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Abstract. A high-order leap-frog based non-dissipative discontinuous Galerkin time-
domain method for solving Maxwell’s equations is introduced and analyzed. The pro-
posed method combines a centered approximation for the evaluation of fluxes at the in-
terface between neighboring elements, with a N th-order leap-frog time scheme. More-
over, the interpolation degree is defined at the element level and the mesh is refined
locally in a non-conforming way resulting in arbitrary level hanging nodes. The method
is proved to be stable under some CFL-like condition on the time step. The convergence
of the semi-discrete approximation to Maxwell’s equations is established rigorously and
bounds on the global divergence error are provided. Numerical experiments with high-
order elements show the potential of the method.
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1. Introduction

The accurate modeling of systems involving electromagnetic waves, in particular
through the resolution of the time-domain Maxwell equations on space grids, remains
of strategic interest for many technologies. The still prominent Finite Difference Time-
Domain (FDTD) method proposed by Yee [20] lacks two important features to be fully ap-
plied in industrial contexts. First, it has huge restriction to structured or block-structured
grids. Second, the efficiency of FDTD methods is limited when fully curvilinear coordinates
are used. Many different types of methods have been proposed in order to handle complex
geometries and heterogeneous media by dealing with unstructured tetrahedral meshes, in-
cluding, for example, mass lumped Finite Element Time-Domain (FETD) methods [12,14],
mimetic methods [11], or Finite Volume Time-Domain (FVTD) methods [17], which all fail
in being at the same time efficient, easily extendible to high orders of accuracy, stable, and
energy-conserving.
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Recently, discontinuous Galerkin methods have attracted much research to solve elec-
tromagnetic wave propagation problems. Being higher order versions of traditional finite
volume methods [13], Discontinuous Galerkin Time-Domain (DGTD) methods based on
discontinuous finite element spaces, easily handle elements of various types and shapes,
irregular non-conforming meshes [8, 9], and even locally varying polynomial degree [8].
They hence offer great flexibility in the mesh design, but also lead to (block-)diagonal mass
matrices and therefore yield fully explicit, inherently parallel methods when coupled with
explicit time stepping [1]. Moreover, continuity is weakly enforced across mesh interfaces
by adding suitable bilinear forms (so-called numerical fluxes) to the standard variational
formulations. Whereas high-order DGTD methods have been developed on conforming
meshes [4,5,10], the design of non-conforming discontinuous Galerkin time-domain meth-
ods is still in its infancy. In practice, the non-conformity can result from a local refinement
of the mesh (i.e., h-refinement), of the interpolation degree (i.e., p-enrichment) or of both
of them (i.e., hp-refinement).

This work is concerned with the study of high-order leap-frog schemes that are exten-
sions of the second-order leap-frog scheme adopted in the DGTD methods that are studied
in [8,9]. The motivation behind this study is to improve the overall accuracy for the same
mesh resolution and/or to improve convergence when the mesh resolution is increased.
Not surprisingly, the arbitrary high-order DGTD methods discussed in this work are consis-
tently more accurate than the DGTD methods based on the second-order leap-frog scheme.
The high-order leap-frog schemes require more computational operations to update a cell.
Fortunately, this can be alleviated by the ability to use discretization meshes with fewer
points per wavelength for the same level of accuracy.

This paper is structured as follows. In Section 2, we introduce the high-order non-
conforming DGTD method for solving the system of Maxwell’s equations. Our two main
results, the stability and the hp-convergence of the proposed method, are stated and proved
in Section 3. In this section we also establish bounds on the behavior of the divergence
error. In Section 4 we verify our theoretical results through numerical experiments. Finally,
some concluding remarks are presented in Section 5.

2. An arbitrary high-order non-conforming DGTD method

We consider the Maxwell equations in three space dimensions for heterogeneous
anisotropic linear media with no source. The electric permittivity tensor ¯̄ε(x) and the
magnetic permeability tensor ¯̄µ(x) are varying in space, time-invariant and both symmet-
ric positive definite. The electric field ~E and the magnetic field ~H verify:

¯̄ε∂t
~E= curl ~H, ¯̄µ∂t

~H= −curl~E, (2.1)

div ( ¯̄ε~E) = 0, div ( ¯̄µ~H) = 0, (2.2)

where the symbol ∂t denotes a time derivative. These equations are set and solved on
a bounded polyhedral domain Ω of R3. For the sake of simplicity, a metallic boundary
condition is set everywhere on the domain boundary ∂Ω, i.e., ~n× ~E = 0 (where ~n denotes
the unitary outwards normal).
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2.1. Space discretization

We consider a partition Ωh of Ω into a set of tetrahedra τi of size hi with boundaries
∂ τi such that h = maxτi∈Ωh

hi. To each τi ∈ Ωh we assign an integer pi ≥ 0 (the local
interpolation degree) and we collect the pi in the vector p = {pi : τi ∈ Ωh}. Of course, if
pi is uniform in all element τi of the mesh, we have p = pi . Within this construction we
admit meshes with possibly hanging nodes i.e., by allowing non-conforming (or irregular)
meshes where element vertices can lie in the interior of faces of other elements. However,
we assume that the local mesh sizes and approximation degrees are of bounded variation,
that is, there exist a constant κ1 > 0, depending only on the shape-regularity of the mesh,
and a constant κ2 > 0, such that:

κ−1
1 hi ≤ hk ≤ κ1hi, (2.3a)

κ−1
2 pi ≤ pk ≤ κ2pi , (2.3b)

for all neighboring elements τi and τk in Ωh. Nevertheless, the above hypothesis is not
restrictive in practice and allows, in particular for geometric refinement and linearly in-
creasing approximation degrees. We also assume that Ωh is shape regular in the sense that
there is a constant η > 0 such that:

∀ τi ∈ Ωh, hi ≤ ηρi, (2.4)

where ρi is the diameter of the insphere of τi. Each tetrahedron τi is assumed to be the
image, under a smooth bijective (diffeomorphic) mapping, of a fixed reference tetrahedron

τ̂= { x̂ , ŷ , ẑ| x̂ , ŷ , ẑ ≥ 0; x̂ + ŷ + ẑ ≤ 1}.

For each tetrahedron τi, ¯̄εi and ¯̄µi are respectively the local electric permittivity and mag-
netic permeability tensors of the medium, which could be varying inside the element τi.
For two distinct tetrahedra τi and τk in Ωh, the (non-empty) intersection τi ∩τk is a con-
vex polyhedron aik which we will call interface, with unitary normal vector ~nik, oriented
from τi towards τk. For the boundary interfaces, the index k corresponds to a fictitious
element outside the domain. We denote by F I

h
the union of all interior faces of Ωh, by F B

h

the union of all boundary faces of Ωh, and byFh =F I
h
∪F B

h
. Furthermore, we identify F B

h

to ∂Ω since Ω is a polyhedron. Finally, we denote by Vi the set of indices of the elements
which are neighbors of τi (having an interface in common).

