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Abstract. In this paper, the Fourier collocation method for solving the generalized
Benjamin-Ono equation with periodic boundary conditions is analyzed. Stability of the
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1. Introduction

In this paper, we analyze the Fourier collocation (FC) approximation to the generalized
Benjamin–Ono (BO) equation with periodic boundary conditions:






∂t U(x , t) + ∂x F(U)(x , t) +H ∂ 2
x U(x , t) = 0, x ∈ R, 0< t ≤ T,

U(x + 2π, t) = U(x , t), x ∈ R, 0< t ≤ T,
U(x , 0) = U0(x), x ∈ R,

(1.1)

where U0 is 2π-periodic in space, F(z) ∈ C1(R), and H is the periodic Hilbert transform
[1]

H u(x) = −
1

2π
PV

∫ π

−π

cot
�π(x − y)

2π

�

u(y)dy.

The problem (1.1) arises in the propagation of internal waves in a stratified fluid of great
depth. The special case F(U) = U2 is the BO equation. Fourier methods for the BO
equation have been studied by many authors [4, 9–12]. In recent work [11], it is proved
that error of the Fourier Galerkin (FG) method for the BO equation is of the order O (N1−r)

in L2-norm for the analytic solution in H r . An optimal error bound O (N1/2−r) of the
method in H1/2-norm is obtained in [4].
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As suggested in [6, 9, 10], the FC methods for the BO equation are efficient, but no
error analysis has been provided. The aim of this work is to give rigorous proof of error
estimate of the FC method for (1.1). In particular, it will be shown that the error is of the
order O (N3/2−r) in H1/2-norm.

In Section 2, the FC method for (1.1) is presented. In Section 3, some lemmas needed
in error analysis are given. In Section 4, the stability and convergence of the semi-discrete
FC method are analyzed. This paper does not give the analysis for the fully discrete scheme,
but the accuracy of the fully discrete scheme will be demonstrated by using an example for
the BO equation in Section 5.

2. The Fourier collocation method

Let I = (−π,π). The inner product of L2(I) is denoted by (·, ·). For a positive integer N ,
the approximation space VN of the real trigonometric polynomials of degree N is defined
by

VN =

�

u(x) =

N
∑

l=−N

′′
ale

il x : al = a−l , |l| ≤ N ; aN = a−N

�

,

where the notation
∑′′ denotes halving the terms a−N and aN in the series. Let h= 2π/2N ,

x j = jh− π ( j = 0, · · · , 2N − 1) be the collocation points so that the base 2 Fast Fourier
Transform (FFT) can be directly adopted. Let IN : C( Ī)→ VN be the Fourier interpolation
operator defined by

IN u(x j) = u(x j), j = 0, · · · , 2N − 1.

We define the discrete product and norm as follows:

(u, v)N = h

2N−1
∑

j=0

u(x j)v(x j), ‖u‖N = (u,u)1/2N .

Let PN : L2(I)→ VN be the L2-orthogonal projection operator, i.e.,

(PN u− u, v) = 0, v ∈ VN .

The semi-discrete FC method for (1.1) is to find uC(t) ∈ VN such that for 0≤ j ≤ 2N − 1,

¨

(∂tuC + ∂x IN F(uC) +H ∂
2
x uC)(x j, t) = 0, 0< t ≤ T,

uC(x j, 0) = PN U0(x j).
(2.1)

For the time advance, we use the second-order leapfrog-Crank-Nicolson scheme. Let τ
be the step size in time and tk = kτ (k = 0,1, · · · , n

T
; T = n

T
τ). Denote uk(x) := u(x , tk)

by uk and

uk
t̂
=

1

2τ
(uk+1− uk−1), ûk =

1

2
(uk+1+ uk−1).



Error Estimate of the Fourier Collocation Method for the Benjamin-Ono Equation 343

The fully discrete FC method for (1.1) is to find uk
C
∈ VN such that for 0≤ j ≤ 2N − 1,







(uk
C t̂
+ ∂x IN F(uk

C
) +H ∂ 2

x ûk
C
)(x j) = 0, 1≤ k ≤ n

T
− 1,

u1
C
(x j) = PN[U0 +τ∂tU(0) +

1
2
τ2∂ 2

t U(0)](x j),

u0
C
(x j) = PN U0(x j).

