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Abstract. The formulation of optimal control problems governed by Fredholm integral
equations of second kind and an efficient computational framework for solving these
control problems is presented. Existence and uniqueness of optimal solutions is proved.
A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal com-
putational performance of these iterative schemes is proved by local Fourier analysis
and demonstrated by results of numerical experiments.
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1. Introduction

Fast iterative methods and optimization related to differential and integral equations
are two important fields of research in applied mathematics. The purpose of optimization
is to define ways of how optimally change or influence real world systems to meet a given
target. This requires to realize large-scale optimization strategies with increasing com-
plexity that in turn motivates the development of fast iterative schemes for optimization
purposes.

We focus on the optimization framework provided by infinite-dimensional optimal con-
trol theory as pioneered in [12] with partial differential equations. In this framework, we
consider a governing state equation, a description of the control mechanism, and a crite-
rion defining the objective that models the purpose of the control and describes the cost
of its action. An optimal control problem is then formulated as the minimization of the
objective under the constraint given by the modeling equations.
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While optimization with partial differential equations (PDE) has received much atten-
tion [3, 9], much less is known on optimization problems with integro-differential equa-
tions and with integral equations. The purpose of this paper is to discuss the formulation
of an optimal control of a system governed by a Fredholm integral equation of second kind
and to present two iterative schemes that solve the corresponding optimality system with
optimal computational complexity.

Also from the scientific computing point of view, the numerical solution of Fredholm
integral equations is a well established mathematical field [1,7], while much less is known
on efficient solution procedures of related optimal control problems. We present onegrid
and multigrid iterative schemes that solve linear distributed optimal control problems gov-
erned by Fredholm integral equations. We prove mesh-independent convergence of these
scheme and robustness with respect to the value of optimization parameters.

Fredholm integral equations of second kind arise naturally in the theory of signal pro-
cessing [10,14] and in inverse problems [6]. They also play a main role in the modeling of
thin wires antennas [16]. Optimal control of systems governed by integral equations are
important in applications. In particular, we consider an optimal control problem related to
the Ornstein-Uhlenbeck process that arises from statistical communication theory [10].

In the next section, a class of optimal control problems governed by Fredholm integral
equations of second kind is formulated and existence and uniqueness of optimal solution
is proved. In Section 3, a collective Gauss-Seidel scheme and a linear multigrid scheme are
presented. The convergence properties of these iterative schemes are discussed in Section
4 in the framework of one-grid and two-grid local Fourier analysis. We show that the
proposed iterative schemes are efficient and robust with respect to changes of the value of
the optimization parameters. Specifically, using local Fourier analysis we obtain multigrid
convergence factors that are mesh independent and these factors improve as the weight
of the cost of the control becomes smaller. In Section 5, results of numerical experiments
are reported that demonstrate optimal computational complexity and robustness of the
proposed iterative solvers. These results appear in sharp agreement with the estimates
obtained by Fourier analysis. A section of conclusion completes this work.

2. Optimal control with Fredholm integral equations of the second kind

We consider Fredholm integral equations of the second kind with linear distributed
control mechanism. The purpose of the control is to determine a control function such that
the resulting state y ∈ L2(Ω) tracks as close as possible a desired target configuration z ∈
L2(Ω) where Ω is the domain. The corresponding optimal control problem is formulated
as the minimization of a cost functional J subject to the constraint given by an integral
equation. We have

min
u∈L2(Ω)

J(y,u) :=
1

2
‖y − z‖2

L2(Ω)
+
ν

2
‖u‖2

L2(Ω)
, (2.1)

y = f (y) + u+ g in Ω. (2.2)
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Here g ∈ L2(Ω) is given, u ∈ L2(Ω) is the control function, and the optimization parameter
ν > 0 is the weight of the cost of the control. The term f (y) represents the integral
operator and is given by

f (y)(x) =

∫

Ω

K(x , t) y(t) d t. (2.3)

Regarding the governing model, we assume an integral equation of the second kind
where the kernel K satisfies the conditions of the Fredholm alternative theorem [11] such
that existence and uniqueness of solution for a given u is guaranteed. In particular, we
consider a symmetric integral operator f (·) = f T (·), where f T (y)(x) :=

∫
Ω

K(t, x) y(t) d t,
and we require that

‖K‖L2(Ω×Ω) =

∫ ∫

Ω×Ω

|K(x , t)|2 d x d t < 1. (2.4)

This condition on itself is sufficient to prove existence and uniqueness of solution [11] and
it can be easily verified in application.