In the following, for a given partition Ωh and vector p, we seek approximate solutions
to Eq. (2.1) in the finite dimensional subspace

Vp(Ωh) = {~v ∈ L2(Ω)3 : ~v|τi
∈ Ppi

(τi), ∀τi ∈ Ωh},

where Ppi
(τi) denotes the space of nodal polynomials of degree at most pi inside the

element τi. Note that the polynomial degree pi may vary from element to element in the
mesh. By non-conforming interface we mean an interface aik which is such that at least
one of its vertices is a hanging node, or/and such that pi|aik

6= pk|aik
.
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Following the discontinuous Galerkin approach, the electric and magnetic fields inside
each finite element are seeked for as linear combinations (~Ei, ~Hi) of linearly independent
basis vector fields ~ϕi j, 1 ≤ j ≤ di, where di denotes the local number of degrees of free-
dom inside τi. We denote by Pi = Span( ~ϕi j, 1≤ j ≤ di). The approximate fields (~Eh, ~Hh),
defined by (∀i,~Eh|τi

= ~Ei , ~Hh|τi
= ~Hi) are allowed to be completely discontinuous across el-

ement boundaries. For such a discontinuous field ~Uh, we define its average {~Uh}ik through
any internal interface aik, as {~Uh}ik = (~Ui|aik

+ ~Uk|aik
)/2. Because of this discontinuity, a

global variational formulation cannot be obtained. However, dot-multiplying Eq. (2.1) by
any given vector function ~ϕ ∈ Pi, integrating over each single element τi and integrating
by parts, yields:

∫

τi

~ϕ · ¯̄εi∂t
~E =

∫

τi

curl ~ϕ · ~H−
∫

∂ τi

~ϕ · (~H× ~n), (2.5a)

∫

τi

~ϕ · ¯̄µi∂t
~H = −
∫

τi

curl ~ϕ · ~E+
∫

∂ τi

~ϕ · (~E× ~n). (2.5b)

In Eq. (2.5), we now replace the exact fields ~E and ~H by the approximate fields ~Eh and
~Hh in order to evaluate volume integrals. For integrals over ∂ τi, a specific treatment must
be introduced since the approximate fields are discontinuous through element faces. We
choose to use a fully centered numerical flux, i.e., ∀i,∀k ∈ Vi,

~E|aik
≃ {~Eh}ik, ~H|aik

≃ {~Hh}ik.

The metallic boundary condition on a boundary interface aik (where k is the element index
of a fictitious neighboring element) is dealt with weakly, in the sense that traces of fictitious
fields ~Ek and ~Hk are used for the computation of numerical fluxes for the boundary element
τi. In the present case, where all boundaries are metallic, we simply take

~Ek|aik
= −~Ei|aik

, ~Hk|aik
= ~Hi|aik

.

Replacing surface integrals using the centered numerical flux in Eq. (2.5) and re-
integrating by parts yields:
∫

τi

~ϕ · ¯̄εi∂t
~Ei =

1

2

∫

τi

(curl ~ϕ · ~Hi + curl ~Hi · ~ϕ)−
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Hk × ~nik), (2.6a)

∫

τi

~ϕ · ¯̄µi∂t
~Hi = −

1

2

∫

τi

(curl ~ϕ · ~Ei + curl~Ei · ~ϕ) +
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Ek × ~nik). (2.6b)

We can rewrite this formulation in terms of scalar unknowns. Inside each element, the
fields being recomposed according to

~Ei =
∑

1≤ j≤di

Ei j ~ϕi j , ~Hi =
∑

1≤ j≤di

Hi j ~ϕi j .
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Let us denote by Ei and Hi respectively the column vectors (Eil)1≤l≤di
and (Hil)1≤l≤di

.
Eq. (2.6) can be rewritten as:

Mε
i ∂tEi = KiHi −

∑

k∈Vi

SikHk, (2.7a)

M
µ
i
∂tHi = −KiEi +

∑

k∈Vi

SikEk, (2.7b)

where the symmetric positive definite mass matrices Mσ
i (σ stands for ε or µ) and the

symmetric stiffness matrix Ki (all of size di × di) are given by:

(Mσ
i ) jl =

∫

τi

t ~ϕi j · ¯̄σi ~ϕil ,

(Ki) jl =
1

2

∫

τi

t ~ϕi j · curl ~ϕil +
t ~ϕil · curl ~ϕi j.

For any interface aik, the di × dk rectangular matrix Sik is given by:

(Sik) jl =
1

2

∫

aik

t ~ϕi j · ( ~ϕkl × ~nik), 1≤ j ≤ di, 1≤ l ≤ dk. (2.8)

Note that, if aik is a conforming interface (i.e., none of its vertices is a hanging node), the
matrix Sik is evaluated in a direct way once and for all. However, if aik is a non-conforming
interface, this matrix is strongly dependent on the position of the hanging nodes on the
mesh. For that, and only for non-conforming interfaces, we calculate the matrix Sik by
using a cubature formula [7].

Finally, if all electric (resp. magnetic) unknowns are gathered in a column vector E
(resp. H) of size d =

∑

i di, then the space discretized system, Eq. (2.7), can be rewritten
as: ¨

M
ε∂tE= KH−AH−BH,

M
µ∂tH = −KE+AE−BE,

(2.9)

where we have the following definitions and properties:

• Mε,Mµ and K are d × d block diagonal matrices with diagonal blocks equal to
Mε

i , M
µ
i

and Ki respectively. ThereforeMε andMµ are symmetric positive definite
matrices, and K is a symmetric matrix.

• A is also a d×d block sparse matrix, whose non-zero blocks are equal to Sik when
aik ∈ F I

h
. Since ~nki = −~nik, it can be checked from Eq. (2.8) that (Sik) jl = (Ski)l j

and then Ski =
tSik; thus A is a symmetric matrix.

• B is a d × d block diagonal matrix, whose non-zero blocks are equal to Sik when
aik ∈ F B

h
. In that case, (Sik) jl =−(Sik)l j; thus B is a skew-symmetric matrix.
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One finally obtains that the Maxwell equations, discretized using discontinuous
Galerkin finite-elements with centered fluxes and arbitrary local accuracy and basis func-
tions can be written, in function of the matrix S= K−A−B, in the general form:

¨
M
ε∂tE= SH,

M
µ∂tH = − t

SE.
(2.10)

2.2. Time discretization

In almost all high-order DG formulations, the time-integrator is usually chosen to be
some variant of Runge-Kutta (RK). The low storage RK schemes introduced in [6] are
among the most popular choices for time integration of the DG space-discretized Maxwell
equations. High-order RKDG schemes have been used by Monk and Richter [16] for solving
linear symmetric hyperbolic problems, Hesthaven and Warburton [13], Chen et al. [3] and
Lu et al. [15] for solving time-domain electromagnetics. A dispersion and dissipation study
for a high-order DG method for solving Maxwell’s equations have been conducted in [18]
using several high-order RK schemes.