(2.2)

3. Some lemmas

In this section, some lemmas needed in error analysis are given. Throughout this paper
C will denote a generic positive constant. For any real number r ≥ 0, H r(I) := W r,2(I)

is the Sobolev space with the norm ‖ · ‖r and semi-norm | · |r , where the subscript r will
be dropped whenever r = 0. Let H r

p(I) be the subspace of H r(I) consisting of all periodic
functions of the period 2π equipped with the following equivalent norm and semi-norm:

‖u‖r =
� ∞
∑

l=−∞

(1+ |l|2)r |al |
2
�1/2

, |u|r =
� ∞
∑

l=−∞

|l|2r |al |
2
�1/2

,

where

u(x) =

∞
∑

l=−∞

ale
il x , al =

1

2π

∫

I

u(x)e−il x dx .

For 0< r < 1, the equivalent semi-norm | · |r on H r(I) is defined by [2]

|u|r =
�
∫

I

∫

I

|u(x)− u(y)|2

|x − y|2r+1
dx dy

�1/2

.

For r > 1, the equivalent norm ‖ · ‖r on H r(I) is defined by

‖u‖r =
�

‖u‖2m + |u
(m)|2µ

�1/2
,

where m= [r] and µ = r − [r].

Lemma 3.1 ([5,7]). If 0≤ µ ≤ r and u ∈ H r
p(I), then

‖PN u− u‖µ ≤ CNµ−r |u|r ; (3.1)

and if r > 1/2, v ∈ H r(I) and C(r) denotes a constant depending on r, then

‖IN u− u‖µ ≤ CNµ−r |u|r , (3.2)

‖uv‖r ≤ C(r)‖u‖r‖v‖r . (3.3)

Lemma 3.2 ([2,4,7]). If u ∈ H1(I), then

‖u‖L∞(I) ≤ C‖u‖1/2‖u‖1/21 ; (3.4)
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and if u ∈ VN , then

‖u‖L∞(I) ≤ C(ln N)1/2‖u‖1/2, (3.5)

|u|r ≤ N r−µ|u|µ, 0≤ µ ≤ r. (3.6)

Lemma 3.3 ([4,7]). Let ǫ > 0. We have

|uv|1/2 ≤ C(ǫ)‖u‖1/2‖v‖1/2+ǫ , ∀u ∈ H1/2(I), v ∈ H1/2+ǫ(I), (3.7)

|(u,∂x v)| ≤ |u|1/2|v|1/2, ∀u ∈ H1/2
p (I), v ∈ H1

p(I), (3.8)

(u, v)N = (IN u, IN v)N = (IN u, IN v), ∀u, v ∈ C( Ī), (3.9)

(∂xu, v)N = (PN−1∂xu, v) = (∂x PN−1u, PN−1v), ∀u, v ∈ VN . (3.10)

Lemma 3.4 ([8]). Suppose that

(i) Ei(t), ρi(t), i = 1,2, are non-negative functions continuous on [0, T], ρi(t) is

increasing with respect to t, and M , C are positive constants;

(ii) for any t ∈ [0, T], if max
0≤s≤t
{E1(s), E2(s)} ≤ M,

Ei(t) ≤ ρi(t) + C

∫ t

0

Ei(s)ds;

(iii) Ei(0)≤ ρi(0) and ρi(T )e
C T ≤ M.

Then for any t ∈ [0, T], Ei(t) ≤ ρi(t)e
C T .