Theorem 2.1. Let K be such that existence and uniqueness of solution for (2.2) is guaranteed

and define the gradient ∇Ĵ(u) := ν u − p, where p is the solution to the integral equation

p = f T (p)− y+ z in Ω. Then the control problem (2.1)-(2.2) has a unique solution in L2(Ω)

if and only if ∇Ĵ(u) = 0. Therefore, the optimal solution is characterized as the solution of

the following first-order optimality system





y − f (y)− u= g,
p− f T (p) + y = z,
νu− p = 0.

(2.5)

Proof. Since the integral equation (2.2) has a unique solution y for a given u, we denote
this dependence by y = y(u). Therefore, to discuss existence and characterization of
the unique solution to (2.1)-(2.2), we can introduce the so-called reduced cost functional
Ĵ [9,12] given by

Ĵ(u) = J(y(u),u). (2.6)

In fact, the optimal solution corresponds to the unique minimizer of Ĵ(u). Notice that the
mapping u→ y(u) from L2 to L2 is affine and continuous. Let us denote its first derivative
at u in the direction δu by y ′(u)δu. It is characterized as the solution to

y ′(u)δu= f (y ′(u)δu) +δu in Ω. (2.7)

The second derivative of u → y(u) is zero, due to the linear dependence on u in (2.2).
Hence from (2.1), we find for the second derivative of u→ Ĵ(u)

Ĵ ′′(u)(δu,δu) = ‖y ′(u)δu‖2
L2(Ω)

+ ν ‖δu‖2
L2(Ω)

,
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and thus u→ Ĵ(u) is uniformly convex. This implies existence of a unique solution u∗ to
(2.1). Moreover, the minimum is characterized by Ĵ ′(u∗;δu) = 0 for all δu and conse-
quently

Ĵ ′(u∗;δu) = (y∗ − z, y ′(u∗)δu)L2(Ω) + ν(u
∗,δu)L2(Ω) = 0, for all δu ∈ L2,

where y∗ = y(u∗). To remove y ′ from this equation, we introduce p∗ ∈ L2 as the solution
to

p∗ = f T (p∗)− (y∗ − z) in Ω, (2.8)

that is unique under the same condition on K required for the state equation. Then by
(2.7) and (2.8), and using the fact that

( f T (p∗), y ′(u∗)δu) = (p∗, f (y ′(u∗)δu)),

we have

Ĵ ′(u∗;δu) = −(p∗,δu)L2(Ω) + ν(u
∗,δu)L2(Ω)

= (ν u∗ − p∗,δu)L2(Ω) = 0, (2.9)

for all δu ∈ L2. Thus, we have obtained the gradient of the reduced cost functional,

∇Ĵ(u∗) := ν u∗ − p∗,

and formally ∇Ĵ(u∗) = 0 constitutes the necessary and sufficient (because of convexity)
optimality condition for (2.1)-(2.2). Notice that p∗ depends on u∗ via (2.2) and (2.8).
From (2.2), (2.8), and (2.9), we obtain the optimality system (2.5). �

In the present case of optimal control problems without constraints on the control u,
we have the scalar equation ν u−p = 0. Thus, we can replace u = p/ν in the state equation
and obtain the following equivalent system

¨
y − f (y)− p/ν = g,
p− f (p) + y = z.

(2.10)

Notice that system (2.10) corresponds to two coupled integral equations that can be re-
casted as a unique integral equation system, as follows

�
1 −1/ν
1 1

��
y

p

�
=

�
f (y) + g

f T (p) + z

�
,

that is, �
y

p

�
=

1

1+ ν

�
ν 1
−ν ν

��
f (y) + g

f T (p) + z

�
. (2.11)
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The advantage of this formulation is the possibility to prove existence and uniqueness
of solution to (2.10) using condition (2.4). Notice that the coefficient matrix is never
singular for ν > 0. Following [11], we have that, in general, the integral system

φi(x) = λ

n∑

j=1

∫

Ω

K̃i j(x , t)φ j(t) d t + gi(x), i = 1, · · · , n,

where Ω = (a, b), gi ∈ L2(Ω), and K̃ ∈ L2(Ω × Ω), has a unique solution φi ∈ L2(Ω)

provided that |λ|< 1/C , where

C2 =

n∑

i, j=1

∫ ∫

Ω×Ω

|K̃i j(x , t)|2 d x d t.

In our case, we have

C2 =
1

(1+ ν)2

∫ ∫

Ω×Ω

(2ν2|K(x , t)|2+ (1+ ν2)|K(x , t)|2) d x d t.

