QP(zk,µk) (3.4) problem has a unique optimal solution.

Proposition 4.2. For any (yi , wi ,µ) ∈ [0,+∞)× [0,+∞)× (0,+∞), it holds that

�
∂yi
φ(yi , wi ,µ)
�2
+
�
∂wi
φ(yi , wi ,µ)
�2 ≥ 1

2
> 0.

Proof. Since 0< exp
�−yi/µ
�≤ 1,0< exp
�−wi/µ
�≤ 1, we have that

�
exp
�−yi/µ
��2
+
�

exp
�−wi/µ
��2

�
exp
�−yi/µ
�
+ exp
�−wi/µ
��2 −

1

2

=

�
exp
�−yi/µ
�− exp
�−wi/µ
��2

2
�

exp
�−yi/µ
�
+ exp
�−wi/µ
��2 ≥ 0.

Thereby, we conclude that

�
∂yi
φ(yi , wi ,µ)
�2
+
�
∂wi
φ(yi , wi ,µ)
�2

=

�
exp
�−yi/µ
��2
+
�

exp
�−wi/µ
��2

�
exp
�−yi/µ
�
+ exp
�−wi/µ
��2 ≥ 1

2
> 0.

The proof is completed. �

Lemma 4.1. If dzk 6= 0, then it holds that

θ ′(zk, dzk, ck,µk)≤ −(dzk)T Bkdzk < 0. (4.1)

Proof. Since (dzk,uk, vk) is a K-T point pair of the QP(zk,µk)(3.4), we have

�
∇ f (x k, yk)

0

�
+ Bk




d x k

d yk

dwk


+
�
∇F(x k, yk)

−I

�
uk

+

�
0

∇Φ(yk, wk,µk)

�
vk = 0, (4.2)

F(x k, yk)−wk +∇F(x k, yk)T

�
d x k

d yk

�
− dwk = 0,

Φ(yk, wk,µk) +∇Φ(yk, wk,µk)T

�
d yk

dwk

�
= 0.

(4.3)
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It follows from (4.2) that

�∇ f (x k, yk)T , 0
�



d x k

d yk

dwk


+ (dzk)T Bkdzk + (uk)T

�∇F(x k, yk)T ,−I
�

dzk

+ (vk)T
�
0,∇Φ(yk, wk,µk)

T
�
dzk = 0. (4.4)

By combining (4.3) with (4.4), we obtain

∇ f (x k, yk)T

�
d x k

d yk

�
+ (dzk)T Bkdzk − (uk)T (F(x k, yk)−wk)

− (vk)TΦ(yk, wk,µk) = 0. (4.5)

In view of (3.8) and (4.5), we conclude that

θ ′(zk, dzk, ck,µk) =− (dzk)T Bkdzk + (uk)T
�

F(x k, yk)−wk
�
+ (vk)TΦ(yk, wk,µk)

− ck

�‖F(x k, yk)−wk‖1 + ‖Φ(yk, wk,µk)‖1
�

≤− (dzk)T Bkdzk +

m∑

i=1

�|uk
i | − ck

���Fi(x
k, yk)−wk

i

��

+

m∑

i=1

�|vk
i | − ck

���φ(yk
i , wk

i ,µk)
��.

Taking into account ck > sk =max1≤i≤m

�|uk
i |, |vk

i |
	
, we get that

θ ′(zk, dzk, ck,µk)≤ −(dzk)T Bkdzk < 0.

The proof is completed. �

Lemma 4.2. The line search in step 5 is well defined, i.e., step 5 yields a step-size tk = β
jk

for some finite jk.

Proof. For the sake of simplicity, we denote that

T1 = f (pk + tdpk + t2edpk)− f (pk),

T2 =

m∑

i=1

h
|Fi(p

k + tdpk + t2edpk)−wk
i − tdwk

i − t2edwi

k| − |Fi(p
k)−wk

i |
i

,

T3 =

m∑

i=1

h
|φ(qk

i + tdqk
i + t2edqi

k
,µk)| − |φ(qk

i ,µk)|
i

.