4. Error estimates of the semi-discrete scheme

By the definition of the discrete product, (2.1) is equivalent to, for any v ∈ VN ,

¨

(∂tuC(t) + ∂x IN F(uC(t)) +H ∂
2
x uC(t), v)N = 0, 0< t ≤ T,

uC(0) = PN U0.
(4.1)

We first consider the stability. Assume that uC(t) and the term on the right-hand side in
(4.1) have errors ũ(t) and f̃ (t), respectively. By (4.1), we have for any v ∈ VN that

¨

(∂t ũ(t) + ∂x IN F̃(t) +H ∂ 2
x ũ(t)− f̃ (t), v)N = 0, 0< t ≤ T,

ũ(0) = ũ0,
(4.2)

where

F̃ = F(uC + ũ)− F(uC) := G̃ ũ, G̃ =

∫ 1

0

F ′(uC + θ ũ)dθ .
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In what follows, for given 0< t ≤ T , assume

max
0≤s≤t
‖ũ(s)‖1/2 ≤ N−1/2, max

0≤s≤t
‖∂sũ(s)‖1/2 ≤ N−1/2. (4.3)

Thus, we have by (3.6) that for any 0≤ s ≤ t,

‖ũ(s)‖L∞(I) ≤ M1(ln N)1/2‖ũ(s)‖1/2 ≤ M1, (4.4)

‖∂sũ(s)‖L∞(I) ≤ M1(ln N)1/2‖∂sũ(s)‖1/2 ≤ M1, (4.5)

where M1 is the constant in (3.6). We note that

H v(x) = i

∞
∑

l=−∞

sign(l) ale
il x , for v(x) =

∞
∑

l=−∞

ale
il x ,

where i sign(l) is the symbol ofH . Then we have

|v|21/2 =
∞
∑

l=−∞

sign(l)l|al |
2 = −(∂x v,H v). (4.6)

It is easy to check the three properties of H : (i)H is skew-symmetric on L2; (ii)H is
bounded; (iii)H commutes with differentiation.

First, taking v = IN F̃(t) +H ∂x ũ(t) in (4.2) and integrating it in time lead to

|ũ(t)|21/2 ≤ |ũ(0)|
2
1/2+ 2

∫ t

0

n

(∂x IN f̃ (s),H ũ(s)) + (∂sũ(s)− IN f̃ (s), IN F̃(s))
o

ds, (4.7)

where we have used (3.9), (3.10), (4.6) and the properties (i), (iii) of H . By the Cauchy-
Schwarz inequality,

2|(IN f̃ (s), IN F̃(s))| ≤ ‖IN f̃ (s)‖2 + ‖IN F̃(s)‖2. (4.8)

Using (3.9), (4.4) and the notation

CF (z1, z2) = (|z1|+ |z2|) max
|z|≤|z1|+|z2|

�

|∂z F(z)|, |∂ 2
z F(z)|, |∂ 3

z F(z)|
�

, (4.9)

we obtain

‖IN F̃(s)‖2 = ‖F̃(s)‖2N = h

2N−1
∑

j=0

((G̃ ũ)(x j, s))
2

≤ max
0≤ j<2N

(G̃(x j, s))
2h

2N−1
∑

j=0

(ũ(x j, s))
2

≤ CF (‖uC(s)‖C(I), M1)‖ũ(s)‖
2.
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By (3.8) and the property (ii) ofH , we have

2|(∂x IN f̃ (s),H ũ(s))| ≤ C |IN f̃ (s)|21/2 + |ũ(s)|
2
1/2. (4.10)

By integration by parts in time, we get

2
�

�

�

∫ t

0

(∂sũ(s), IN F̃(s)) ds

�

�

�

= 2
�

�

�

∫ t

0

(∂sũ(s), G̃(s)ũ(s))N ds

�

�

�

=

�

�

�(ũ(s), G̃(s)ũ(s))N

�

�

�

t

0
−

∫ t

0

(ũ(s),∂sG̃(s)ũ(s))N ds

�

�

�

= max
0≤ j<2N

|G̃(x j, s)|‖ũ(s)‖
2
�

�

�

t

0
+

∫ t

0

max
0≤ j<2N

|∂sG̃(x j, s)|‖ũ(s)‖
2 ds

≤ CF (‖uC‖C1(0,T ;C(I)), M1)
n

‖ũ(t)‖2 + ‖ũ(0)‖2+

∫ t

0

‖ũ(s)‖2 ds
o

. (4.11)

Now we have by (4.5) that

max
0≤ j<2N

|∂sG̃(x j, s)| ≤ max
0≤ j<2N

∫ 1

0

|F ′′(uC + θ ũ)∂s(uC + θ ũ)(x j, s)|dθ

≤ CF (‖uC‖C1(0,T ;C(I)), M1).