Therefore, applying (2.4) to the optimality system, we find that this system admits a unique
solution provided that ∫ ∫

Ω×Ω

|K(x , t)|2 d x d t <
(1+ ν)2

1+ 3ν2 , (2.12)

that is less restrictive than (2.4) when ν is sufficiently small. This result shows that con-
trolled solutions may exist under weaker conditions than those required for the uncon-
trolled problem. A similar result is obtained in [2], in the case of singular elliptic control
problems.

3. Discretization and fast iterative schemes

In this section, we discuss the discretization of the Fredholm optimality system by the
Nyström method. To solve the resulting discretized problem, we present two iterative
schemes which result to be efficient and robust with respect to changes of value of the
optimization parameter.

To approximate the optimality system (2.10), we consider the discretization of the
problem on a finite difference grid and use direct quadrature (DQ) with the Nyström
method [1,7]. We take x ∈ Ω = (−D, D) and set the grid points

Ωh := {x i = i h, i = −N ,−N + 1, · · · , 0,1, · · · , N − 1, N},

where h= D/N . On this grid, we consider the following semi-discrete version of equation
(2.10), that is, ¨

yN (x)− fN (yN )(x)− pN (x)/ν = g(x),
pN (x)− fN (pN )(x)+ yN (x) = z(x),

(3.1)
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where x ∈ Ω. Here yN (x), pN (x) are approximation to the solutions y(x), p(x), for x ∈ Ω,
and fN (yN ) is the approximation to the integral with a direct quadrature:

f (y)(x)≈ fN (yN )(x) = h

N∑

j=−N

v j K(x , t j) yN (t j),

where the v j are the weights of a DQ of order q.
Following the Nyström method, we fully discretize (3.1), by setting yi = yN (x i), pi =

pN (x i), having suppressed the evidence of N for an easier notation. Thus, we obtain the
following discrete optimality system

(
yi − h
∑N

j=−N wi j y j − pi/ν = gi,

pi − h
∑N

j=−N wi j p j + yi = zi,
(3.2)

where i = −N , · · · , N and wi j = v j K(x i, t j), with v j given by the quadrature rule. In the
following, we denote with yh = {y−N , · · · , yN } and ph = {p−N , · · · , pN}. The solution of
(3.2) gives us the approximate solution (yh, ph) of (2.10) at the mesh points. Assuming
that K(x , t) y(t) is q-time continuously differentiable in t, and uniformly differentiable
in x [1, 7], and assuming g be continuous, we obtain that the associate solution error is
bounded by

‖y − yh‖∞ + ‖p− ph‖∞ ≤ O (h
q).

In a semi-discrete setting, approximation formulas for yN (x) and pN (x), x ∈ Ω can be
found from (3.1), i.e. by the Nyström interpolation formula





yN =
1

1+ ν

�
z + fN (pN ) + ν(g + fN (yN ))

�
,

pN =
ν

1+ ν

�
z + fN (pN )− (g + fN (yN ))

�
.

(3.3)

Under the same regularity condition on the kernel as given above, uniqueness of the so-
lution of (3.2) results from the uniqueness of solution to (3.3). For these functions, we
obtain a convergence order

‖y − yN‖∞ + ‖p− pN‖∞ ≤ O (h
q).

For an efficient and robust solution of the discretized optimality system (3.2) we discuss
two iterative methods: a onegrid Gauss-Seidel scheme and a multigrid scheme.

First, we define an iterative procedure on Ωh, that belongs to the class of collective
Gauss-Seidel schemes. It results from a sequential update of the optimization variables
at each grid point. The update of the variables (yi, pi) at grid point x i is obtained by
solving exactly the discrete optimality system with respect to (yi, pi) and considering the
remaining variables as constant. Our iterative method is given by the following algorithm.
Let an initial approximation (y(0), p(0)) be given. Here, tol is the required tolerance on the
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L2-norm of the residual of the constraint equation. We have the following iterative scheme
denoted by Sh.Algorithm 3.1: Colle
tive Gauss-Seidel (CGS) Iteration S
heme1. For m = 0,1,2, · · · ,ℓ do2. If ‖gh− ym

h
+ fh(y

m
h
)− pm

h
/ν‖L2

h
< tol then stop.3. For i =−N ,−N + 1, · · · , 0, 1, · · · , N − 1, N (lexi
ographi
 order) do

�
yi

pi

�(m+1)

=

�
1− hwii −1/ν

1 1− hwii

�−1

×



�

gi

zi

�
+ h
∑

j<i

wi j

�
y j

p j

�(m+1)

+ h
∑

j>i

wi j

�
y j

p j

�(m)
 . (3.4)4. End.