Then

θ(zk+1, ck,µk)− θ(zk, ck,µk) = T1 + ckT2 + ckT3. (4.6)
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Using Taylor expansion, we have

T1 =t∇ f (pk)T dpk + t2 f (pk)T edpk + o(t) = t∇ f (pk)T dpk + o(t).

Observe that

Fi(p
k + tdpk + t2edpk)−wk

i − tdwk
i − t2edwi

k

=Fi(p
k) +∇Fi(p

k)T (tdpk + t2edpk)−wk
i − tdwk

i − t2edwi

k
+ o(t)

=Fi(p
k) + t∇Fi(p

k)T dpk −wk
i − tdwk

i + o(t)

=Fi(p
k)−wk

i − t
�

Fi(p
k)−wk

i

�
+ o(t)

=(1− t)
�

Fi(p
k)−wk

i

�
+ o(t),

and

φ(qk
i + tdqk

i + t2edqi

k
,µk)

=φ(qk
i ,µk) +∇φ(qk

i ,µk)
T (tdqk

i + t2edqi

k
) + o(t)

=φ(qk
i ,µk) + t∇φ(qk

i ,µk)
T dqk

i + o(t)

=(1− t)(qk
i ,µk) + o(t).

So, we conclude that

T2 =

m∑

i=1

h
(1− t)|Fi(p

k)−wk
i | − |Fi(p

k)−wk
i |
i
+ o(t)

=

m∑

i=1

h
(−t)|Fi(p

k)−wk
i |
i
+ o(t)

=− t‖F(pk)−wk‖1 + o(t).

Similarly, we have

T3 = −t‖Φ(qk,µk)‖1 + o(t).

Consequently,

T1 + ckT2 + ckT3

=t
h
∇ f (pk)T dpk − ck‖F(pk)−wk‖1 − ck‖Φ(qk,µk)‖1

i
+ o(t).

This, along with (4.6), shows that

θ(zk+1, ck,µk)− θ(zk, ck,µk) = tθ ′(zk, dzk, ck,µk) + o(t).

In view of the fact θ ′(zk, dzk, ck,µk)< 0, there exists a constant tk > 0 such that

θ(zk + tkdzk + t2
k
edzk, ck,µk)≤ θ(zk, ck,µk) +αtkθ

′(zk, dzk, ck,µk).

The proof is finished. �

Before showing the algorithm is globally convergent, we make some assumptions as

follows:
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Assumption 4.1. The sequence {zk} is bounded.

Assumption 4.2. There exist constants b ≥ a > 0,such that

a‖z‖2 ≤ zT Bkz ≤ b‖z‖2, ∀z ∈ Rn+2m, ∀k = 0,1,2, . . .

Assumption 4.3. For any limit point z∗ = (x∗, y∗, w∗) of {zk}, it is satisfied the lower-level

non-degeneracy: (y∗i , w∗i ) = (y
∗
i , Fi(x

∗, y∗)) 6= (0,0), i = 1∼ m, i.e., β(p∗) = ;.

The following lemma summarizes several important properties of the sequence {zk, k ∈
K}:
Lemma 4.3. ([4]) If Assumptions 3.1, 4.1, 4.2 hold and limk∈K zk = z∗, then

(a) The sequence {dzk : k ∈ K}, {edzk : k ∈ K} and the multiplier sequences
�
(uk, vk) : k ∈

K
	

are bounded.

(b) There exists a positive integer k0 such that ck ≡ ck0
= c, for all k ≥ k0.

According to Lemma 4.3, Assumption 4.2, we might as well assume that there exists a

subsequence K , such that

dzk→ dz∗, edzk→ edz
∗
, Bk→ B∗, x k→ x∗,

uk→ u∗, vk→ v∗, ck ≡ c, k ∈ K . (4.7)

Proposition 4.3. For any µ > t > 0 and (y, w) ∈ [0,+∞)× [0,+∞), we have

|φ(y, w, t)| ≤ |φ(y, w,µ)|+
�

ln2+ 2M/
p

t
�
µ. (4.8)

Proof. Using Mean Value Theorem, we know that there exists σ ∈ [t,µ] such that

|φ(y, w, t)| =|φ(y, w,µ) +φ′µ(y, w,σ)(t −µ)|
≤|φ(y, w,µ)|+ |φ′µ(y, w,σ)|(µ− t)

≤|φ(y, w,µ)|+ |φ′µ(y, w,σ)|µ. (4.9)

Set

t1 =
exp
�−y/σ
�

exp
�−y/σ
�
+ exp (−w/σ)

, t2 =
exp (−w/σ)

exp
�−y/σ
�
+ exp (−w/σ)

.