Putting (4.8), (4.10) and (4.11) in (4.7), we obtain

|ũ(t)|21/2 ≤ |ũ(0)|
2
1/2+ CF (‖uC‖C1(0,T ;C(I)), M1)

·
n

‖ũ(t)‖2 + ‖ũ(0)‖2+

∫ t

0

(‖IN f̃ (s)‖21/2 + |ũ(s)|
2
1/2)ds
o

. (4.12)

Second, taking v = ũ(t) in (4.2) and integrating the resulting equation in time yield

‖ũ(t)‖2 = ‖ũ(0)‖2+ 2

∫ t

0

n

(IN f̃ (s), ũ(s)) + (PN−1IN F̃(s),∂x PN−1ũ(s))
o

ds. (4.13)

By (3.6), (4.3) and (4.4), we have

‖G̃‖1 =









∫ 1

0

�

F ′′(uC + θ ũ)∂x(uC + θ ũ) + F ′(uC + θ ũ)
�

dθ









≤ CF (‖uC‖1, M1). (4.14)

Then by (3.8) and (3.7) we have

2|(PN−1F̃(s),∂x PN−1ũ(s))|

≤ C |F̃(s)|21/2 + |ũ(s)|
2
1/2 ≤ C‖G̃(s)‖21‖ũ(s)‖

2
1/2 + |ũ(s)|

2
1/2

≤ CF (‖uC‖1, M1)‖ũ(s)‖
2
1/2. (4.15)
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It follows from (4.3), (4.4) and (3.6) that

|F̃ |1 = ‖∂x G̃ũ+ G̃∂x ũ‖

≤









∫ 1

0

F ′′(uC + θ ũ)∂x(uC + θ ũ)dθ ũ‖+ ‖G̃‖L∞(I)‖∂x ũ










≤ C(‖uC‖C1(I), M1)N
1/2‖ũ‖1/2.

Thus, we have by (3.3) and (3.6) that

2|(PN−1(IN F̃(s)− F̃(s)),∂x PN−1ũ(s))|

≤ C |IN F̃(s)− F̃(s)|1/2|ũ(s)|1/2 ≤ CN−1/2|F̃(s)|1|ũ(s)|1/2
≤ CF (‖uC‖C1(I), M1)‖ũ(s)‖

2
1/2.

By (4.15) and the above inequality, we have

2|(PN−1IN F̃(s),∂x PN−1ũ(s))|

≤ 2|(PN−1(IN F̃ (s)− F̃(s) + F̃(s)),∂x PN−1ũ(s))|

≤ CF (‖uC‖C1(I), M1)‖ũ(s)‖
2
1/2.

Therefore, by (4.13) we have

‖ũ(t)‖2 ≤ ‖ũ(0)‖2+ CF (‖uC‖C(0,T ;C1
p (I))

, M1)

∫ t

0

�

‖IN f̃ (s)‖2 + ‖ũ(s)‖21/2

�

ds. (4.16)

Combining (4.12) with (4.16) yields

‖ũ(t)‖21/2 ≤ C
n

‖ũ(0)‖21/2 +

∫ t

0

�

‖IN f̃ (s)‖21/2 + ‖ũ(s)‖
2
1/2

�

ds
o

. (4.17)

It remains to estimate ‖∂t ũ(t)‖1/2 for completing the stability analysis. For this, assume
that ∂t f̃ (t) exists. Differentiating (4.2) with respect to t yields

(∂ 2
t ũ(t) + ∂x IN∂t F̃(t) +H ∂

2
x ∂t ũ(t)− ∂t f̃ (t), v)N = 0. (4.18)