Next, in view of an extension of this work to integro-differential control problems and
thus envisioning the need to accelerate the CGS scheme, we discuss the embedding of the
CGS scheme in a multigrid framework [15]. For the multigrid formulation, we consider
multiple nested grids. Let us index the operators and variables defined on the grid Ωk with
mesh size h= hk = h0/2

k, k = 1, · · · , L. We now illustrate a linear multigrid scheme [5,8].
In general, an initial approximation to the solution of the optimality system will differ

from the exact solution because of errors involving high-frequency as well as low-frequency
components. In order to solve for all frequency components of the error, the multigrid
strategy combines two complementary schemes [5,8]. The high-frequency components of
the error are reduced by smoothing iterations while the low-frequency error components
are effectively reduced by a coarse-grid correction method.

On the grid of level k with h = hk, the smoothing procedure is denoted by Sk, and Sm
k

is the smoothing operator applied m times on the pair vk = (yk, pk). We choose Sk to be
the CGS iteration on Ωk, given by Algorithm 3.1 applied at level k. Later we prove that
this iteration has good smoothing properties. To correct for the smooth component of the
error, a coarse grid correction (CGC) is defined. To illustrate the CGC scheme, we exploit
the fact that the optimality system is linear.

For simplicity of exposition, consider the case of two levels with a fine grid level with
mesh size h = hk and the coarse grid problem is constructed on the grid with mesh size
H = hk−1. Recall the optimality system

yh− fh(yh)− ph/ν = gh, (3.5)

ph− f T
h (ph) + yh = zh. (3.6)

Let us denote (3.5)-(3.6) with Ah vh = Fh, where vh = (yh, ph) and Fh = (gh, zh). Denote
with v

(ℓ)

h
an approximate solution to the discrete problem, obtained after ℓ sweeps of an
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iterative scheme. In correspondence, we define the solution error e
(ℓ)

h
= vh− v

(ℓ)

h
and the

corresponding residual r
(ℓ)

h
= Fh − Ah v

(ℓ)

h
. Thus the solution of the problem Ah vh = Fh is

equivalent to solving Ah e
(ℓ)

h
= r

(ℓ)

h
and then vh = v

(ℓ)

h
+ e

(ℓ)

h
. This equivalence is used to

define the coarse problem in a linear multigrid scheme as we discuss next.
We formulate the coarse-grid problem, AH vH = FH , where vH = (yH , pH) should denote

the solution errors of the approximation vh = (yh, ph) represented on the coarse grid.
Because of the equivalence between the linear problem and its formulation in terms of
solution errors and residuals, we set FH as the residual of the optimality system represented
on the coarse grid. Therefore, the coarse-grid problem is given by

yH − fH(yH)− pH/ν = IH
h r

y

h
, (3.7)

pH − f T
H (pH) + yH = IH

h r
p

h
. (3.8)

The operator IH
h

: L2
h
→ L2

H denotes a restriction operator. We chose full weighting such
that

rH(x j) = (rh(x j−1) + 2 rh(x j) + rh(x j+1))/4, j = 2,4, · · · , n− 1.

In stencil form we have

IH
h =

1

4




1 2 1 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 1 2 1


 .

The right-hand side terms r
y

h
and r

p

h
are the residuals defined by

r
y

h
= gh− (yh− fh(yh)− ph/ν), (3.9)

r
p

h
= zh− (ph− f T

h (ph) + yh). (3.10)

Once the coarse grid problem is solved, the coarse grid correction follows

ynew
h
= yh+ Ih

H yH , (3.11)

pnew
h
= ph+ Ih

H pH , (3.12)

where Ih
H : L2

H → L2
h

represents an interpolation operator. We take Ih
H to be the piecewise

linear interpolation given by [8]

Ih
H =

1

2




1 0 0
2 0 0
1 1 0
0 2 0
0 1 1
0 0 2
0 0 1




.
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If the high frequency components of the error on the finer grid are indeed well damped,
then the grid ΩH should provide enough resolution for the error of the solution and hence
vH should be a good approximation to this error. This idea of transferring the problem
to be solved to a coarser grid can be applied along the set of nested meshes. One starts
at level L with a zero approximation and applies the smoothing iteration m1 times. Then
the problem is transferred down to a coarser grid and so on. Once the coarsest grid is
reached, one solves the coarsest problem to convergence by applying, as we do, a few
steps of the CGS smoothing iteration. The solution obtained on each grid is then used to
correct the approximation on the next finer grid. The coarse grid correction followed by
m2 post-smoothing steps is applied from one grid to the next, up to the finest grid with
level L. This entire process represents one V-(m1, m2) multigrid cycle.