Then it can be verified that

t1 + t2 = 1,

φ′µ(y, w,σ)

=− ln
�

exp
�−y/σ
�
+ exp (−w/σ)
�− 1

σ

y exp
�−y/σ
�
+w exp (−w/σ)

exp
�−y/σ
�
+ exp (−w/σ)

=− ln
�

exp
�−y/σ
�
+ exp (−w/σ)
�− 1

σ
(y t1 +wt2).
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According to Assumption 4.1, we may assume that there exists a constant M
p
σ > 0, such

that

‖zk‖ ≤ M
p
σ.

Thereby, we have

|φ′µ(y, w,σ)| ≤ ln
�

exp
�−y/σ
�
+ exp (−w/σ)
�
+

1

σ
(y t1 +wt2)

≤ ln2+
1

σ
M
p
σ = ln2+

Mp
σ
+

Mp
σ

≤ ln2+
Mp

t
+

Mp
t
= ln 2+ 2

Mp
t
.

This along with (4.9) yields the desired inequality (4.8). �

Proposition 4.4. Suppose that Assumptions 3.1-4.3 hold. Then

lim
k→∞

θ(zk, c,µk) = lim
k→∞

θ(zk+1, c,µk) = θ(z
∗, c, 0). (4.10)

Proof. For k large enough, from Proposition 4.3, we have

|φ(qk+1
i

,µk+1)| ≤ |φ(qk+1
i

,µk)|+
�

ln2+ 2
M
p
µk+1

�
µk,

which together with (3.7) shows that

θ(zk+1, c,µk+1) = f (pk+1) + c‖F(pk+1)−wk+1‖+ c

m∑

i=1

��φ(qk+1
i

,µk+1)
��

≤ θ(zk+1, c,µk) + cm

�
ln2+ 2

M
p
µk+1

�
µk. (4.11)

In view of (3.11) and (4.1), we have

θ(zk+1, c,µk)≤ θ(zk, c,µk). (4.12)

Consequently,

θ(zk+1, c,µk+1)≤ θ(zk, c,µk) + cm

�
ln 2+ 2

M
p
µk+1

�
µk.

Taking into account

lim
k→∞

µk+1

µ
γ

k

= η ∈ (0,1), γ ∈ [1,2), k ∈ K , µk→ µ∗,
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we have ‖µk‖ ≤ ̺. Then

∑

k∈K

µkp
µk+1

≤
∑

k∈K

r
π

η
µ

1−γ/2
k

=
∑

k∈K

r
π

η
µ

1−γ/2
k

< +∞, π > 1,

while ∞∑

k=0

µk < +∞, cm > 0.

Hence, it holds that

∞∑
k=0

cm

�
ln 2+ 2

M
p
µk+1

�
µk = cm ln2

∞∑
k=0

µk + 2cmM
∞∑

k=0

µkp
µk+1

< +∞. (4.13)

From (4.13) and Proposition 4.3 [7], we know the entire sequence
�
θ(zk, c,µk)
	

is con-

vergent. So, we have

lim
k→∞

θ(zk, c,µk) = θ(z
∗, c, 0).

From (4.11) and (4.12), it holds that

θ(zk+1, c,µk+1)− cm

�
ln2+ 2

M
p
µk+1

�
µk ≤ θ(zk+1, c,µk)≤ θ(zk, c,µk).

Passing to the limit k→∞ in the above inequality, we conclude that

lim
k→∞

θ(zk+1, c,µk) = θ(z
∗, c, 0).