In an attempt to offer an alternative to Runge-Kutta schemes, we shall use family of
high-order explicit leap-frog (LF) schemes originally proposed by Young [21]. The chief
attributes of these integrators are that the memory requirements are small and the algo-
rithmic complexity is not significantly increased, with respect to the second-order leap-frog
scheme. We can introduce the N th-order explicit leap-frog (LFN ) integrator as an approxi-
mation of the solution of the first-order ODE:

ẏ(t) = Ay(t) ⇒ y(t) = eA(t−t0) y(t0), (2.11)

with y(t0) as initial value and A is a square matrix. The time discrete equivalent of
Eq. (2.11) is given by:

y(n∆t) = eA∆t y((n− 1)∆t). (2.12)

The system of Eq. (2.10) can be rewritten as:

∂t

�

E

H

�

=

�

0 M
−ε
S

−M−µ t
S 0

�

︸ ︷︷ ︸

A

�

E

H

�

︸ ︷︷ ︸

Y(t)

. (2.13)

Note that the system matrix A depends only on the spatial configuration. Seeking a
time discrete solution of Eq. (2.13), a discretization in time with a global time step ∆t is
introduced. The time discrete solution of the first-order system of ODEs, Eq. (2.13), is a
discretized version of the exponential solution according to its scalar equivalent given by
Eq. (2.12):

Y(n∆t) = Φ(∆t)Y((n− 1)∆t), (2.14)

with:

Φ(∆t) =

∞∑

i=0

∆t i

i!
A i := eA∆t . (2.15)
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Finally, the solution of Eq. (2.13) is written as:
�

E(n∆t)

H(n∆t)

�

=

�

Φ11 Φ12

Φ21 Φ22

�

︸ ︷︷ ︸

Φ

�

E((n− 1)∆t)

H((n− 1)∆t)

�

︸ ︷︷ ︸

Y((n−1)∆t)

. (2.16)

The time discrete solution, Eqs. (2.14) and (2.16), is exact, as long as Φ(∆t) follows
Eq. (2.15). The construction of N th-order integration schemes is based on a truncation
of Eq. (2.15) at the N th element, leading to an approximated solution.

In the sequel, superscripts refer to time stations and ∆t is the global time step. The
unknowns related to the electric field are approximated at integer time-stations tn = n∆t

and are denoted by En. The unknowns related to the magnetic field are approximated at

half-integer time-stations tn+1/2 = (n+ 1/2)∆t and are denoted by Hn+ 1
2 . The N th-order

explicit leap-frog time integrator can be written in the following way:
�

E
n+1

H
n+ 3

2

�

=

�

E
n

H
n+ 1

2

�

+

�

2
N−1∑

i=1 (odd)

1

i!

�
∆t

2

�i

A i

��

E
n+1

H
n+ 1

2

�

. (2.17)

Note that here, the used time step∆t is twice as large as the time step defined in Eq. (2.12).
For N = 2, we recover the second-order DGTD method studied in [8].

The discontinuous Galerkin DGTD-Ppi
method using centered fluxes combined with a

N th-order leap-frog (LFN ) time scheme can be written as:








M
ε
E

n+1 −En

∆t
= SNH

n+ 1
2 ,

M
µ
H

n+ 3
2 −Hn+ 1

2

∆t
= − t
SNE

n+1,

(2.18)

where the matrix SN (N being the order of the leap-frog scheme) verifies:

SN =







S if N = 2,

S

�

I+

N/2−1∑

i=1

(−1)i

(2i+ 1)!22i
(∆t2
M
−µ t
SM
−ε
S)i
�

∀ N > 2, even.
(2.19)

One can verify that, Eq. (2.19) can be obtained from Eq. (2.17) in a straightforward man-
ner. For instance, taking N = 4 in Eq. (2.17), yields the LF4 scheme:
�

E
n+1 −En

H
n+ 3

2 −Hn+ 1
2

�

=

�

0 ∆tM−εX
−∆tM−µ t

X 0

��

E
n+1

H
n+ 1

2

�

,

where

X = S

�

I− ∆t2

24
M
−µ t
SM
−ε
S

�

= S4.

Concerning memory and complexity, the LFN scheme requires N/2 times more memory
storage and (N−1) times more arithmetic operations than the LF2 scheme studied in [8,9].
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3. Stability and convergence analysis

In this section we study the stability and convergence properties of the high-order
discontinuous Galerkin method introduced previously.

3.1. Stability

We aim at giving and proving a sufficient stability condition for the proposed high-
order DGTD method, Eqs. (2.18)-(2.19). We use the same kind of energy approach as
in [8] where a quadratic form plays the role of a Lyapunov function of the whole set
of numerical unknowns. We define the following discrete electromagnetic energy in the
whole domain Ω:

E n =
1

2

�
t
E

n
M
ε
E

n+ t
H

n− 1
2M

µ
H

n+ 1
2

�

. (3.1)

Lemma 3.1. Using the DGTD-Ppi
method, Eqs. (2.18)-(2.19), the global discrete electromag-

netic energy E n given in Eq. (3.1) is a positive definite quadratic form of all unknowns if:

∆t ≤ 2

dN

, with dN =



M

−µ
2 t
SNM

−ε
2




, (3.2)

where ‖.‖ denotes a matrix norm, and the matrixM
−σ
2 is the inverse square root ofMσ.

Proof. The mass matrices Mε and Mµ are symmetric positive definite and we can con-
struct in a simple way their square root (also symmetric positive definite) denoted by M

ε
2

andM
µ

2 respectively. Moreover:

2E n = t
E

n
M
ε
E

n+ t
H

n− 1
2M

µ
H

n− 1
2 −∆t t

H
n− 1

2 t
SNE

n

≥



M

ε
2E

n





2
+



M

µ

2H
n− 1

2






2 −∆t
�
� tH

n− 1
2M

µ

2M
−µ
2 t
SNM

−ε
2 M

ε
2E

n
�
�

≥



M

ε
2E

n





2
+



M

µ

2H
n− 1

2






2 − dN∆t



M

µ

2H
n− 1

2 ‖‖M ε
2E

n





≥



M

ε
2E

n





2
+



M

µ

2H
n− 1

2






2 − dN∆t

2

�


M

µ

2H
n− 1

2






2
+



M

ε
2E

n





2
�

.

We then sum up the lower bounds for the E n to obtain:

2E n ≥
�

1− dN∆t

2

�


M

ε
2E

n





2
+
�

1− dN∆t

2

�


M

µ

2H
n− 1

2






2

Then, under the condition proposed in Lemma 3.1, the electromagnetic energy E is a
positive definite quadratic form of all unknowns. This concludes the proof. �

Now, we denote by νN = CFL(LFN )/CFL(LF2) the ratio between the stability limit of
the LFN scheme and the LF2 scheme, and by rN = νN/(N/2) the ratio between νN and the
additional memory storage between the LFN and LF2 schemes. Table 1 lists the values of
νN and rN for several values of N . As it can be seen from Table 1, the choice of the LF4

scheme is advantageous with respect to the rN ratio.
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hemes.
N 4 6 8 10 12 14 16 18 20

νN 2.847 3.681 3.793 5.272 4.437 6.422 7.534 7.265 8.909
rN 1.424 1.227 0.948 1.05 0.739 0.917 0.942 0.807 0.891

3.2. Convergence

In this section, our objective is to obtain an a priori error estimates depending on h and
p, which establishes the rate of convergence of the proposed hp-like DGTD method. To
begin with, we assume that ¯̄ε, ¯̄µ ∈ [L∞(Ω)]3×3 and ∃ C1, C2 > 0 such that:

∀~ξ ∈ R3 : C1|~ξ|2 ≤ ¯̄ε~ξ · ~ξ ≤ C2|~ξ|2, C1|~ξ|2 ≤ ¯̄µ~ξ · ~ξ≤ C2|~ξ|2. (3.3)

The problem in Eqs. (2.1)-(2.2) admits a unique solution (~E, ~H) ∈ [C1(0, T ; [L2(Ω)]3) ∩
C0(0, T ; H0(curl ,Ω))]2 under some regularity assumptions on the initial condition ~E0 and
~H0 (see [17]).