The multigrid V-(m1, m2)-cycle algorithm, expressed in terms of the multigrid iteration
operator Bk in recursive form applied to Ak vk = Fk is uniquely defined as follows [4].Algorithm 3.2: Multigrid V-(m1, m2)-Cy
leSet B1 = A−1

1 . For k = 2, · · · , L de�ne Bk in terms of Bk−1 as follows. Let q0 = 0.1. Set the starting approximation v
(0)
k

.2. Pre-smoothing (Algorithm 3.1). De�ne v
(l)

k
for l = 1, · · · , m1, by

v
(l)

k
= Sk(v

(l−1)
k

, Fk).3. Coarse grid 
orre
tion. Set v
(m1+1)
k

= v
(m1)

k
+ I k

k−1 qm where qi for i = 1, · · · , m is de�ned by
qi = qi−1 + Bk−1

h
I k−1
k
(Fk − Ak(v

(m1)

k
))− Ak−1qi−1
i

.4. Post-smoothing (Algorithm 3.1). De�ne v
(l)

k
for l = m1 + 2, · · · , m1 +m2 + 1, by

v
(l)

k
= Sk(v

(l−1)
k

, Fk).5. Set Bk Fk = v
(m1+m2+1)
k

.
Notice that we can perform m two-grid iterations at each working level. For m = 1

we have a V -cycle and for m = 2 we have a W -cycle; m is called the cycle index [15].
A stopping criteria is implemented as in Algorithm 3.1, at the end of each V -cycle on the
finest level.

In the next section, we investigate the convergence properties of the CGS scheme and
of the V-cycle multigrid scheme.
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4. Local Fourier analysis

In this section, we investigate the convergence properties of the CGS scheme and of
the V-cycle scheme using Fourier analysis [5, 15]. This is an effective tool for analyzing
iterative processes where we assume the problem defined on the infinite grid Gh = { jh, j ∈
Z}. Notice that on Gh, only the components (called harmonics) φ(x ,θ) = eiθ x/h with
θ ∈ (−π,π] are visible, i.e. there is no other component (no aliasing) with frequency
θ0 ∈ (−π,π] with |θ0| < θ such that eiθ0 x/h = eiθ x/h, x ∈ Gh.

In local Fourier analysis the notion of low- and high-frequency components on the grid
Gh is related to a coarser grid denoted by GH . In this way eiθ x/h on Gh is said to be an
high-frequency component, with respect to the coarse grid GH , if its restriction (projection)
to GH is not visible there. If H = 2h then the high frequencies are those with π

2
≤ |θ | ≤ π.

We have eiθ x/h = ei(2θ )x/H .
In this framework, in order to analyze a given iteration we represent solution errors

in terms of their θ components e(m)(x) =
∑
θ E
(m)

θ
eiθ x/h and e(m+1)(x) =

∑
θ E
(m+1)
θ

eiθ x/h

(with formal summation on θ), where E
(m)

θ
and E

(m+1)
θ

denote the error amplitudes of the
θ component, before and after smoothing, respectively. The action of an iteration operator
M is e(m+1) = M e(m). In the Fourier space this action is represented by E

(m+1)
θ

= M̂(θ) E
(m)

θ
,

and M̂(θ) is the Fourier symbol of M .
Let (ey( j), ep( j)) =

∑
θ Wθ φ( j,θ) denotes the errors for the state and the adjoint

variables on the grid points x j = jh. Here, Wθ = (Yθ , Pθ ) are the corresponding Fourier

coefficients. The action of one smoothing step on the errors can be expressed by W
(1)
θ
=

Ŝ(θ)W
(0)
θ

.
Now, consider applying the CGS step for solving our distributed control problem. We

assume that the kernel is symmetric, i.e. wi− j = w|i− j| and that it is decaying sufficiently
fast such that we can truncate the sum approximating the integral,

ℓ∑

k=−ℓ

φ(k) ≈
N∑

k=−N

φ(k).

Substituting (ey( j), ep( j)) in (3.2) and applying the CGS Algorithm 3.1, we obtain




�
1− h

0∑

k=−ℓ

w|k|e
iθk

�
−

1

ν

1

�
1− h

0∑

k=−ℓ

w|k|e
iθk

�







Y
(1)
θ

P
(1)
θ




=




h

ℓ∑

k=1

w|k|e
iθk 0

0 h

ℓ∑

k=1

w|k|e
iθk







Y
(0)
θ

P
(0)
θ


 .
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Hence

Ŝ(θ) =




�
1− h

0∑

k=−ℓ

w|k|e
iθk

�
−

1

ν

1

�
1− h

0∑

k=−ℓ

w|k|e
iθk

�




−1

×




h

ℓ∑

k=1

w|k|e
iθk 0

0 h

ℓ∑

k=1

w|k|e
iθk




.