The proof is completed. �

Lemma 4.4. Both sequences {dzk : k ∈ K} and {edzk : k ∈ K} converge to zero, i.e., edz∗ =
dz∗ = 0.

Proof. Since ‖edzk‖ < ‖dzk‖, it holds that ‖edz∗‖ ≤ ‖dz∗‖. We only prove that dz∗ = 0.

From (4.1), (3.11) and Assumption 4.2, we have that

θ(zk+1, c,µk)≤ θ(zk, c,µk)− aαtk‖dzk‖2.

In view of Proposition 4.4 and Lemma 4.3(a), we obtain that

lim
k∈K,k→∞

tk‖dzk‖= 0.

If lim infk∈K,k→∞ tk > 0, then

lim
k∈K,k→∞

‖dzk‖ = 0.

Suppose that lim infk∈K,k→∞ tk = 0. Without loss of generality, we may assume that

lim
k∈K,k→∞

tk = 0.
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Set ρk = β
−1tk, k ∈ K . Using (3.11), we have

θ(zk +ρkdzk +ρ2
k
edzk, c,µk)− θ(zk, c,µk)

ρk

> αθ ′(zk, c,µk; dzk).

Passing to the limit k ∈ K and k→∞, in view of (3.8) and Lemma 4.3 [7], we deduce

θ ′(z∗, c, 0; dz∗) ≥ αθ ′(z∗, c, 0; dz∗). (4.14)

Combining (4.1) with Assumption 4.2, we conclude that

θ ′(zk, c,µk; dzk)≤ −a‖dzk‖2.

Passing to the limit k ∈ K and k→∞ in the above equality, we have

θ ′(z∗, c, 0; dz∗)≤ −a‖dz∗‖2, (4.15)

which together with (4.14), we obtain that dz∗ = 0. �

Theorem 4.1. Suppose that Assumptions 3.1-4.3 hold. If (x∗, y∗) ∈ F is a lower-level non-

degenerate point of the MPCC (1.1), and limk→∞µk = 0, then Algorithm 3.1 generates an

infinite sequence {zk} whose any accumulation point z∗ = (x∗, y∗, w∗) is a KKT point of (3.1).

Furthermore, (x∗, y∗) is an S-stationary point of (1.1).

Proof. Firstly, we solve ∇yi
φ(y∗i , w∗i , 0), ∇wi

φ(y∗i , w∗i , 0). Observe that

∇yi
φ(y∗i , w∗i , 0) = lim

µk→0

exp
�
−y∗i /µk

�

exp
�
−y∗

i
/µk

�
+ exp
�
−w∗

i
/µk

�

= lim
µk→0

1

1+ exp
�
(y∗

i
−w∗

i
)/µk

� ,

∇wi
φ(y∗i , w∗i , 0) = lim

µk→0

exp
�
−w∗i /µk

�

exp
�
−y∗

i
/µk

�
+ exp
�
−w∗

i
/µk

�

= lim
µk→0

1

1+ exp
�
(w∗

i
− y∗

i
)/µk

� .

Then

∇yi
φ(y∗i , w∗i , 0) =

¨
0, i ∈ α(p∗),
1, i ∈ γ(p∗). (4.16)

∇wi
φ(y∗

i
, w∗

i
, 0) =

¨
1, i ∈ α(p∗),
0, i ∈ γ(p∗). (4.17)
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From (4.2), (4.3), (4.7) and Lemma 4.4, we get that

�
∇ f (x∗, y∗)

0

�
+

�
∇F(x∗, y∗)
−I

�
u∗+
�

0

∇Φ(y∗, w∗, 0)

�
v∗ = 0, (4.18a)

F(x∗, y∗) = w∗, Φ(y∗, w∗, 0) = 0. (4.18b)

In view of (x∗, y∗) ∈ F , β(p∗) = ;, (4.16) and (4.17), we conclude that

∇yi
φ(y∗i , w∗i , 0) = 0, ∇wi

φ(y∗i , w∗i , 0) = 1, i ∈ α(p∗),
∇yi
φ(y∗i , w∗i , 0) = 1, ∇wi

φ(y∗i , w∗i , 0) = 0, i ∈ γ(p∗).