For a real s ≥ 0, we define the classical broken space:

Hs(Ωh) =
n

v ∈ L2(Ω) : ∀τi ∈ Ωh, v|τi
∈ Hs(τi)
o

. (3.4)

The space Hs(Ωh) is equipped with the natural norm, for v ∈ Hs(Ωh):

‖v‖s,h =
� ∑

τi∈Ωh

‖v‖2s,τi

� 1
2 , (3.5)

where ‖.‖s,τi
is the usual Sobolev norm of Hs on τi. For s > 1/2, the elementwise traces of

functions in Hs(Ωh) belongs to tr(Fh) = Πτi∈Ωh
L2(∂ τi). We denote by Hs(Ωh) the vectorial

broken space [Hs(Ωh)]
3 and the associated norm defined by:

‖~v‖s,h =
� 3∑

j=1

‖v j‖2s,h
� 1

2 , (3.6)

where ~v = (v1, v2, v3) ∈ Hs(Ωh). We define the jump of a function ~v ∈ Hs(Ωh):

∀aik ∈ F I
h
, [[~v]]i

ik
= [[~v]]

τi
aik
= (~vk|aik

− ~vi|aik
)× ~nik,

∀aik ∈ F B
h

, [[~v]]i
ik
= −~vi|aik

× ~nik.
(3.7)

We associate to the continuous problem in Eq. (2.1) the following space discretized prob-
lem: Find (~E(., t), ~H(., t)) ∈ H1(Ωh)×H1(Ωh) such that, ∀τi ∈ Ωh and ∀ ~φ, ~ψ ∈ H1(Ωh),
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∫

τi

~φi · ¯̄εi∂t
~Ei −
∫

τi

~Hi · curl ~φi

+
∑

k∈Vi

aik∈F I
h

∫

aik

~φi · (~H|aik
× ~nik) +
∑

k∈Vi

aik∈F B
h

∫

aik

~φi · (~H|aik
× ~nik) = 0, (3.8a)

∫

τi

~ψi · ¯̄µi∂t
~Hi +

∫

τi

~Ei · curl ~ψi −
∑

k∈Vi

aik∈F I
h

∫

aik

~ψi · (~E|aik
× ~nik) = 0, (3.8b)

where ~φi = ~φ|τi
and ~ψi = ~ψ|τi

. Summing up the identities in Eq. (3.8) with re-
spect to i, we consider the following semi-discrete discontinuous Galerkin problem: Find
(~Eh(., t), ~Hh(., t)) ∈ Vp(Ωh)× Vp(Ωh) such that, ∀ τi ∈ Ωh and ∀ ~φh, ~ψh ∈ Vp(Ωh),

∑

i

∫

τi

~φhi · ¯̄εi∂t
~Ei −
∑

i

∫

τi

~Hi · curl ~φhi +
∑

aik∈Fh

∫

aik

[[ ~φh]]
i
ik
· {~Hh}ik = 0, (3.9a)

∑

i

∫

τi

~ψhi · ¯̄µi∂t
~Hi +
∑

i

∫

τi

~Ei · curl ~ψhi −
∑

aik∈Fh

∫

aik

[[ ~ψh]]
i
ik · {~Eh}ik = 0, (3.9b)

~Eh(0) = Π
p

h
~E0 and ~Hh(0) = Π

p

h
~H0. (3.9c)

Here Πp

h
: L2(Ω)→ Vp(Ωh) is the L2-orthogonal projection onto Vp(Ωh). Problem (3.9) can

be rewritten in the following form: Find ~Uh = (~Eh, ~Hh) ∈ Vp(Ωh)× Vp(Ωh) such that:

J(∂t
~Uh, ~U′h) + a(~Uh, ~U′h) + b(~Uh, ~U′h) = 0, ∀ ~U′h ∈ Vp(Ωh)× Vp(Ωh). (3.10)

For ~W = (~u,~v) and ~W′ = (~u′, ~v′), the bilinear forms J , a and b defined on Vp(Ωh)× Vp(Ωh)

are given by:

J( ~W, ~W′) =
∑

i

∫

τi

�
¯̄ε~u · ~u′ + ¯̄µ~v · ~v′
�

, (3.11a)

a( ~W, ~W′) =
∑

i

∫

τi

�

~u · curlh ~v′− ~v · curlh ~u′
�

, (3.11b)

b( ~W, ~W′) =
∑

aik∈Fh

∫

aik

�

{~v} · [[~u′]]− {~u} · [[~v′]]
�

, (3.11c)

taking into account that, for boundary faces aik ∈ F B
h

we have {~v} = ~v. Here, curlh is the
piecewise curl-operator given by ∀i, (curlh ~u)|τi

= curl(~u|τi
). The semi-discrete discontinu-

ous Galerkin formulation, Eq. (3.10), is consistent with the original continuous problem,
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Eq. (2.1), in the following sense: if ~U = (~E, ~H) is the exact solution of Eq. (2.1), such that
∀ t ∈ [0, T], ~U(., t) ∈ Hs(Ω)×Hs(Ω), then we have:

J(∂t
~U, ~U′) + a(~U, ~U′) + b(~U, ~U′) = 0, ∀ ~U′ ∈ Vp(Ωh)× Vp(Ωh). (3.12)

The following approximation results will be used to bound the error [2,19].

Lemma 3.2 (Babuska and Suri [2]). Let τi ∈ Ωh and suppose that ~u ∈ Hs(τi), s ≥ 1/2.

Let Π be a linear continuous operator from Hs(τi) onto Ppi
(τi), pi ≥ 1, such that Π(~u) = ~u,

∀~u ∈ Ppi
(τi). Then we have:

‖~u−Π(~u)‖s′,τi
≤ C

h
νi−s′
i

ps−s′
i

‖~u‖s,τi
, (3.13)

‖~u−Π(~u)‖0,∂ τi
≤ C

h
νi−1/2
i

p
s−1/2
i

‖~u‖s,τi
, (3.14)

where νi = min{s, pi + 1}, 0 ≤ s′ ≤ νi , and C is a positive constant independent of u, hi and

pi , but dependent on s and on the shape regularity of the mesh parameter η.