Third, taking v = IN∂t F̃(t) +H ∂x∂t ũ(t) in (4.18) and integrating in time yield

|∂t ũ(t)|
2
1/2 ≤ |∂t ũ(0)|

2
1/2+ 2

∫ t

0

n
�

∂x IN∂s f̃ (s),H ∂sũ(s)
�

+
�

∂ 2
s ũ(s)− IN∂s f̃ (s), IN∂s F̃(s)

�
o

ds, (4.19)

which can pass into

|∂t ũ(t)|
2
1/2 ≤ |∂t ũ(0)|

2
1/2+ CF (‖uC‖C1(0,T ;C(I)), M1)

∫ t

0

�

‖ũ(s)‖2 + ‖∂sũ(s)‖
2
1/2

�

ds

+

∫ t

0

�

‖IN∂s f̃ (s)‖21/2 + (∂
2
s ũ(s), IN∂s F̃(s))

�

ds.
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Denote ∂s F̃ = G∂sũ+G1ũ, where G = F ′(uC+ũ), G1 =
∫ 1

0
F ′′(uC+θ ũ) dθ∂suC . By integration

by parts in time, we have

2
�

�

�

∫ t

0

(∂ 2
s ũ(s), IN∂s F̃(s))ds

�

�

�

= 2
�

�

�

∫ t

0

(∂ 2
s ũ(s), G(s)∂sũ(s) + G1(s)ũ(s))N ds

�

�

�

=

�

�

�(∂sũ(s), G(s)∂sũ(s))N

�

�

�

t

0
−

∫ t

0

(∂sũ(s),∂sG(s)∂sũ(s))N ds

+ 2(∂sũ(s), G1(s)ũ(s))N

�

�

�

t

0
− 2

∫ t

0

(∂sũ(s),∂sG1(s)ũ(s) + G1(s)∂sũ(s))N ds

�

�

�

≤ CF (‖uC‖C2(0,T ;C(I)), M1)
n

‖ũ(t)‖2 + ‖∂t ũ(t)‖
2 + ‖ũ(0)‖2+ ‖∂t ũ(0)‖

2

+

∫ t

0

�

‖ũ(s)‖2 + ‖∂sũ(s)‖
2
�

ds
o

,

where the terms G,∂sG, G1 and ∂sG1 can be bounded in the maximal norm by the same
argument as in [4]. Note that if u ∈ H1(0, T ; L2(I)), then

‖u(t)‖2 ≤ 2‖u(0)‖2+ 2T

∫ t

0

‖∂su(s)‖
2ds. (4.20)

It follows that

|∂t ũ(t)|
2
1/2 ≤ |∂t ũ(0)|

2
1/2+ CF (‖uC‖C2(0,T ;C(I)), M1)

n

‖∂t ũ(t)‖
2 + ‖ũ(0)‖2

+‖∂t ũ(0)‖
2+

∫ t

0

�

‖IN∂s f̃ (s)‖21/2 + ‖∂sũ(s)‖
2
1/2

�

ds
o

. (4.21)

Forth, taking v = ∂t ũ(t) in (4.18) and integrating in time yield

‖∂t ũ(t)‖
2

= ‖∂t ũ(0)‖
2+ 2

∫ t

0

�

(IN∂s f̃ (s),∂sũ(s)) + (PN−1IN∂s F̃(s),∂x PN−1∂sũ(s))
�

ds

≤ ‖∂t ũ(0)‖
2+ 2

∫ t

0

�

‖IN∂s f̃ (s)‖2 + ‖∂sũ(s)‖
2+ (PN−1 IN∂s F̃(s),∂x PN−1∂sũ(s))

�

ds.