From (4.18), we have u∗ =∇wΦ(y
∗, w∗, 0)v∗. Let

η∗ = −u∗ = −∇wΦ(y
∗, w∗, 0)v∗, π∗ = −∇yΦ(y

∗, w∗, 0)v∗.

Then

�
∇ f (x∗, y∗)

0

�
−
�
∇F(x∗, y∗)
−I

�
η∗

+




0

0

∇wΦ(y
∗, w∗, 0)


 v∗+




0

∇yΦ(y
∗, w∗, 0)
0


 v∗ = 0.

Thereby, we have

∇ f (x∗, y∗)−∇F(x∗, y∗)η∗ −
�

0n×m

Im×m

�
π∗ = 0, (4.19a)

w∗i = Fi(x
∗, y∗) = 0, y∗i > 0, ∇yi

φ(y∗i , w∗i , 0) = 0, π∗i = 0, ∀i ∈ α(p∗), (4.19b)

w∗i = Fi(x
∗, y∗)> 0, y∗i = 0, ∇wi

φ(y∗i , w∗i , 0) = 0, η∗i = 0, ∀i ∈ γ(p∗). (4.19c)

From Definition 2.1, (4.19) shows that (x∗, y∗) is an S-stationary point of (1.1). �

5. Super-linear convergence

In this section, we first prove that the step-size tk of Algorithm 3.1 always equals 1 for

k sufficiently large. Then we show that Algorithm 3.1 is super-linearly convergent under

additional hypotheses.

In order to obtain the superlinear convergence rate, we make the following additional

assumptions:



Superlinear Convergence of a Smooth Approximation Method 381

Assumption 5.1. Suppose that the strong second-order sufficiency conditions for (1.1)

hold, i.e.,

(dz)T∇2
zz L(z∗,u∗, v∗, 0)dz > 0, ∀dz ∈ Ω,

where

Ω
de f
=
�

dz ∈ Rn+2m : dz 6= 0,∇H(z∗)T dz = 0
	
,

L(z,u, v,µ) = f (x , y) + (F(x , y)−w)T u+Φ(y, w,µ)T v.

Assumption 5.2. Bk→ B∗, k→∞.

Assumption 5.3. The sequence of matrices {Bk} satisfies

‖(∇2
zz L(zk,uk, vk,µk)− Bk)dzk‖= o(‖dzk‖).

Lemma 5.1. Assume that Assumptions 3.1-5.2 hold. Then

(i) The entire sequence {zk} converges to z∗.

(ii) limk→∞ dzk = limk→∞ edzk = 0.

Proof. (i) From (3.11), (4.1) and Assumption 4.2, we have that

θ(zk+1, c,µk)≤ θ(zk, c,µk)− aαtk‖dzk‖2,

which, together with Proposition 4.4 and Lemma 4.3(a), yield

lim
k→∞

tk‖dzk‖ = 0.

Thereby, we conclude

‖zk+1 − zk‖ ≤ tk‖dzk‖+ t2
k‖edzk‖

≤ tk‖dzk‖+ tk‖edzk‖ ≤ 2tk‖dzk‖ → 0, k→∞.

According to Assumptions 5.1-5.2 and Proposition 4.1 in [11], we can get zk→ z∗, k→∞.

(ii) From part (i) and Lemma 4.4, it holds that

lim
k→∞

dzk = lim
k→∞
edzk = 0.

The proof is completed. �

Lemma 5.2. For k sufficiently large, we have

‖edzk‖= O (‖dzk‖2). (5.1)
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Proof. By Taylor expansion, we have

F(pk + dpk)−wk − dwk

=F(pk) +∇F(pk)T dpk −wk − dwk + O (‖dpk‖2).

From (4.3), we have

F(pk + dpk)−wk − dwk = O (‖dpk‖2) = O (‖dzk‖2).

With the same reason, we can conclude that

Φ(qk + dqk,µk) = O (‖dzk‖2).