Lemma 3.3 (Schwab [19]). For all q ∈ Ppi
(τi), pi ≥ 1, we have:

‖q‖20,∂ τi
≤ Cinv

p2
i

hi

‖q‖20,τi
,

where Cinv is a positive constant depending only on the shape regularity of the mesh parameter

η.

Let ~U= (~E, ~H) and ~Uh = (~Eh, ~Hh). We define Πp

h
: L2(Ω)× L2(Ω)→ Vp(Ωh)× Vp(Ωh) by

Π
p

h
(~U) = (Π

p

h
~E,Πp

h
~H).

We denote by ǫǫǫτi
(t) the local error and by ǫǫǫ(t) =

∑

τi∈Ωh
ǫǫǫτi
(t) the global error. Then we

have:

ǫǫǫτi
(t) = ‖~E−Πp

h
~E+Π

p

h
~E− ~Eh‖20,τi

+ ‖~H−Πp

h
~H+Π

p

h
~H− ~Hh‖20,τi

≤ 2‖~U−Πp

h
~U‖20,τi

+ 2‖Πp

h
~U− ~Uh‖20,τi

= 2ǫǫǫa
τi
+ 2ǫǫǫb

τi
,

where the second last term is due to the error introduced by the polynomial approximation
of the exact solution while the last term measures the errors associated with the semi-
discrete approximation of the Maxwell’s equations.

To bound ǫǫǫa
τi

we need only recall Lemma 3.2 to state:
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Lemma 3.4. Assume that ~U ∈ Hs(τi) × Hs(τi), s ≥ 0. Then there exists a constant C,

dependent on s and on the shape regularity of the mesh η, but independent of ~U,hi and pi ,

such that:

‖~U−Πp

h
~U‖0,τi

≤ C
h
νi

i

ps
i

‖~U‖s,τi
, (3.15)

where νi =min{s, pi + 1}.

Theorem 3.1. Assume that a solution (~E(t), ~H(t)) ∈ Hs(τi)×Hs(τi) with s ≥ 3/2 to the

Maxwell’s equations in Ωh =
⋃

i τi exists. Then the numerical solution, (~Eh(t), ~Hh(t)) ∈
Vp(Ωh)×Vp(Ωh), to the semi-discrete approximation, Eq. (3.9), converges to the exact solution

and the global error is bounded as:

�

‖~E− ~Eh‖20,Ω + ‖~H− ~Hh‖20,Ω

� 1
2

≤ C

�
hν

ps
min

+ T
hν−1

p
s− 3

2
min

�

max
t∈[0,T]





�
~E(t), ~H(t)
�




s,Ω , (3.16)

where ν =min{s, pmin+1} and pmin =min{pi ,τi ∈ Ωh}, pi ≥ 1. The constant C > 0 depends

on the material properties and on the shape regularity of the mesh parameter η, but not on

pmin and h.

Proof. Let ~q = ~U− ~Uh. Since Πp

h
~Uh = ~Uh, we have

∑

i ǫǫǫ
b
τi
= ‖Πp

h
~q‖20,Ω. To obtain a

bound for ‖Πp

h
~q‖0,Ω, we introduce

σ(t) =
1

2
J(Π

p

h
~q(t),Πp

h
~q(t))

with Πp

h
~q(., t) belongs to Vp(Ωh)×Vp(Ωh). Using the discrete initial conditions of Eq. (3.9),

we have σ(0) = 0 and then, for 0< t ≤ T ,

σ(t) =
1

2

∫ t

0

d

ds
J(Π

p

h
~q(s),Πp

h
~q(s))ds =

∫ t

0

J(∂sΠ
p

h
~q(s),Πp

h
~q(s))ds.

For any ~Uh ∈ Vp(Ωh)× Vp(Ωh), we have a(~Uh, ~Uh) + b(~Uh, ~Uh) = 0, and we get:

σ(t) =

∫ t

0

�

J(∂sΠ
p

h
~q(s),Πp

h
~q(s))+ a(Π

p

h
~q(s),Πp

h
~q(s))

+ b(Π
p

h
~q(s),Πp

h
~q(s))
�

ds. (3.17)

Subtracting Eq. (3.10) from the consistency result of Eq. (3.12) with ~U′ = ~U′
h
= Π

p

h
~q(s)

yields:
J(∂s~q(s),Π

p

h
~q(s)) + a(~q(s),Πp

h
~q(s)) + b(~q(s),Πp

h
~q(s)) = 0. (3.18)
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Now, subtracting the above equality in Eq. (3.18) from Eq. (3.17) leads to:

σ(t) =

∫ t

0

�

J([Π
p

h
∂s
~U− ∂s

~U](s),Πp

h
~q(s)) + a([Π

p

h
~U− ~U](s),Πp

h
~q(s))

+ b([Π
p

h
~U− ~U](s),Πp

h
~q(s))
�

ds.

Since Πp

h
is a projector onto Vp(Ωh)× Vp(Ωh) and Πp

h
~q(., t) belongs to Vp(Ωh)× Vp(Ωh), we

have
J(Π

p

h
∂s
~U− ∂s

~U,Πp

h
~q) = 0.

In the same way, it follows that

a(Π
p

h
~U− ~U,Πp

h
~q) = 0

since curlh(Π
p

h
~q)(s) ∈ Vp(Ωh)× Vp(Ωh) for all 0< s ≤ t. Using the lower bound C1 > 0 of ¯̄ε

and ¯̄µ, Eq. (3.3), we thus get:

C1

2
‖Πp

h
~q(t)‖20,Ω ≤
∫ t

0

b([Π
p

h
~U− ~U](s),Πp

h
~q(s))ds. (3.19)

Now, we bound the surface integrals deriving from the definition of b(·, ·). We assume that
~q = (~qE,~qH), where ~qE and ~qH denote the error in ~E and ~H respectively. Let aik ∈ F I

h
be

an internal interface shared by the tetrahedra τi and τk. We denote by

I
E =

∫

aik

{Πp

h
~H− ~H}ik · [[Πp

h
~qE]]ik.

Using the Cauchy-Schwarz-Buniakovsky (CSB) inequality gives

I
E ≤
�
∫

aik

�{Πp

h
~H− ~H}ik
�2
� 1

2

︸ ︷︷ ︸

I
E
1

�
∫

aik

�
[[Π

p

h
~qE]]ik
�2
� 1

2

︸ ︷︷ ︸

I
E
2

.

We have that:

I
E
1 ≤
p

2

2

�

‖Πp

h
~Hi − ~Hi‖20,aik

+ ‖Πp

h
~Hk − ~Hk‖20,aik

� 1
2 ,

I
E
2 ≤
p

2
�

‖(Πp

h
~qE)i‖20,aik

+ ‖(Πp

h
~qE)k‖20,aik

� 1
2 .