By (3.8) and (3.7), we have

2|(PN−1∂s F̃(s),∂x PN−1∂sũ(s))|

≤ C
�

|G(s)∂sũ(s)|
2
1/2 + |G1(s)ũ(s)|

2
1/2 + |∂sũ(s)|

2
1/2

�

≤ C
�

‖G1(s)‖
2
1‖ũ(s)‖

2
1/2 + ‖G(s)‖

2
1‖∂sũ(s)‖

2
1/2

�

≤ CF (‖uC‖C1(0,T ;H1
p (I))

, M1)
�

‖ũ(s)‖21/2 + ‖∂sũ(s)‖
2
1/2

�

, (4.22)
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where the terms G, G1 can be bounded in H1-norm by the same argument as in [4]. It
follows from (4.3), (4.4) and (3.6) that

|∂s F̃ |1 = |G∂s∂sũ+ G1ũ|1
= ‖∂x G∂sũ+ G∂x∂sũ+ ∂x G1ũ+ G1∂x ũ‖

≤ CF (‖uC‖C1(Ī×[0,T]), M1)N
1/2
�

‖ũ‖1/2 + ‖∂sũ‖1/2
�

.

Then by (3.3) and (3.6) we have

2|(PN−1(IN∂s F̃(s)− ∂s F̃(s)),∂x PN−1∂sũ(s))|

≤ C |IN∂s F̃(s)− ∂s F̃(s)|1/2|∂sũ(s)|1/2

≤ CN−1/2|∂s F̃(s)|1|∂sũ(s)|1/2

≤ CF (‖uC‖C1(Ī×[0,T]), M1)
�

‖ũ‖21/2 + ‖∂sũ‖
2
1/2

�

.

Similar to (4.20), we have that

‖∂t ũ(t)‖
2 ≤ CF (‖uC‖C1(Ī×[0,T]), M1)

·
n

‖ũ(0)‖2+ ‖∂t ũ(0)‖
2+

∫ t

0

�

‖IN∂s f̃ (s)‖2 + ‖∂sũ(s)‖
2
1/2

�

ds
o

. (4.23)

Combining (4.21) with (4.23) yields

‖∂t ũ(t)‖
2
1/2 ≤ C
n

‖ũ(0)‖2+ ‖∂t ũ(0)‖
2
1/2 +

∫ t

0

�

‖IN∂s f̃ (s)‖21/2 + ‖∂sũ(s)‖
2
1/2

�

ds
o

. (4.24)

Define

E1(t) = ‖ũ(t)‖
2
1/2, ρ1(t) = C

�

‖ũ(0)‖21/2 +

∫ t

0

‖IN f̃ (s)‖21/2 ds
�

,

E2(t) = ‖∂t ũ(t)‖
2
1/2, ρ2(t) = C

�

‖ũ(0)‖2+ ‖∂t ũ(0)‖
2
1/2 +

∫ t

0

‖IN∂s f̃ (s)‖21/2 ds
�

.

By (4.17), (4.24) and Lemma 3.4, we obtain the following stability result.

Theorem 4.1. Suppose that F(z) ∈ C3(R). Then there exists a constant C depending on

‖uC‖C1(Ī×[0,T]) and ‖uC‖C2(0,T ;C(I)), such that if

ρi(t)≤ M2
1 e−C T (2N + 1)−1, i = 1,2,

then

Ei(t) ≤ ρi(t)e
C t , 0< t ≤ T.
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Next we consider the convergence of scheme (4.1). Let e(t) = uC(t) − u∗(t), where
u∗(t) = PN U(t). From (1.1), (4.1) and (3.10), we have
¨

(∂t e(t) + ∂x IN F̃(t) +H ∂ 2
x e(t)− f̃ (t), v)N = 0, 0< t ≤ T,

e(0) = uC(0)− u∗(0),
(4.25)

where

F̃ = F(uC)− F(u∗), f̃ = ∂x[PN F(U)− IN F(u∗)].

In terms of the stability analysis, we need to bound the terms ‖IN f̃ (s)‖1/2 and ‖IN∂t f̃ (s)‖1/2.
By (3.1), we have

‖F(U)− F(u∗)‖ ≤









∫ 1

0

F ′(θU + (1− θ)u∗)(U − u∗)dθ









≤max
x∈I

∫ 1

0

|F ′(θU + (1− θ)u∗)|dθ‖U − PN U‖

≤ max
|z|≤‖U(s)‖1

|∂z F(z)|CN−r |U |r . (4.26)

It follows from (3.10) that

( f̃ , v)N = (PN−1∂x[PN F(U)− IN F(u∗)], v).