(4.1)

We consider the entire frequency domain spanned by the two sets of frequencies θ ∈
[−π/2,π/2) and define

θ := θ − si gn(θ)π.

Here θ represents low frequencies components while θ contains the high frequencies com-
ponents. This choice results in a basis of the two harmonics with low- and high-frequencies,

eiθ x/h and eiθ x/h respectively. In this framework, a way to characterize the smoothing
property of the smoothing operator S is to consider its action on both sets of frequencies
as follows

bS(θ) =
�

Ŝ(θ) 0

0 Ŝ(θ)

�

and to assume an ideal coarse grid correction which annihilates the low frequency error
components and leaves the high frequency error components unchanged. That is, one
defines the projection operator on the high-frequency harmonics as follows

bQ(θ) =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




.

In this framework, the smoothing property µ of S is defined as follows

µ =max
n

r(bQ(θ) bS(θ)) : θ ∈ [−π/2,π/2)
o

, (4.2)

where r(·) is the spectral radius. This number provides a measure of the ability of the
iterative scheme to damp the high-frequency components of the solution error.

In Fig. 1, we depict the smoothing factor of the CGS scheme as a function of ν and
h. It appears that µ is almost independent of the value of the discretization parameter h

and increases by increasing the value of the weight ν . The CGS scheme is not only a good
smoother, it provides also good convergence properties for all frequencies. In Table 1, we
report estimates of ρ(Sh) resulting from the local Fourier convergence analysis. We see
that the convergence of the CGS scheme is robust with respect to ν and is almost mesh
independent.
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Figure 1: Smoothing (left) and twogrid 
onvergen
e fa
tors as fun
tions of ν and N .Table 1: Estimates for ρ(Sh) with w|i− j| =−
1
2

exp(−|i− j|h).
ν N = 64 N = 128 N = 256 N = 512

1.0e-02 1.93e-02 1.94e-02 1.94e-02 1.95e-02
1.0e-03 6.15e-03 6.18e-03 6.20e-03 6.20e-03
1.0e-04 1.94e-03 1.95e-03 1.96e-03 1.96e-03
1.0e-05 6.15e-04 6.19e-04 6.20e-04 6.21e-04
1.0e-06 1.94e-04 1.95e-04 1.96e-04 1.96e-04

Next, we discuss twolevel Fourier analysis [5] to estimate the convergence of the multi-
grid iteration. For this purpose, we need to construct the Fourier symbol of the twolevel
coarse-grid correction operator corresponding to (3.7)-(3.12). We have

CGH
h =
�

Ih− Ih
H (AH)

−1 IH
h Ah

�
.

Notice that this operator refers to the entire optimality system. Therefore, the intergrid
transfer operators are two copies of the transfer operators Ih

H and IH
h

, respectively.
We denote the Fourier symbol of CGH

h
as follows

ÓCG
H

h (θ) =
�

Îh− Îh
H(θ) (
bAH(2θ))

−1 ÎH
h (θ)
bAh(θ)
�

.

(Recall that eiθ x/h = ei(2θ )x/H .) The symbol of the full-weighting restriction operator for
all frequency components is

ÎH
h (θ) =

1

2

�
(1+ cos(θ)) 0 (1− cos(θ)) 0

0 (1+ cos(θ)) 0 (1− cos(θ))

�
.

For the linear prolongation operator we have Îh
H(θ) = ÎH

h
(θ)T .

Consider the optimality system (3.5)-(3.6). We obtain that the symbol of the fine grid
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operator is

bAh(θ) =




ah
y(θ) −1/ν 0 0

1 ah
p(θ) 0 0

0 0 ah
y(θ̄) −1/ν

0 0 1 ah
p(θ̄)




,

where

ah
y(θ) = 1− h

ℓ∑

k=−ℓ

w|k|e
iθ k, ah

p(θ) = ah
y(θ).

Similarly, for the frequency represented on the coarse grid, the symbol of the coarse grid
operator follows

bAH(θ) =

�
aH

y (2θ) −1/ν

1 aH
p (2θ)

�
.

The symbol of the twolevel method is given by

dT G
H

h (θ) = Ŝh(θ)
m2ÓCG

H

h (θ) Ŝh(θ)
m1 .

This is an 4 × 4 matrix corresponding to the two frequency components. The estimate
convergence factor is obtained as follows

ρ(T GH
h ) = sup
n

r(dT G
H

h (θ)) : θ ∈ [−π/2,π/2)
o

.

