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1. Introduction

Since d-dimensional array of size n at each dimension contains nd elements, efficient

algorithms working with multidimensional data should incorporate approximation of ten-

sor in structured formats with much smaller number of data representation parameters.

The most popular tensor formats now are canonical and Tucker. Canonical format [15] of

tensor F with d indices F= [ fi j···k] reads

F= (A, B, · · · , C) =

R
∑

s=1

as ⊗ bs ⊗ · · · ⊗ cs, or fi j···k =
R
∑

s=1

ais b js · · · cks, (1.1)

where « ⊗ » denotes outer (Kronecker) product. Eq. (1.1) represents tensor F by dnR

parameters and removes exponential dependence on d (so-called “curse of dimension-

ality”), that make canonical format very popular in computation practice, especially for

large-dimensional problems. However, canonical decomposition/approximation with min-

imal number of summands R (referred to as tensor rank) is rather a complicated problem.

Among several available algorithms [1–3, 6, 7, 14, 15, 18] none is known to be absolutely

reliable, and many numerical packages (for example quantum chemistry package MOL-

PRO) compute (1.1) with very large R, what leads to excessive costs of storage and further

computations.
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For more compressed data representation one can use Tucker format [21]

F = G×1 U ×2 V · · · ×d W =

r1
∑

a=1

r2
∑

b=1

· · ·
rd
∑

c=1

gab···cua ⊗ vb ⊗ · · · ⊗wc, (1.2)

where coefficient tensor G = [gab···c] is referred to as core and matrices U = [ua], V =

[vb], · · · ,W = [wc] as mode factors. Here «×k » denotes multiplication of tensor by matrix

along k-th mode, for example, F= G×2 V means fi j···k =
∑

j′ v j j′ gi j′···k. Summation bounds

r1, · · · , rd are called mode ranks of tensor. Compression in Tucker format can be performed

by reliable SVD-based algorithm [4, 5], that computes (1.2) with optimal values of mode

ranks, that often turn to be considerably smaller than tensor rank and ‘practical’ rank R of

canonical form (1.1) computed by real algorithms.

If canonical format is given for tensor F, it can be also utilised for core G and total

number of parameters remains linear in d . In this case it is natural to develop a method

of Tucker compression, which utilises canonical structure of input. In [17] we discuss al-

gorithm, based on low-rank approximation of canonical factors by Cross2D method. Since

factors are approximated independently, total complexity is linear by d . On the other hand,

accuracy criteria for approximation are estimated by inexact bounds, and this leads to over-

rated values for mode ranks.

In this paper we propose a new fast algorithm for mode ranks revealing and Tucker

approximation of tensor in canonical form. It is based on proper decomposition of Gram

matrices of unfoldings, performed by cross approximation method with linear in n com-

plexity. Unfortunately, our method can not be applied when desired accuracy is more

precise than square root of machine precision.

2. Approximation in Tucker form

Suppose F is given in canonical form (1.1) with large R and we need to approximate

it in Tucker form (1.2) with smaller values of mode ranks r1, · · · , rd . Standard method of

Tucker approximation involves singular decompositions of all mode unfoldings, i.e., matri-

ces of all mode vectors. Considering F = [ fi j···k] as n × nd−1 matrix F = [ fi( j···k)] with

row index i and column ‘long index’ ( j · · · k), we compute SVD F = USV T +∆F and trun-

cate it, introducing error ‖∆F‖F ≤
p

dǫ‖F‖F . Number of dominant singular values gives

mode rank r1, and n× r1 matrix of corresponding singular vectors gives Tucker factor U .

Computing factors V, · · · ,W from SVD of other mode unfoldings, we write core tensor as

G= F×1 U T ×2 V T ×3 · · · ×d W T = (U T A, V T B, · · · ,W T C), (2.1)

preserving canonical form for core and linear number of representation parameters for F.