Thereby, we obtain (5.1). �

Theorem 5.1. For k sufficiently large, we have zk+1 = zk + dzk + edzk, i.e., tk ≡ 1.

Proof. We only prove that

△ = θ(zk + dzk + edzk, c,µk)− θ(zk, c,µk)−αθ ′(zk, dzk, c,µk)≤ 0.

Note that

△ = f (pk + dpk + edpk)− f (pk) + c‖F(pk + dpk + edpk)−wk − dwk − edwk‖1
+ c‖Φ(qk + dqk+ edqk,µk)‖1− c

�‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1
�

−α∇ f (pk)T dpk +αc
�‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1

�

= f (pk + dpk + edpk) + c(α− 1)
�‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1

�

+ c‖Φ(qk + dqk+ edqk,µk)‖1−α∇ f (pk)T dpk − f (pk)

+ c‖F(pk + dpk + edpk)−wk − dwk − edwk‖1.

From (3.3), (3.5), (3.9) and (3.10), we have

∇F(pk)T edpk − edwk = −�F(pk + dpk)−wk − dwk
�

, (5.2)

∇Φ(qk,µk)
T edqk = −Φ(qk + dqk,µk). (5.3)

In view of (5.1)-(5.3) and the Taylor expansion, we obtain that

F(pk + dpk + edpk)−wk − dwk − edwk

=F(pk + dpk) +∇F(pk + dpk)T edpk + o(‖edpk‖)−wk − dwk − edwk

=F(pk + dpk) +∇F(pk)T edpk −wk − dwk − edwk + o(‖edpk‖) + O (‖dzk‖3)
=o(‖dzk‖2), (5.4)
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Φ(qk + dqk + edqk,µk)

=Φ(qk + dqk,µk) +∇Φ(qk + dqk,µk)
T edqk + o(‖edqk‖)

=Φ(qk + dqk,µk) +∇Φ(qk,µk)
T edqk + o(‖edqk‖) + O (‖dzk‖3)

=o(‖dzk‖2), (5.5)

f (pk + dpk + edpk)− f (pk)

=∇ f (pk)T (dpk + edpk) +
1

2
(dpk + edpk)T∇2 f (pk)(dpk+ edpk) + o(‖dzk‖2). (5.6)

So, we have

△ = ∇ f (pk)T (dpk + edpk) +
1

2
(dpk + edpk)T∇2 f (pk)(dpk + edpk)

+ c(α− 1)(‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1)−α∇ f (pk)T dpk + o(‖dzk‖2). (5.7)

We obtain from (4.2) that

∇ f (pk)T edpk =− (dzk)T Bk
edzk − (uk)T (∇F(pk)T ,−I)edzk − (vk)T (0,∇Φ(qk,µk)

T )edzk

=− ((uk)T , (vk)T )∇H(zk,µk)
T edzk + o(‖dzk‖2).

From (4.4), we conclude that

∇ f (pk)T dpk = −(dzk)T Bkdzk − ((uk)T , (vk)T )∇H(zk,µk)
T dzk.

Thereby, we have that

∇ f (pk)T (dpk + edpk)

=− (dzk)T Bkdzk − ((uk)T , (vk)T )∇H(zk,µk)
T (dzk + edzk) + o(‖dzk‖2).

From (3.2), (3.3), (5.4), (5.5) and by Taylor expansion, we get that

o(‖dzk‖2) =H(zk,µk) +∇H(zk,µk)
T (dzk + edzk)

+
1

2

�
(dzk + edzk)T∇2

zz Fi(p
k)(dzk + edzk), i = 1∼ m.

(dzk + edzk)T∇2
zzφ(q

k
i ,µk)(dzk + edzk), i = 1∼ m.

�
.