In Table 2, we report theoretical estimates of ρ(T GH
h
) resulting from the twogrid con-

vergence analysis. Comparison with results of numerical experiments show that these es-
timates are sharp; see Table 5 for results of numerical experiments. In Fig. 1, we also plot
the twogrid convergence factor as function of ν and N . We can see that the local Fourier
analysis predicts mesh-independent smoothing factors and convergence factors and these
factors improve as ν becomes smaller. Therefore our multigrid approach provides an itera-
tive scheme with optimal complexity and robustness with respect to the weight of the cost
of the control. These results are in agreement with results of numerical experiments.Table 2: Estimates for ρ(T GH

h
) for the 
ase of m1 = m2 = 1 smoothing steps; w|i− j| =−

1
2

exp(−|i − j|h).
ν N = 64 N = 128 N = 256 N = 512

1.0e-01 3.31e-03 3.35e-03 3.36e-03 3.37e-03
1.0e-02 3.74e-04 3.77e-04 3.79e-04 3.80e-04
1.0e-03 3.78e-05 3.82e-05 3.84e-05 3.85e-05
1.0e-04 3.79e-06 3.83e-06 3.85e-06 3.86e-06
1.0e-05 3.79e-07 3.83e-07 3.85e-07 3.86e-07
1.0e-06 3.80e-08 3.83e-08 3.85e-08 3.86e-08
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5. Numerical experiments

In order to validate the optimal control formulation and to test the proposed numerical
solution procedures, we present results of numerical experiments with two test problems
by assigning the kernel K(x , t), the desired target function z(x), and the known term g(x).
For the numerical results, we report solution errors, norms of residuals, and observed
convergence rates for different mesh sizes N and different values of the weight ν . The
residual norm we use is the discrete L2-norm denoted with ‖ · ‖2. With res we mean the
residual of the integral state equation. For convergence, we set a tolerance tol = 10−12 on
‖res‖2. The observed rate of convergence ρ is the mean ratio of reduction of the norm of
two consecutive residual.

To compare the computational cost between CGS and MG, we use the Work Unit (WU)
as the time to execute a single CGS iteration, i.e. a single matrix-vector product. So that
the WU cost for CGS is just the number of iteration Ni ter . For MG we have one WU of cost
for one smoothing sweep at the finest level. To count the total WU cost of a MG cycle, we
have m1 +m2 WUs on the finest level and this value reduces by a factor of 4 in the next
coarse grid. In total for L levels we have

Total MG cost = (m1 +m2)

L∑

k=0

4−k = (m1 +m2)(4− 4−L)/3 WU,

where L = log2(2N) is the number of levels.

Test case 1

Our first numerical experiment is to validate the approximation property of the dis-
cretization scheme. For this purpose, we consider an operator

K(x , t) = cos(πx) cos(πt), g(x) = − cos(πx), z(x) = cos(πx),

such that we can compute the exact optimal solution. This is given by

y(x) = cos(πx), p(x) = ν cos(πx), for x ∈ Ω = (−1,1).

The norm of the kernel for this case is ‖K‖L2(Ω×Ω) = 1 however it satisfies condition (2.12)
for ν < 1.

In Table 3, we report results corresponding to a required residual tolerance of 10−12.
The solution is in agreement with yexact . In Fig. 2, we see the solution for ν = 10−3,
N = 8, plotted by using the Nyström formula on the interpolation points; the vector values
yh are pointed out with circles. On the same figure, the error between computed and exact
solution is plotted versus the parameter ν for constant mesh and iterations. We see that
the error reaches the machine precision quickly as ν decrease.
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al experiments with exa
t solution: yexact (x) = cos(πx) and
uexact (x) = cos(πx).

ν N ‖y − yexact‖ ‖u− uexact‖ ||res||2
1e-01 64 8.17e-014 1.54e-013 3.37e-014
1e-01 128 8.93e-014 1.99e-013 4.38e-014
1e-01 256 9.29e-014 2.25e-013 5.05e-014
1e-01 512 9.47e-014 2.39e-013 5.43e-014
1e-03 64 3.77e-015 1.55e-013 4.07e-014
1e-03 128 4.11e-015 1.80e-013 4.64e-014
1e-03 256 4.33e-015 1.95e-013 4.96e-014
1e-03 512 4.33e-015 2.03e-013 5.13e-014
1e-05 64 1.11e-016 7.11e-013 2.22e-013
1e-05 128 2.22e-016 7.70e-013 2.36e-013
1e-05 256 2.22e-016 8.02e-013 2.44e-013
1e-05 512 2.22e-016 8.18e-013 2.48e-013
1e-07 64 3.33e-016 8.88e-016 4.32e-016
1e-07 128 4.44e-016 1.33e-015 5.59e-016
1e-07 256 4.44e-016 2.55e-015 7.62e-016
1e-07 512 4.44e-016 3.00e-015 1.05e-015
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Figure 2: Left: Optimal state solution for ν = 10−3, N = 8, with the Nyström formula. Cir
les are theinterpolation points. Right: 
onvergen
e history of ‖yN − yexact‖∞ for ν = 2−n, N = 16 for n = 1 · · ·10.
Test case 2