Accuracy of approximation is given by

‖F−G×1 U ×2 V ×3 · · · ×d W‖F ≤ ǫ‖F‖F . (2.2)

This method is reliable, but very expensive for large-scale tensors, because SVD of n ×
nd−1 matrix requires O (nd+1) operations. Some methods with linear in n complexity are
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available for d = 3 (see [16] and further development of these ideas in [8,9]), but they do

not utilise canonical structure of input.

To take advantages of (1.1), consider Gram matrix F̂ = [ f̂ii′]
def
= F F T .

f̂ii′
def
=
∑

j···k
fi( j···k) fi′( j···k) =

∑

j···k

 

R
∑

s=1

ais b js · · · cks

! 

R
∑

t=1

ai′ t b j t · · · ckt

!

,

F̂ = A
�

(BT B)⊙ · · · ⊙ (C T C)
�

AT ,

(2.3)

where «⊙ » denotes element-by-element (Hadamard) product of Gram matrices of factors

B, · · · , C . Since singular values of F are square roots of eigenvalues of F̂ , mode rank r1

and corresponding Tucker factor U can be found by truncated proper decomposition F̂ =

UΛU T . Each Gram matrix F̂ can be assembled in O (nR2 + n2R) and eigenvalues can be

found in O (n3) operations, so total cost of evaluation of (1.2) is linear in d . To make the

complexity linear also in mode size n, we propose a cross approximation method for Gram

matrix F̂ .

3. Cross approximation for Gram matrix

Truncated singular/proper decomposition is used in cases where low-rank approxima-

tion is required. This problem can be solved by faster methods, for example, those based

on skeleton approximation A ≈ Ã = UGV T , where factors U , V T consist of columns and

rows of n× n matrix A, and core G = B−1, where B is r × r submatrix on the intersection

of cross formed by selected columns and rows. Accuracy of this approximation depends

on choice of B crucially. In [11–13] it is shown that a good choice for B is maximum

volume submatrix, i.e., the one with maximum modulus of determinant among all r × r

submatrices. It is known that search of this submatrix is NP-complexity problem, that is

not feasible even for quite moderate values of n and r. A good practical remedy is search of

‘good enough’ submatrix instead of maximum volume one. Such a method, called cross ap-

proximation, was first introduced in [22], and then developed with implementation details

in [10], where some properties of arising dominant submatrices are also discussed.

If supported cross is iteratively widened at each step by one row and column that

intersect on element where residual is maximum in modulus, cross approximation method

is equivalent to Gauss decomposition with full pivoting. If A is symmetrical and positive

definite (that means it is Gram matrix), this element always belongs to diagonal, and thus

pivoting requires linear in matrix size number of operations. This remarkable property

remains valid (in exact arithmetics) on all steps of cross elimination. Finally we come to

the following Algorithm 3.1, that is equivalent to unfinished Choletsky decomposition.

Note that total n× n matrix never appears during the computations, and number of

used memory cells is linear in n. The proposed algorithm includes computation of diagonal

of matrix and r columns and also O (nr3 + r4) additional operations.† If Gram matrices

†The complexity of method can still be reduced, if special methods are applied for rediagonalization of sym-

metric diagonal plus rank one matrix.
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Algorithm 3.1. Cross approximation for Gram matrix

Require: Function ai j to compute elements of SPD n× n matrix A.

Ensure: Approximation Ã= UΛU T .

1. Set p = 0, Ã= 0, compute a = diag(A) nai j

{Compute diagonal of matrix}

2. i := arg max j |a j| n

{Find maximum element of residual}

3. u := a:,i − UΛ(ui,:)
T , nai j + O (np)

{Compute active column of residual}

4. u := u/
p

ui {Pivot should be positive (in exact arithmetics)}

5. a: := a:− |u:|2 {Update diagonal of residual} n

6. u =: [Uu′]x . {Orthogonalize u to subspace U} O (np)

This decomposition is evaluated as follows:

x1:p := U T u, u′ := (I − UU T )u, xp+1 = ‖u′‖F , u′ := u′/‖u′‖F
and can require reorthogonalization step in machine arithmetics.