Thus, by (3.6), (3.1) and (3.3), we obtain

‖IN f̃ (s)‖1/2 ≤ CN3/2‖PN F(U)− IN F(u∗)‖

≤ CN3/2
n

‖PN F(U)− F(U)‖+ ‖F(U)− F(u∗)‖+ ‖F(u∗)− IN F(u∗)‖
o

≤ CN3/2−r . (4.27)

Let r ≥ r
1
≥ 2. A derivation analogous to the above analysis leads to

‖∂t F(U)− ∂t F(u
∗)‖

≤









∫ 1

0

F ′′(θU + (1− θ)u∗)∂t(θU + (1− θ)u∗)(U − u∗)dθ









+










∫ 1

0

F ′(θU + (1− θ)u∗)dθ∂t(U − PN U)










≤ ‖∂t U(s)‖C(I) max
|z|≤‖U(s)‖1

|∂ 2
z F(z)|CN−r |U |r + max

|z|≤‖U(s)‖1
|∂z F(z)|CN−r

1 |∂t U |r
1
,

and

‖IN∂t f̃ (s)‖1/2

≤ CN3/2‖PN∂t F(U)− IN∂t F(u
∗)‖

≤ CN3/2
�

‖PN∂t F(U)− ∂t F(U)‖+ ‖∂t F(U)− ∂t F(u
∗)‖+ ‖∂t F(u∗)− IN∂t F(u∗)‖

�

≤ CN3/2−r
1 .
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For the initial errors, we have by (4.25) that e(0) = 0, and by (4.27),

‖∂t e(0)‖1/2 = ‖IN f̃ (0)‖1/2 ≤ CN3/2−r .

Theorem 4.2. Suppose r ≥ r
1
≥ 2, F(z) ∈ C3(R) ∩ C r+1(R), U ∈ C(0, T ; H r

p(I)), ∂t U ∈

C(0, T ; H
r
1

p (I)), and ∂ 2
t U ∈ C( Ī × [0, T]). Then there exists a constant C depending on the

regularities of U and F such that for any 0≤ t ≤ T,

‖uC(t)− U(t)‖1/2 ≤ CN3/2−r ,

‖∂tuC(t)− ∂t U(t)‖1/2 ≤ CN3/2−r
1 .

5. A numerical example

We simulate the periodic soliton solution of the BO equation by the FC method (2.2).
Consider the periodic BO equation:

∂t U + U∂x U +H ∂ 2
x U = 0, − L < x < L, t > 0,

with a soliton solution of period 2L [3]:

U(x , t) =
2cδ2

1−
p

1− δ2 cos(cδ(x − ct))
, δ =

π

cL
.

The problem is computed by the FC method (2.2) with the parameters c = 0.25 and L = 40.
The results are given in Table 1 with various τ and N , where L2-error and H1/2-error are
computed approximately by using IN U instead of U . The results show that the method
is of spectral accuracy in space and of second order convergence in time. Note that with
N suitably large, the FC method gets the results of almost the same accuracy as the FG
method [4]. Table 1: Errors at t = 100 of the FC method.

τ 2N L2-error L∞-error H1/2-error L2-order L∞-order H1/2-order

1e-1 9.1938e-5 2.9987e-4 7.0887e-4

1e-2 128 9.1873e-7 3.0025e-6 7.0842e-6 τ2.00 τ2.00 τ2.00

1e-3 9.1863e-9 2.9874e-8 7.0830e-8 τ2.00 τ2.00 τ2.00

32 1.0566e-2 2.2714e-2 3.0962e-2

1e-3 64 2.9173e-5 5.5836e-5 9.0323e-5 N−8.50 N−8.67 N−8.42

128 9.1863e-9 2.9874e-8 7.0830e-8 N−11.63 N−10.87 N−10.32
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