Using Lemmas 3.2 and 3.3 yields:

I
E ≤ C

��h
νi− 1

2
i

p
s− 1

2
i

�2‖~H‖2s,τi
+
�h

νk− 1
2

k

p
s− 1

2
k

�2‖~H‖2s,τk

� 1
2
�

p2
i

hi

‖Πp

h
~qE‖20,τi

+
p2

k

hk

‖Πp

h
~qE‖20,τk

� 1
2

.
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According to the assumptions of Eq. (2.3), we finally get:

I
E ≤ K(κ1,κ2)

hν−1
i

p
s− 3

2
i

�

‖~H‖2s,τi
+ ‖~H‖2s,τk

� 1
2
�

‖Πp

h
~qE‖20,τi

+ ‖Πp

h
~qE‖20,τk

� 1
2 , (3.20)

where K > 0 does not depend on hi and pi , but depends on κ1 and κ2, and on the local
material properties ( ¯̄εi/k, ¯̄µi/k) associated to τi and τk.

The term

I
H =

∫

aik

{Πp

h
~E− ~E}ik · [[Πp

h
~qH]]ik

is treated in the same way, yielding the result:

I
H ≤ K(κ1,κ2)

hν−1
i

p
s− 3

2
i

�

‖~E‖2s,τi
+ ‖~E‖2s,τk

� 1
2
�

‖Πp

h
~qH‖20,τi

+ ‖Πp

h
~qH‖20,τk

� 1
2 . (3.21)

For boundary interfaces aik ∈ F B
h

, we obtain the same upper bounds as Eqs. (3.20) and
(3.21) but without the norms on τk.

Summing up with respect to all τi ∈ Ωh, and using the CSB inequality, yields:

b([Π
p

h
~U− ~U](s),Πp

h
~q(s))≤ K(κ1,κ2)

hν−1

p
s− 3

2
min

‖Πp

h
~q(s)‖0,Ω‖(~E(s), ~H(s))‖s,Ω. (3.22)

Integrating in t ∈ [0, T] and combining this with Lemma 3.4 establishes the result and
proves convergence on weak assumptions of local, elementwise smoothness of the solution.
This completes the proof. �

We have hence established the semi-discrete result that the error cannot grow faster
than linearly in time and that we can control the growth rate by adapting the resolution
parameters h and p accordingly. As we shall verify in Section 4 this linear growth is a
sharp result. However, the numerical experiments will also show that we can expect that
the growth rate approaches zero spectrally fast when increasing the approximation order
p provided that the solution is sufficiently smooth.

Note that the convergence result of Theorem 3.1 is different from the one obtained by
Fezoui et al. [10]. The convergence result in [10] considers only the case of a conforming
discontinuous Galerkin formulation where the interpolation degree is constant. The result
presented here remains valid on any kind of mesh and discontinuous elements, including
hp-type or non-conformal refinement.

3.3. Convergence of the divergence error

In the absence of sources, it is well known that the electric and the magnetic fields must
remain solenoidal throughout the computation. Indeed, taking the divergence of Eq. (2.1)
and applying Eq. (2.2) in combination with Gauss’ law for charge conservation immediately
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confirms that if the initial conditions satisfy Eq. (2.2), and the fields are evolved according
to the Maxwell’s equations (2.1), the solution will satisfy Eq. (2.2) at all times. Hence,
one can view Eq. (2.2) as a consistency condition on the initial conditions and limit the
solution to the time-dependent part of the Maxwell’s equations, Eq. (2.1). The scheme in
Eq. (2.7) does not solve Eq. (2.1), however, but rather an approximation to it. Hence, one
needs to consider the question of how well Eq. (2.7) conserves the divergence.

Using the results of Section 3.2 we can state the following result.

Theorem 3.2. Assume that a solution ~U = (~E(t), ~H(t)) ∈ Hs(τi)×Hs(τi) with s ≥ 7/2 to

the Maxwell’s equations in Ωh =
⋃

i τi exists. Then there exist a constant C dependent on s

and the shape regularity of the mesh parameter η, but independent of ~U, h, and p, such that

the divergence of the numerical solution, ~Uh, to the semi-discrete approximation, Eq. (3.9), is

bounded as:

�

‖∇ · (~E− ~Eh)‖20,Ω + ‖∇ · (~H− ~Hh)‖20,Ω

� 1
2

≤ C

�
hν−1

ps−1
min

+ T
hν−2

p
s− 7

2
min

�

max
t∈[0,T]





�
~E(t), ~H(t)
�




s,Ω, (3.23)

where ν =min{s, pmin + 1} and pmin =min{pi ,τi ∈ Ωh}, pi ≥ 1.

Proof. Consider the local divergence of ~H on any τi ∈ Ωh we have:

‖∇ · (~H− ~Hh)‖20,τi
≤ 2‖∇ · (~H−Πp

h
~H)‖20,τi

+ 2‖∇ · (Πp

h
~H− ~Hh)‖20,τi

. (3.24)

The first term can be bounded using Lemma 3.2 as:

‖∇ · (~H−Πp

h
~H)‖0,τi

≤ C‖~H−Πp

h
~H‖1,τi

≤ C
h
νi−1
i

ps−1
i

‖~H‖s,τi
, (3.25)

where νi =min{s, pi + 1} and s ≥ 1. Using the inverse inequality [19]:

‖∇ · ~uh‖0,τi
≤ C

p2
i

hi

‖~uh‖0,τi
, (3.26)

for all ~uh ∈ Ppi
(τi), we can bound the second term as

‖∇ · (Πp

h
~H− ~Hh)‖0,τi

≤ C
p2

i

hi

‖Πp

h
~H− ~Hh‖0,τi

≤ C T
p2

i

hi

hν−1
i

p
s− 3

2
i

‖(~E, ~H)‖s,τi
≤ C T

hν−2
i

p
s− 7

2
i

‖(~E, ~H)‖s,τi
, (3.27)

by combining Eq. (3.19) with Eq. (3.22). An equivalent bound can be obtained for the
divergence of ~Eh in the case of a source free medium which, combined with the above,
yields the result. �
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As could be expected, the result inherits the temporal linear growth from the conver-
gence result and confirms the possibility of recovering spectral convergence of the diver-
gence under the assumption of sufficient smoothness of the solutions. It should be noted
that while the result confirms high-order accuracy and convergence, the estimate for the
actual convergence rate is certainly suboptimal and leaves room for improvement.

4. Numerical experiments

In the following, we shall discuss the validity of the main theoretical results of the pre-
vious sections through the numerical solution of the two-dimensional Maxwell equations in
the TM polarization, i.e., we solve for (Hx , H y , Ez). To limit the scope of the presentation,
we will focus our attention on the LF2 and LF4 schemes, since the LF4 scheme is prefer-
able to any other higher order LF scheme as stated in Table 1. We denote by CFL(LFN ) =

maxi(ci∆t/hi) the CFL number of the LFN scheme, where ci is the local speed of propaga-
tion. In Table 2, we summarize the CFL values of the LF2 based DGTD-Pp method, where
pi = p, ∀τi ∈ Ωh. If pi varies from element to element in the mesh, the DGTD-Ppi

method
has the same stability limit as the DGTD-Pmin{pi} method, as long as the mesh is actually
refined. For instance, if p = {p1, p2, p3} = {4,3,1} then

CFL(LF2, DGTD-P(4,3,1))=CFL(LF2, DGTD-P1)=0.3.