In this test series, we investigate the convergence performance of the CGS and MG
iteration. In this case we consider an application corresponding to a kernel that represents
the covariance function of an Ornstein-Uhlenbeck stochastic process at the equilibrium,
that arises in statistical communication theory [10, 14]. We have K(x , t) = −e−α|x−t|/2,
where α > 0 represents the characteristic correlation time of the process. Here, y(x)

represents a signal and u(x) a control for the signal. In this case, the norm of the kernel
K(x , t) as defined in (2.12) is approximately equal to 0.142, so that we can state existence
and uniqueness of solution for a given control.

In addition, we take g(x) = 2/π,u(x) = sin(πx) and a target function which is discon-
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heme; α = 1.
ν N ‖y − z‖ ||res||2 ρ Ni t er

1e-03 512 6.66e-04 9.03e-015 7.02e-04 6
1e-03 256 6.66e-04 8.89e-015 7.01e-04 6
1e-03 128 6.66e-04 8.60e-015 6.99e-04 6
1e-04 512 6.67e-05 1.32e-013 4.10e-05 5
1e-04 256 6.67e-05 1.30e-013 4.09e-05 5
1e-04 128 6.66e-05 1.26e-013 4.06e-05 5
1e-05 512 6.67e-06 8.33e-014 4.10e-06 4
1e-05 256 6.67e-06 8.27e-014 4.09e-06 4
1e-05 128 6.66e-06 8.12e-014 4.06e-06 4
1e-06 512 6.67e-07 8.56e-016 4.21e-07 4
1e-06 256 6.67e-07 8.32e-016 4.12e-07 4
1e-06 128 6.66e-07 8.08e-016 4.04e-07 4Table 5: Case 2. Results with the multigrid s
heme; α = 1 and m1 = 1, m2 = 1 pre- and post-smoothingsweeps.
ν N ‖y − z‖ ||res||2 ρ Nc ycle

1e-03 512 6.66e-04 3.74e-016 1.07e-05 3
1e-03 256 6.66e-04 3.65e-016 1.04e-05 3
1e-03 128 6.66e-04 3.48e-016 1.00e-05 3
1e-04 512 6.67e-05 3.52e-013 1.04e-06 2
1e-04 256 6.67e-05 3.51e-013 1.03e-06 2
1e-04 128 6.66e-05 3.48e-013 1.03e-06 2
1e-05 512 6.67e-06 3.52e-015 1.03e-07 2
1e-05 256 6.67e-06 3.52e-015 1.03e-07 2
1e-05 128 6.66e-06 3.48e-015 1.02e-07 2
1e-06 512 6.67e-07 1.62e-016 4.76e-08 2
1e-06 256 6.67e-07 1.27e-016 3.75e-08 2
1e-06 128 6.66e-07 1.08e-016 3.18e-08 2

tinuous as typical in the modeling of signals. We choose

z(x) = ⌊5[x(x − 1)/π+ (1+ 1/π2) sin(πx)]⌋/5,

where ⌊ ⌋ is the floor function.
In Table 4, results obtained with the CGS iteration are reported. We see that tracking

improves as ν decreases. We obtain robust tracking despite z is discontinuous. Next,
we consider the same setting and apply the multigrid scheme given by Algorithm 3.2.
Results with the multigrid scheme are reported in Table 5. We obtain that both the CGS
and the MG scheme converge efficiently to the solution and the observed convergence
rate is weakly dependent on the mesh size. As ν becomes smaller, convergence rates
improve thus showing robustness. We see that multigrid convergence rates are two order
of magnitude better than the CGS convergence rates. Moreover, the observed rates are in
good agreement with the corresponding estimates by local Fourier analysis. In Fig. 3, we
depict the computed optimal state and control solutions.
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Figure 3: Case 2. Optimal solution yN (left), target z, and 
ontrol uN (right) for α = 1, ν = 10−3, N = 8,with the Nyström formula. Cir
les are the interpolation points.
6. Conclusion

The formulation of optimal control problems governed by Fredholm integral equations
of second kind was presented, proving existence and uniqueness of optimal solutions. To
solve the corresponding optimality systems, an efficient computational framework was
presented based on a collective Gauss-Seidel scheme and a multigrid scheme. Optimal
computational performance and robustness of these iterative schemes was proved by local
Fourier analysis and demonstrated by results of numerical experiments.
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