So, we have that

�
(uk)T , (vk)T
�∇H(zk,µk)

T (dzk + edzk)

=− 1

2
(dzk + edzk)T [∇2

zz L(zk,uk, vk,µk)−∇2
zz f (pk)](dzk + edzk)

− ((uk)T , (vk)T )H(zk,µk) + o(‖dzk‖2).
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Consequently, it holds that

∇ f (pk)T (dpk + edpk)

=
1

2
(dzk + edzk)T[∇2

zz L(zk,uk, vk,µk)−∇2
zz f (pk)](dzk + edzk)

− (dzk)T Bkdzk +
�
(uk)T , (vk)T )H(zk,µk) + o(‖dzk‖2�. (5.8)

From (4.5), we have that

∇ f (pk)T dpk = −(dzk)T Bkdzk + (uk)T (F(pk)−wk) + (vk)TΦ(qk,µk). (5.9)

Taking into account (5.7)-(5.9), we conclude that

△=− (dzk)T Bkdzk + (1−α)((uk)T , (vk)T )

�
F(pk)−wk

Φ(qk,µk)

�
+α(dzk)T Bkdzk

+
1

2
(dzk + edzk)T∇2

zz L(zk,uk, vk,µk)(dzk + edzk) + c(α− 1)(‖F(pk)−wk‖1
+ ‖Φ(qk,µk)‖1) + o(‖dzk‖2)

=
�
α− 1

2

�
(dzk)T Bkdzk +

1

2
(dzk + edzk)T [∇2

zz L(zk,uk, vk,µk)− Bk](dzk + edzk)

+ o(‖dzk‖2) + (1−α)((uk)T , (vk)T )

�
F(pk)−wk

Φ(qk,µk)

�

+ c(α− 1)(‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1).

In view of Assumptions 4.2 and 5.3, α ∈ (0, 1

2
) and c > sk = max1≤i≤m{|uk

i |, |vk
i |}, we

further get

△≤a
�
α− 1

2

�
‖dzk‖2 + c(1−α)(‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1)

+ c(α− 1)(‖F(pk)−wk‖1 + ‖Φ(qk,µk)‖1) + o(‖dzk‖2)
=a
�
α− 1

2

�
‖dzk‖2 + o(‖dzk‖2)≤ 0.

Hence (3.11) holds for tk = 1 and k large enough. �

Moreover, in view of Theorem 4.1, Assumption 5.3, Theorem 5.1 and the way of The-

orem 5.2 in [3], it is easy to get the convergence theorem:

Theorem 5.2. Suppose that Assumptions 3.1-5.3 hold. If µk = o(‖dzk‖), then Algorithm 3.1

is super-linearly convergent, i.e., the sequence {zk} generated by Algorithm 3.1 satisfies that

‖zk+1 − z∗‖ = o(‖zk − z∗‖).
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6. Numerical experiments

In this section, we carry out numerical experiments based on the algorithm. The code

of the proposed algorithm is written by using MATLAB 7.0.

In the implementation, we choose some parameters as follows: δ = 10,α = 0.1,β =

0.5,µ0 = 1,µk+1 = 0.5µk, c−1 = 10, B0 = In+2m. Bk is updated by the BFGS formula [2].

In the implementation, the stopping criterion of step 2 is changed to

If ‖dzk‖ ≤ 10−6, µk ≤ 10−6, STOP!

The test problems in Table 1 are selected from [9, 10]. Problems 1, 2, 4 are problem

Scholtes 3, Jr 1, qpec 2 in [9], respectively, and Problem 3 is a three dimension example

in [10]. A feasible initial point is provided for each problem. The results are summarized

in Table 1. For each test problem, the Prob column lists the problem number; p and q

are the number of variables and complementarity constraints, respectively; IP is the initial

point; NT is the number of iterations. FV is the final value of the objective function.Table 1:
Prob p,q IP NT (x∗, y∗) FV ‖dzk‖

1 (2,1) (0,0) 6 (0.70× 10−9, 0.99) 0.49, 0.50 1.02

2 (2,2) (0,0) 29 (0.50, 0.49) 0.49, 0.5 9.42× 10−7

3 (3,2) (-1,0,1) 52 (1.2× 10−5,6.90× 10−5, 1.28× 10−5) 1.0× 10−12,0 7.51× 10−7

4 (30,20) (0,0, 0,0) 44 (1.49, 1.49, 1.58× 10−7, 1.58× 10−7) 44.99, 45 9.35× 10−7
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