The CFL values of the LF4 schemes are given by CFL(LF4) = 2.847 CFL(LF2) (see Table 1).Table 2: The CFL values of the LF2 based DGTD-Pp method.
p 0 1 2 3 4 5 6 7 8 9

CFL(LF2) 1.0 0.3 0.2 0.1 0.08 0.06 0.045 0.035 0.03 0.025

4.1. Problem 1: eigenmode in a PEC square cavity

We consider the propagation of an eigenmode which is a standing wave of frequency
f = 212 MHz and wavelength λ = 1.4 m in a unitary metallic cavity with ε = µ = 1
in normalized units. Owing to the existence of an exact analytical solution, this problem
allows us to appreciate the numerical results at any point and time in the cavity. Numer-
ical simulations make use of a non-conforming locally refined triangular meshes of the
square [0,1]× [0,1] as shown on Fig. 1. For a given non-conforming mesh, we assign to
coarse (i.e., non refined) elements a high polynomial degree p1 and to refined region a low
polynomial degree p2 (see [8]). The resulting method is referred to as DGTD-P(p1 ,p2)

. If
p1 = p2 = p, the scheme is simply called DGTD-Pp. In the sequel, we compare the LF2 and
LF4 schemes using the DGTD-Pp and DGTD-P(p1 ,p2)

methods.
As a first verification of the theoretical estimates, we consider a non-conforming mesh

consists of 152 triangles (128 of them in the refined region) and 97 nodes (24 of them are
hanging nodes). All simulations are carried out for time T = 90 which corresponds to 64
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periods. We plot on Fig. 2 the time evolution of the L2 error of the DGTD-Pp and DGTD-
P(p1,p2)

methods using the LF2 and LF4 schemes. It can be seen from Fig. 2 that the gain in
the L2 error is notable when the accuracy in space and time are increased. Table 3 gives
the final L2 error, the number of degrees of freedom (# DOF) and the CPU time in seconds
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onvergen
e of the DGTD-Pp (top) and DGTD-P(p1,p2)

(bottom) methods usingthe LF2 (left) and LF4 (right) s
hemes. L2 error at time T = 2 as a fun
tion of the square root of#DOF.Table 3: Problem 1: L2-error, CPU time in se
onds and # DOF to rea
h time T = 90 using the LF2and LF4 based DGTD methods.
DGTD-Pp method LF2 scheme LF4 scheme
p # DOF Error CPU time Error CPU time
2 912 4.9E-02 25 s 3.6E-02 17 s
3 1520 3.6E-03 76 s 8.5E-04 54 s
4 2280 2.0E-03 161 s 9.2E-05 110 s
5 3192 1.1E-03 364 s 9.3E-06 251 s

DGTD-P(p1 ,p2)
method LF2 scheme LF4 scheme

(p1, p2) # DOF Error CPU time Error CPU time
(3,2) 1008 1.3E-02 29 s 8.6E-04 20 s
(4,3) 1640 3.2E-03 86 s 9.6E-05 60 s
(5,4) 2424 2.0E-03 183 s 9.4E-06 125 s

to reach time T = 90. From Table 3 we observe that the LF4 scheme requires almost 1.5
times less CPU time and it is at least 4 times (for p, p1 = 3), 20 times (for p, p1 = 4) and
120 times (for p, p1 = 5) more accurate than the LF2 scheme based on the observed L2
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Figure 4: Problem 1: p-
onvergen
e of the DGTD-Pp (top) and DGTD-P(p1,p2)
(bottom) methods usingthe LF2 (left) and LF4 (right) s
hemes. L2 error at time T = 2 as a fun
tion of the approximation order

p. Table 4: Problem 1: Asymptoti
 
onvergen
e orders of the LF2 and LF4 based DGTD methods.
DGTD-Pp method, p = 0 1 2 3 4 5

LF2 scheme 1.06 1.19 2.18 2.37 2.29 2.25
LF4 scheme 1.06 1.14 2.23 3.03 4.30 4.50

DGTD-P(p1 ,p2)
method, (p1, p2) = (1,0) (2,1) (3,2) (4,3) (5,4) (6,5)

LF2 scheme 1.30 2.23 2.08 2.27 2.13 2.17
LF4 scheme 1.05 2.20 3.01 4.21 4.50 4.48

errors. Furthermore, for a given accuracy, the LF4 based DGTD-P(p1 ,p2)
method requires

less CPU time and less degrees of freedom than the LF4 based DGTD-Pp method.
Fig. 3 illustrates the numerical h-convergence of the DGTD-Pp and DGTD-P(p1 ,p2)

meth-
ods. Corresponding asymptotic convergence orders are summarized in Table 4. As it could
be expected from the use of a N th accurate time integration scheme, the asymptotic con-
vergence order is bounded by N independently of the approximation order p. On Fig. 4
we show the numerical p-convergence of the DGTD-Pp and DGTD-P(p1 ,p2)

methods for dif-
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ferent approximation orders p and different mesh resolutions h. Following the main result,
Theorem 3.1, we expect that the error grows at most linearly in time and that the growth
rate should vanish spectrally for smooth solution. The results on Fig. 4 not only confirm
the validity of both statements but also illustrate that Theorem 3.1 is sharp, i.e., we cannot
in general guarantee slower than linear growth, although we can control the growth rate
by the approximation order p.
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e of ~H as a fun
tion of time and p. DGTD-Pp(top) and DGTD-P(p1,p2)
(bottom) methods using the LF2 (left) and LF4 (right) s
hemes.

We conclude this experimental study by considering the numerical behavior of the
divergence error. For this purpose, we still consider the eigenmode problem. The compu-
tational domain is discretized by a non-conforming locally refined mesh with 48 triangles
(32 of them in the refined region) and 37 nodes (16 of them are hanging nodes), which
corresponds to a grid resolution of 5 points per wavelength. Simulations are carried out
for time T = 30 which corresponds to 20 periods. Fig. 5 shows the global L2 error of the
divergence of ~H as a function of time and the approximation order p using respectively
the DGTD-Pp and DGTD-P(p1 ,p2)

methods. The results in Fig. 5 confirm that the method
preserves the divergence error to the order of approximation, i.e., it decays spectrally (for
N = 4) with increasing polynomial order.