7. U := [Uu′], and approximation writes Ã= U(Λ+ x T x)U T O (p3)

{New approximation is exact on positions of all evaluated crosses}

8. Λ+ x T x := V DV T {Re-diagonalize decomposition}

9. U := UV, Λ := D, and approximation writes Ã= UΛU T O (np2)

10. Check stopping criterion.

If stopping criterion is satisfied, return Ã, otherwise set p := p+1 and repeat from

step 2.

AT A, BT B, · · · , C T C are computed (that requires O (nR2)d operations), the diagonal of (2.3)

is found in O (nR2) operations, and every column require O (R2+ nR) operations. The total

complexity of mode ranks revealing by the method based on Algorithm 3.1 is O (nR2 +

nRr + R2r + nr3 + r4)d , that is much smaller than O (n2R + nR2 + n3)d complexity of

proper decomposition of full Gram matrix. In the next chapter we will illustrate this by a

numerical example.

We also have to define stopping criterion for our method. It should be computed in

linear time and thus direct check of residual norm ‖A− UΛU∗‖F ≤ ǫ‖A‖F is unaffordable.

We propose two options:

• check residual norm of diagonal ‖diag(A− UΛU∗)‖F ≤ ǫ‖diag(A)‖F ;

• check convergence of dominant eigenvalues in Λ. More precisely, on each step split
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all p eigenvalues in Λ in ‘dominant’ and ‘smaller’ part, the latter defined by

� p
∑

i=q+1

λ2
i

�1/2

≤ ǫ‖Λ‖F . (3.1)

Stop if all new eigenvalue during 3 successive iterations fall into ‘smaller’ part.

Both criteria lead to similar results in our experiments. In any case, after completion of

Algorithm 3.1 we should remove ‘smaller’ part of eigenvalues according to (3.1).

4. Recompression of electron density

We apply the proposed method to recompress the three-dimensional electron density

computed by MOLPRO quantum chemical package from canonical format with very large

rank to Tucker format. Our method is compared to the algorithm, based on independent

low-rank approximation of canonical factors [17] (further development is given in [20]).

As shown in [19], approximation of canonical factor can introduce a large error to the

whole tensor, and in order to avoid this, individual approximation bounds for every factor

should be computed, which results in overrated values of ranks ρ1,ρ2,ρ3 for approximated

factors. To find “real” mode ranks r1, r2, r3, algorithm based on individual factor filtering

should include post-compression step, reducing size of core tensor from ρ1 × ρ2 × ρ3 to

r1×r2× r3. We also compare new algorithm to the one based on full computation of proper

decomposition for (2.3).

In Table 1 we show time T1 of individual factor filtering method and overrated ranks

ρ1,ρ2,ρ3. Then we show time T2 of proposed algorithm based on cross approximation 3.1

and time T3 of algorithm based on full proper decomposition, together with ‘true’ mode

ranks r1, r2, r3. We see that individual filtration is sufficiently faster than algorithm pro-

posed in this paper, but it is more tricky in implementation, especially for large d . On the

other hand, the method of cross approximation provides considerable speedup in compar-

ison with full proper decomposition method.Table 1: Time for ele
tron density 
ompression. Mode size n = 5121, relative approximation a

ura
y
ǫ = 10−6. Time (mm:ss) is measured on Core2Duo T5300 pro
essor with frequen
y 1.33 GHz. We useGNU Fortran 4.3.3 
ompiler and GotoBLAS-1.26 library.

individual filtering eigenvalues of Gram matrices

molecule R ρ1,ρ2,ρ3 T1 r1, r2, r3 T2 T3

methane 1334 77× 77× 81 0:06 34× 34× 34 0:10 23:00

ethane 3744 78× 92× 121 0:15 24× 44× 35 1:06 25:30

ethanol 6945 134× 123× 166 0: 23 53× 55× 54 4:00 31:10

glycine 9208 103× 182× 229 1:00 30× 79× 82 8:10 35:30
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