On Fig. 6 we show the numerical h- and p-convergence of the divergence of ~H using the
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Figure 6: Problem 1: h- and p-
onvergen
e of the divergen
e of ~H. DGTD-Pp (top) and DGTD-
P(p1 ,p2)

(bottom) methods using the LF2 (left) and LF4 (right) s
hemes. Errors evaluated at time T = 2.Table 5: Problem 1: Asymptoti
 
onvergen
e orders of the divergen
e of ~H.
DGTD-Pp method, p = 1 2 3 4 5 6

LF2 scheme 0.89 2.10 2.94 4.07 3.49 3.45
LF4 scheme 0.97 2.05 3.00 4.09 4.58 5.66

DGTD-P(p1 ,p2)
method, (p1, p2) = (2,1) (3,2) (4,3) (5,4) (6,5)

LF2 scheme 2.33 2.81 3.84 3.24 3.46
LF4 scheme 2.26 2.73 3.94 4.40 5.50

LF2 and LF4 schemes. Consistent with the theoretical result in Theorem 3.2, the divergence
error vanishes spectrally as we increase the approximation order p. Corresponding asymp-
totic convergence orders of the divergence of ~H are given in Table 5. One can observe that
the convergence order is bounded by N + 2 contrary to what we have observed for the
h-convergence of the DGTD methods which confirms that the estimate given in Eq. (3.23)
is suboptimal and leaves room for improvement.
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Figure 7: Problem 2: Computational domain and problem setting.
4.2. Problem 2: scattering by a multilayered dielectric circular cylinder

Having verified the performance of the basic computational setup as well as the theo-
retical estimates, let us now consider a non-trivial problem of more realistic character. In
this section, we shall only consider the LF4 scheme, and our objective is to compare the
non-conforming DGTD method proposed in this paper and the conforming DGTD method
studied in [10].

We consider a problem, in which a plane wave impinges on a dielectric cylinder with
multiple layers, experiencing reflections and refractions at the material interfaces. The
problem setting is shown on Fig. 7. We assume that the cylinder is illuminated by a
monochromatic plane wave of the form:

E inc
z = exp(−i(k6 x −ωt)), H inc

y = −exp(−i(k6x −ωt)),

where k6 = ω
p
ε6µ6. We suppose that the cylinder contains five layers which correspond

to five concentric cylinders. The radii of the cylinders are R1 = 0.1, R2 = 0.2, R3 =

0.3, R4 = 0.4 and R5 = 0.5. Each layer consists of a dielectric non-magnetic material, i.e.,
µi = 1,εi ≥ 1, i = 1, · · · , 6. The characteristics of the materials and the corresponding
wavelength in the different regions are given in Table 6. The angular frequency is ω= 2π
and the wavelength in the vacuum is λ= 1.Table 6: Problem 2: Chara
teristi
s of the material in the di�erent regions.

Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
r < R1 R1 < r < R2 R2 < r < R3 R3 < r < R4 R4 < r < R5 r > R5

εr ε1 = 1 ε2 = 4 ε3 = 9 ε4 = 16 ε5 = 64 ε6 = 1
λ (m) 1 0.5 0.33 0.25 0.125 1

The computational domain is chosen as a cylinder of radius R6 = 1, and is truncated
with a first-order Silver-Müller absorbing boundary condition

~n× ~E= −cµ~n× (~n× ~H),
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where c = 1/
p
εµ is the speed of propagation. In this special case, no exact analytical so-

lution is available for this problem; instead, we replace it by a reference solution obtained
using the LF4 based DGTD-P6 method applied to a high resolution conforming mesh con-
sisting of 25001 nodes and 49750 triangles. Contour lines of the Ez and H y components
at time T = 5 are shown on Fig. 8.

To show the effectiveness of the proposed method, we aim at making a comparison
between the conforming DGTD method studied in [10] and the non-conforming DGTD
method considered here. To this end, we first construct a conforming mesh consisting
of 14401 nodes and 28560 triangles and we use different DGTD-Pp method, where the
interpolation degree p is uniform in space. Then, a non-conforming mesh is obtained by
locally refining a coarse conforming mesh with a resolution of 10 points per the larger
wavelength. The level of refinement depends on the local wavelength in each region. For
example, the fifth region is refined four times since it corresponds to the lower wavelength.
For this non-conforming mesh, we assign to each region a polynomial degree pi and we
use different DGTD-Ppi

methods. The resulting non-conforming mesh consists of 27640
triangles and 14441 nodes in which 920 are hanging nodes (see Fig. 9). The level of
refinement and the distribution of triangles in each region are summarized in Table 7.Table 7: Problem 2: # triangles and the level of re�nement in ea
h region.

Region Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 Reg. 6
Interpolation order p1 p2 p3 p4 p5 p6

Level of refinement 0 1 2 3 4 0
# triangles 40 320 1280 5120 20480 400

non-conforming mesh
# triangles 2640 2880 2880 2880 2880 14400

conforming mesh

Results are shown on Fig. 10 in terms of the x -wise 1D distribution along y = 0.0 m of
the Ez and H y components. One can observe that the H y component is of low regularity
and the proposed non-conforming DGTD-Ppi

method treats very well the discontinuity at
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Figure 10: Problem 2: 1D distribution of the Ez (top) and H y (bottom) 
omponents along y = 0.0 attime T = 5. Conforming DGTD-Pp method (left) and non-
onforming DGTD-Ppi
method (right).

the material interfaces. Although, the levels of refinement in regions 4 and 5 as well as
the size of the jump in ε on the materials interfaces are high, and the mesh in regions
1, 2, 3, 6 are characterized by a few points per wavelength. We give in Table 8 the L2
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h time T = 5.
LF4 based DGTD-Pp method using the conforming mesh

DGTD-Pp Error on H y Error on Ez CPU time # DOF
DGTD-P0 8.6 % 12.7 % 25 min 28560
DGTD-P1 7.6 % 7.80 % 137 min 85680
DGTD-P2 2.2 % 1.20 % 286 min 171360
DGTD-P3 1.6 % 0.90 % 842 min 285600

LF4 based DGTD-Ppi
method using the non-conforming mesh

DGTD-P(p1 ,p2,p3,p4,p5,p6)
Error on H y Error on Ez CPU time # DOF

DGTD-P(4,3,2,1,0,2) 3.3 % 1.2 % 12.0 min 49720
DGTD-P(4,3,2,2,0,2) 2.8 % 1.2 % 12.5 min 65080
DGTD-P(4,3,2,2,1,4) 1.7 % 0.9 % 17.0 min 109640
DGTD-P(4,2,2,4,1,4) 1.4 % 0.8 % 21.0 min 154440

error with the reference solution, the CPU time and # DOF to reach time T = 5, for some
cases of the conforming and non-conforming DGTD methods. As expected, the gain in CPU
time between the two methods is notable. For instance, the DGTD-P(4,3,2,1,0,2) method is
roughly 2.3 times (for H y) and 6.5 times (for Ez) more accurate and requires 11 times less
CPU time and 1.7 times less memory than the conforming DGTD-P1 method. Moreover,
the DGTD-P(4,3,2,2,1,4) method requires respectively 17 times and 50 times less CPU time
than the conforming DGTD-P2 and DGTD-P3 methods.

5. Concluding remarks

The main purpose of this paper has been to study both theoretically and numerically
an arbitrarily high-order DGTD method for the discretization of the time-domain Maxwell
equations on non-conforming simplicial meshes. The central element which distinguishes
the current work from previous attempts to develop such DGTD methods is that a high-
order leap-frog time integration scheme is adopted here instead of a high-order Runge-
Kutta method. We have proved that the resulting DGTD method is stable under some
CFL-type condition. Also, we have developed a complete, if not optimal, convergence
theory. We have confirmed the results of the analysis by thorough numerical experiments in
two space dimensions, illustrating the flexibility, versatility, and efficiency of the proposed
arbitrarily high-order DGTD method.
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